
 

B B

 

Chapter

                    
3

Modules and Interfaces
The BlackBox framework consists of tools to help the software designer write appli-
cation programs. Typical applications present dialog boxes and menu options to the
user. When the user enters data into a dialog box and clicks a button with the mouse
or makes a menu selection, a program that the software designer wrote is activated.
The framework maintains the necessary connections between the programs and the
actions of the user. To accomplish the required connections the BlackBox frame-
work uses three collections:

■ Modules

■ Classes

■ Procedures

Each of these collections groups various items together into a single unit. This chap-
ter shows how to organize simple procedures into modules. Later chapters show how
to use classes.

Modules

The module is the outermost collection of classes, procedures, and data. Every Com-
ponent Pascal program you write must be contained within a module, which is also
known as a compilation unit. Figure 3.1 shows one possible organization of a mod-
ule. It is a collection of some data, a procedure, and a class. A procedure groups data
and program statements together.

In Figure 3.1, the word Data1 represents data that is contained in the module but
is not contained in a procedure. Data that is not contained in a procedure or a class is
called global data in contrast to local data, which is. Data3 is local to Class3, and
Data3a is local to Procedure3a.

The two lines in Procedure2 represent program statements. The program state-
ments are grouped so they can be executed as if they were a single statement. A class
can collect several procedures together as well as data. Many combinations of col-
lections are possible. Figure 3.1 shows that some procedures may have data while
others may not. You can also put procedures inside other procedures, but we will not
have occasion to do so in this book. Putting procedures inside a class is the organiza-
tion required for the design technique called object-oriented programming (OOP).
The latter part of this book describes principles of OOP.

Figure 3.1
A module containing a 
procedure and an object.

Module

Procedure2

Class3

Procedure3a

Procedure3b

Data3

Data1

Data2

Data3a



 

30

 

Chapter

 

 

 

3 Modules and Interfaces

              
Interfaces

The BlackBox framework is a collection of modules that you will use to write your
programs. Your programs will consist of procedures that are contained within a
module that you will write. The modules of the framework all fit together and coop-
erate to provide services for the programmer’s module. A programmer thinks of a
particular module in the framework as providing a service for him in much the same
way that a professional, say an attorney, provides a service for her customers. The
terminology from the commercial world is often carried over to computer science.
In the same way that the attorney provides a service to her clients, a module in the
framework is a server that provides a service to the programmer’s module, which is
the client.

Figure 3.2 shows the relationship between the client module, which you will
write, and the server module, which is provided by the framework. The interaction
between the two modules is governed by specific rules or protocols that are defined
by the server module in its interface. The interface of a module is a list of all the
items that are exported by the module. Its purpose is to describe the rules that a cli-
ent module must follow to use its services. You should develop the skill of reading
the interface of a module to determine the rules to be followed when requesting its
services.

The server module can export many kinds of items including data, procedures,
and classes. The client module has access to the items exported by the server. Any
items that are not exported by the server are hidden from the client and are not
accessible. If the server is written well, knowledge about the items that are hidden
will not be needed anyway by the client to perform its task. The hiding of detail is
the essence of abstraction, and is an important idea in software design. The server
module is darkly shaded in Figure 3.2 to indicate that its details cannot be seen by
the client. This concept is so important that the representation of a server module as
a “black box” whose details are hidden is the inspiration for the name of the Black-
Box framework.

If you want to use a module but you are not sure of the exported items, the frame-
work provides a convenient way for you to view the module’s interface. You simply
type the name of the module, highlight it in a stretch of text, and select Info→Inter-
face from the menu bar. For example, Figure 3.3 shows how you could view the
interface of a module named StdLog, which you will use for your first program. The

The client/server view

The interface and its purpose

Figure 3.2
The interface between a client 
module and a server module.

Client
module

Server
moduleInterface

Items
exported Items

hidden

Request for 
service

The essence of abstraction



 

Compilers

 

31

                                         
name of the module, StdLog, has been typed in the Log and selected. With this
stretch of text in the focus window, Info→Client Interface is selected from the menu
bar. The result is a new window with the text shown in Figure 3.4.

You can always tell when you are inspecting an interface by the first word DEFI-
NITION in the listing. The items listed between DEFINITION and END are the items
exported by the module. This module exports many items, six of which are shown
here—the procedures Bool, Char, Int, Ln, Real, and String. Your first program will
use procedure String from module StdLog.

DEFINITION StdLog;

PROCEDURE Bool (x: BOOLEAN);
PROCEDURE Char (ch: CHAR);
PROCEDURE Int (i: LONGINT);
PROCEDURE Ln;
PROCEDURE Real (x: REAL);
PROCEDURE String (IN str: ARRAY OF CHAR);

END StdLog.

Compilers

A computer can directly execute statements only if they are written in the language
that the machine can understand. Languages for machines are written in a complex
code that is difficult for humans to read or write. The code is called machine lan-
guage. So a Component Pascal statement must first be translated to machine lan-
guage before executing. The function of the compiler is to perform the translation
from a program written in Component Pascal to machine language. The compiler
also generates the interface between the program and the rest of the framework.
Running a program is a three-step process:

■ Write the program in Component Pascal, called the source program.

■ Invoke the compiler to translate, or compile, the source program from Compo-
nent Pascal to machine language. The machine language version is called the 
object program and is stored in the code file. The interface is stored in the 
symbol file.

Figure 3.3
Highlighting a stretch of text 
to access the interface of a 
module.

Figure 3.4
The interface of the StdLog 
module. Not all exported 
items are shown.

The compiler as a translator



 

32

 

Chapter

 

 

 

3 Modules and Interfaces

                
■ Execute the object program.

If you want to execute a program that was previously compiled, you do not need
to translate it again. You can simply execute the object program directly. If you ever
delete the object program from your disk you can always get it back from the source
program by compiling again. But the translation can only go one way. If you ever
delete the source program you cannot recover it from the object program.

The Component Pascal compiler is software, not hardware. It is a program that is
stored in a file on your disk. In the BlackBox framework, the compiler is located in
the development subsystem, abbreviated Dev. Like all programs, the compiler has
input, does processing, and produces output. Figure 3.5 shows that the input to the
compiler is the source program and the output is the object program and the inter-
face.

When you write the source program, it will be saved in a file on disk just like any
other document would be. The text files you wrote in the first chapter were saved in
files stored in the Docu folder. You should save your Component Pascal source pro-
grams in the Mod folder. When you invoke the compiler, it will produce the code file
for the object program, and the framework will save it in the Code folder. The com-
piler will also produce the interface, which the framework will save in the Sym
folder. Both the object program and the interface are created automatically by the
compiler from your source program. Most other programming languages require the
programmer to write not only the source program, but the interface as well. If you
have used such a language before, having the interface produced automatically
might take some getting used to. The way in which BlackBox manages the inter-
faces of the modules is a major benefit over other development systems.

Programs

Figure 3.6 is a program that outputs a message to the Log. To run this program, you
should first select File→New and type the listing in the untitled document window
as it is shown in the figure. Be particularly careful about the punctuation marks.
There are several differences in the program that you should type compared to the
program in Figure 3.6.

Every module must have a name. In Figure 3.6 the name of the module is
Hw90Pr0380. When you develop software for a large project that requires many
modules, it is important to have a consistent naming convention for your modules
and your files. In the process of studying from this book, you will be writing many

Figure 3.5
The compiler as a program.

Input Processing Output

Object
Program

Interface

Source
Program Compiler



 

Programs

 

33

                                                                        
modules and so will need a consistent naming system. The guidelines for naming the
modules in this chapter are a system that is appropriate for programs that are written
as assignments in a class. Your instructor may have different guidelines for you to
follow.

MODULE Hw99Pr0380;
(* Stan Warford *)
(* June 12, 2002 *)

IMPORT StdLog;

PROCEDURE PrintAddress*;
BEGIN

StdLog.String("Mr. K. Kong"); StdLog.Ln;
StdLog.String("Empire State Building"); StdLog.Ln;
StdLog.String("350 Fifth Avenue"); StdLog.Ln;
StdLog.String("New York, NY 10118-0110"); StdLog.Ln

END PrintAddress;

END Hw99Pr0380.

Chapter 1 described a system where each student in the class is assigned a unique
two-digit number. The name of the module in Figure 3.6 is appropriate for a student
who has been assigned the number 99. The first part of the name Hw99 consists of
the letters Hw, which stands for homework, followed by the assigned student num-
ber. The second part of the name Pr0380 assumes that this program is a homework
assignment as specified in Chapter 3, Problem 80. You must be careful to distinguish
between uppercase and lowercase letters. In the name Hw99Pr0380, H and P are
uppercase, while w and r are lowercase. When you type a program for an assignment
use your assigned number in place of 99, the chapter from which the assignment is
taken in place of 03, and the problem number in place of 80.

After you have entered the text, select File→Save As to save the file as a docu-
ment (not Ascii or Plain Text). Manipulate the controls of the dialog box so the doc-
ument will be saved in the folder named Mod within the folder named Hw99 that you
previously installed in your BlackBox folder. Name the file Pr0380 when you save it.
Note that the first part of the module name Hw99 is the name of your folder con-
tained in the BlackBox folder, while the second half of the module name Pr0380 is
the name of the file that is within the Mod folder that is within your folder.

You can see from Appendix A how Figure 3.6 conforms to the structure for a
module. The EBNF syntax rule for Module from the appendix is

MODULE Ident “ ; ” [ImportList] DeclSeq [BEGIN StatementSeq] [CLOSE StatementSeq] END Ident “ . ”

In this program Ident is Hw99Pr0380, there is an ImportList containing StdLog, the
declaration sequence DeclSeq corresponds to the procedure named PrintAddress
with its own BEGIN and END, there is no BEGIN StatementSeq part, and there is no
CLOSE StatementSeq part. Notice how the module must terminate with a period.

Figure 3.6
Sending output to the Log.



 

34

 

Chapter

 

 

 

3 Modules and Interfaces

                                                
Comments

The documentation section at the beginning of the module in Figure 3.6 is enclosed
in comment brackets, (* and *). The compiler ignores everything between the brack-
ets. The only purpose of the documentation section is to provide information to a
human reader. The comments in this module list the programmer’s name and the
date the program was written. You can write a comment anywhere that a blank space
can occur and not affect the program execution. All your modules should contain a
documentation section with at least your name and the date you wrote the program.
In the BlackBox framework, documentation about how to use a module is placed in
the Docu file, which is described later.

Reserved words

Figure 3.6 has five reserved words—MODULE, IMPORT, PROCEDURE, BEGIN,
and END. Reserved words have special meaning to the Component Pascal compiler.
The reserved word MODULE indicates to the compiler the start of a Component Pas-
cal module. The reserved word IMPORT tells the compiler that another module, Std-
Log in this case, will be used by this module. PROCEDURE indicates the beginning
of a procedure declaration. BEGIN indicates the start of a list of Component Pascal
statements, and END indicates the end of the list. Component Pascal has 40 reserved
words. They are:

ABSTRACT ELSIF LIMITED RECORD
ARRAY EMPTY LOOP REPEAT
BEGIN END MOD RETURN
BY EXIT MODULE THEN
CASE EXTENSIBLE NIL TO
CLOSE FOR OF TYPE
CONST IF OR UNTIL
DIV IMPORT OUT VAR
DO IN POINTER WHILE
ELSE IS PROCEDURE WITH

These are terminal symbols in the grammar in Appendix A.

Identifiers

The name of the module is Hw99Pr0380 and the name of the procedure in the mod-
ule is PrintAddress. Both names are Component Pascal identifiers determined arbi-
trarily by the programmer. You could just as easily call the procedure OutputName
instead of PrintAddress. In that case, the first line of the listing after the documenta-
tion section would be

PROCEDURE OutputName*;

Items other than modules and procedures can be named by Component Pascal
identifiers. Regardless of the item named, you must follow the rules for devising an
identifier. Component Pascal identifiers may contain only letters, digits, and under-

Component Pascal’s reserved 
words



 

Identifiers

 

35

                                     
score characters, and they must start with a letter or underscore character. The EBNF
syntax rule for Ident from the appendix is

(Letter | “ _ ”) {Letter | “ _ ” | Digit}

An identifier can consist of more than one word, but the words may not be separated
by a space. If an identifier contains more than one word you should capitalize the
first letter of the word to make it easily readable.

Example 3.1 Here are five legal Component Pascal identifiers:

NewYork DC9 quantityOnHand i hoursWorked

Notice how much easier it is to read the identifier quantityOnHand instead of quanti-
tyonhand.

❚

Component Pascal distinguishes between uppercase and lowercase characters in
identifiers or reserved words. So, hours and Hours would be detected by the com-
piler as different identifiers. Reserved words may not be used as Component Pascal
identifiers.

Example 3.2 Here are some illegal Component Pascal identifiers:

7Eleven Tax% home-Address TO

The first is illegal because it does not begin with a letter. The second and third have
characters other than letters or digits. The last is illegal because it is a reserved word.

❚

Unlike Standard Pascal and Oberon-2, Component Pascal allows the underscore
character in its identifiers. The rule to allow the underscore character is provided
mainly for compatibility with the widespread Java and C++ programming lan-
guages.

Example 3.3 Here are some legal Component Pascal identifiers that use the
underscore character.

new_york quantity_on_hand hours_worked ❚

To write a Component Pascal program you must make up identifiers to name
items. You should get in the habit of using mnemonic identifiers, that is, identifiers
that remind the human reader about the meaning of the item you are naming. Print-
Address is a good name for the procedure in module Hw99Pr0380 because the pro-
gram prints an address on the Log. The program would execute exactly the same if
you wrote

PROCEDURE Xyz*;



 

36

 

Chapter

 

 

 

3 Modules and Interfaces

                     
But that would be horrible style, because the identifier indicates nothing about what
the program does. Even worse would be

PROCEDURE Payroll*;

for this module, because that would indicate to the human reader that the program
has something to do with a payroll problem, which it does not. When you use a pro-
gram from this book as a model for your own program, do not blindly copy the iden-
tifiers if they are not appropriate to your problem. Instead, make up your own
mnemonic identifiers.

Exporting and importing procedures

In the same way that a large company is subdivided into several departments, a large
software project is subdivided into several modules. For a company to function
effectively, people within a department must be able to communicate with people in
other departments. Similarly, for a large program to function effectively, communi-
cation must take place between entities in different modules. It is the responsibility
of the software designer to specify how the communication between modules is to
take place.

To maintain an orderly flow of work, most companies place some restriction on
the lines of communication between departments. For example, a manufacturing
worker usually is not allowed to walk in to the legal department and ask the com-
pany’s attorneys about the latest legal issues the company is dealing with. Indeed,
some of the information in the legal department might be privileged information that
should be kept hidden from production workers.

In the same way that information is hidden between departments of a company,
information can be hidden within a module. In Component Pascal, hiding informa-
tion within a module is the default rule. That is, all items are hidden within a module
and are not accessible to other modules unless the programmer makes them accessi-
ble. When a module exports an item, it gives permission for another module to use
it. If a module wants to use an item that another module has exported, it must import
the item.

The line

IMPORT StdLog;

in Figure 3.6 indicates to the compiler that module Hw99Pr0380 wants to import all
of the items exported by module StdLog. Module StdLog, whose interface is shown
in Figure 3.4, contains a collection of procedures that output messages to the Log.

The asterisk after the name of the procedure PrintAddress* is called an export
mark. The asterisk indicates to the compiler that this procedure is to be made avail-
able to other modules that want to import it. We will see later that items other than
procedures can be exported and imported.

Importing a module

Exporting a module



Statements 37
Statements

The statement

StdLog.String("Mr. K. Kong")

causes the phrase Mr. K. Kong to be printed on the Log. This statement is using the
procedure named String from the module named StdLog. If module Hw99Pr0380
had not imported module StdLog, this statement would produce an error. To execute
a procedure from an imported module, you must type the name of the module fol-
lowed by a period followed by the name of the procedure you want to execute.

Following the name of the procedure String are a pair of parentheses ( ). Within
the parentheses is the parameter "Mr. K. Kong". The procedure prints the content
between the double quote to the Log. It is permitted to use single quotes instead of
double quotes. Hence the statement

StdLog.String('Mr. K. Kong')

would produce the same output to the Log. If you want a double quote to be printed
to the Log you must enclose the phrase by single quotes and vice versa.

Example 3.4 The statement

StdLog.String('He said, "Hello". How are you?')

prints the phrase

He said, "Hello". How are you?

to the Log. ❚

The statement

StdLog.Ln

executes the procedure named Ln from the module StdLog. Unlike procedure String
from the same module, this procedure has no parameter. Procedure Ln sends the cur-
sor in the Log to the beginning of the next line, which causes the second Std-
Log.String to place its parameter below the first one.

You can see from Figure 3.4 that module StdLog exports six procedures. Module
Hw99Pr0380 uses two of them—String and Ln. There are no parentheses following
Ln indicating that this procedure has no parameters. String does have parentheses
following it. The item

IN str: ARRAY OF CHAR

that is contained between parentheses is called the signature of procedure String. str
is the name of the parameter and ARRAY OF CHAR is its type. str is called the for-
mal parameter. It matches the actual parameter "Mr. K. Kong" in the procedure call.

Signatures, formal 
parameters and actual 
parameters



38 Chapter 3 Modules and Interfaces
The meaning of IN in the signature is described later. The parameters in the interface
are guidelines for the use of the procedure in the importing module. The type
ARRAY OF CHAR in the formal parameter list indicates that the actual parameter
must be an array of characters, which is what "Mr. K. Kong" is.

You can get more extensive information about a documented module from the
framework by highlighting the module name and selecting Info→Documentation.
You should try this now to inspect the documentation of module StdLog.

All the lines between BEGIN and END in module Hw99Pr0380 are called execut-
able statements, because they perform an operation when the program executes.
Component Pascal has the following 11 executable statements:

assignment if return
case loop while
exit procedure with
for repeat

We will consider them in later chapters. The StdLog.String statement is an example
of a procedure statement, or procedure call. IMPORT is an example of a nonexecut-
able statement. It has an effect during the compile phase as opposed to the execute
phase.

You may have noticed in procedure PrintAddress that a semicolon appears after
each StdLog statement except for the last one. This production rule from Appendix
A for a statement sequence

StatementSeq = Statement {“ ; ” Statement}

shows that semicolons are used to separate two statements. For example, use the
semicolon after the first StdLog.String statement to separate it from the following
StdLog.Ln statement. Then use the semicolon after the StdLog.Ln statement to sepa-
rate it from the following StdLog.String. The reserved word END, however, is not a
statement. Therefore, you do not need a semicolon separator after the last Std-
Log.Ln. The general rule to remember is

■ Do not place a semicolon before an END.

Syntax errors

Now that the program has been written and saved in the Mod folder, it is time to
attempt a compile. With the source window in focus select Dev→Compile And
Unload to translate the program. If your program has no errors, the compiler will
create the object program and the interface and store them on your disk. But how
does the compiler determine where to store them? It examines the name of the mod-
ule, scanning it from left to right. It assumes the first letter of the module name is the
first letter of the project folder. Then it assumes that every letter and digit after the
first character up to but not including the first uppercase letter is also part of the
project folder. The rest of the module name is taken to be the name of the file where
the object program and the interface are to be stored. The object file is stored in the
Code folder and the interface is stored in the Sym folder.

How to compile a Component 
Pascal program



Syntax errors 39
Example 3.5 The module in Figure 3.6 is named Hw99Pr0380. The programmer
saved it in the file BlackBox/Hw99/Mod/Pr0380. When this module was compiled by
selecting Dev→Compile And Unload, the compiler scanned the name Hw99Pr0380
from left to right until it reached the uppercase P. It determined that the project
folder was Hw99 and that the name of the file is Pr0380. Therefore, it stored the
object file in BlackBox/Hw99/Code/Pr0380 and the interface in BlackBox/Hw99/Sym/
Pr0380. In the end there were three files, all named Pr0380, in three different fold-
ers—the source file in the Mod folder, the object file in the Code folder, and the
interface in the Sym folder. ❚

When you try to execute a program, two types of errors are possible:

■ Syntax error—The program does not compile.

■ Logical error—The program compiles but produces incorrect results.

The production rules of the grammar can only indicate possible sources of syntax
errors, not logical errors. Remember from Chapter 2 that they are not even perfect at
specifying all the syntax rules of the Component Pascal language.

Figure 3.7 illustrates a syntax error. When a program does not compile, no object
program can be generated, and it is impossible to test for logical errors. Errors,
whether syntax or logical, are called bugs. Getting the errors out of your program is
called debugging. Can you spot the bug in Figure 3.7?

MODULE Hw99Pr0381;
(* Stan Warford *)
(* June 12, 2002 *)

IMPORT StdLog;

PROCEDURE PrintAddress*
BEGIN

StdLog.String("Mr. K. Kong"); StdLog.Ln;
StdLog.String("Empire State Building"); StdLog.Ln;
StdLog.String("350 Fifth Avenue"); StdLog.Ln;
StdLog.String("New York, NY 10118-0110"); StdLog.Ln

END PrintAddress;

END Hw99Pr0381.

If you try to compile this module the following error message will be printed on
the Log:

compiling "Hw99Pr0381"
one error detected

The compiler will also place a marker symbol in the window of your source text that
indicates where it detected the error and will give a more detailed description of the
error. Clicking the error marker causes the marker to expand to reveal an error mes-
sage. On MSWindows, the error message is also displayed at the bottom of the win-

Figure 3.7
This procedure has a bug.



40 Chapter 3 Modules and Interfaces
dow. You can then figure out what the error was and make the correction with your
text editor. After you make any changes you should select File→Save to save your
changed file then Dev→Compile And Unload again. It is not necessary to remove
the error marker symbols in your text before attempting another compile. The com-
piler automatically removes all error markers before it attempts a translation. Repeat
the correction process until you get a successful compilation. When you succeed, a
message on the Log will inform you of the translation it made.

Documentation files

Now that you have a program written and translated, you need to provide a way for
the user to execute your program. In the BlackBox framework, user documentation
is stored in the Docu folder. Figure 3.8 shows the documentation for module
Hw99Pr0380.

To create user documentation you select File→New and enter a description of the
program and instructions for the user on how to use it. The document in Figure 3.8 is
not compiled. So, the comments contained in it do not need to be enclosed in com-
ment brackets (* and *) as are the comments in the source listing.

The instructions for the user shown in the figure include a commander button that
the user should click to execute the program. Many of the programs you will write
with this book can be conveniently executed by providing the user with a com-
mander button in the user documentation. To insert the commander button select
Tools→Insert Commander with your insertion cursor in your documentation win-
dow at the location where you want the button. (Be careful to not select the option
Controls→Insert Command Button, which sounds similar but is quite different.)

Following the commander button you place the command to be executed. A com-
mand is a procedure that is exported by a module. The syntax is identical to that
used in a module to execute an imported procedure. Namely, following the com-
mander button you place the name of the module followed by a period followed by
the name of the exported procedure.

This documentation should be saved as a file named Pr0380 in BlackBox/Hw99/
Docu. We now have four files all named Pr0380 stored in four different folders as
shown in Figure 3.9. You write and save the source program in the Mod folder and
the documentation in the Docu folder. The BlackBox system creates and stores the
object program in the Code folder and the interface in the Sym folder.

Figure 3.8
Documentation for module 
Hw99Pr0380, It is stored as 
file Pr0380 in the Docu folder.

Do not use comment brackets 
in your Docu file.

The commander button



Program style 41
When you click the commander button the following text should appear on the
Log.

Mr. K. Kong
Empire State Building
350 Fifth Avenue
New York, NY 10118-0110

Even the modules that you write have interfaces. Figure 3.10 shows the interface
for module Hw99Pr0380. As the programmer of the module Hw99Pr0380, you do
not write the interface. The compiler produces it automatically. The interface in Fig-
ure 3.10 was produced by highlighting the text Hw99Pr0380 in some document and
selecting Info→Interface (after the module was compiled). You do not need to type
the name of the module in the Log to select it. For example, you can select the name
of your module in your source code document to bring up its interface. The export
marks are omitted in the interface because they would be redundant. Every item
listed in the interface is an exported item.

DEFINITION Hw99Pr0380;

PROCEDURE  PrintAddress;

END Hw99Pr0380.

Program style

Some computer languages are line-oriented, that is, each statement must be written
on a separate line. Listing 3.11 shows that Component Pascal is not line-oriented.
The behavior of the object program does not depend on the spacing or indentation
style of the source program. The program in Listing 3.11 produces the same output
as the one in Listing 3.6.

Mod

Pr0380
Source program

Pr0380
Object program

Pr0380
Interface

Pr0380
Documentation

Figure 3.9
The files associated with a 
BlackBox program.

DocuCode Sym

Hw99

BlackBox

Figure 3.10
The interface for the program 
in Figure 3.6.



42 Chapter 3 Modules and Interfaces
MODULE Hw99Pr0382;
(* Stan Warford *)
(* June 18, 2002 *)

IMPORT StdLog;

PROCEDURE PrintAddress    *;
BEGIN StdLog.String       ("Mr. K. Kong"); StdLog.Ln;
StdLog.String
("Empire State Building");      StdLog.Ln
; StdLog.String    ("350 Fifth Avenue"); StdLog.Ln;
StdLog.String
("New York, NY 10118-0110"); StdLog.Ln
END PrintAddress; END Hw99Pr0382.

One good habit to cultivate when learning to program is to adhere to a consistent
standard of style. You should follow either the style of the programs in this book, the
style specified by your instructor or employer, or a consistent style from some other
source. The document titled Programming Conventions in the BlackBox on-line
help system has detailed guidelines for Component Pascal programming style. The
style conventions in this book have only a few differences from the published guide-
lines. The most noticeable difference is that the guidelines specify that all comments
be in italic. Both this book and the published guidelines recommend that all
exported procedures in a module be in a bold font.

The computer does not require such neatness for the program to work. However,
just getting the program to work correctly is not sufficient. Good style is necessary
because people, as well as computers, must read your programs. You would not
write a business letter without the paragraphs indented consistently. Nor should you
write a program that way. Although you may want to rebel at first against such seem-
ingly trivial details, you will find in the long run that they are not restrictive at all. In
fact just the opposite is true—these rules are liberating.

The situation is similar to that of a new driver on the road for the first time. Think
of how many restrictive rules there are—speed limits, yield signs, stop signals, and
so on. New drivers may feel hampered and may worry about all the rules they need
to remember. But experienced drivers do not even consciously try to remember the
rules. They know them subconsciously. What’s more, the rules liberate them from
fear of an accident. Programming standards will liberate your mind to think con-
structively. The standards will take care of the details, freeing you to take care of the
problem.

Proper procedures

The next two modules introduce the concept of a programmer-defined procedure,
which will be discussed in more detail in later chapters. Procedures are useful when
your program has a task that it needs to perform more than once. Programmers
working with procedures must first define the task in the procedure declaration part

Figure 3.11
This module compiles 
without error.

The importance of good style



Proper procedures 43
then invoke or call the procedure when the task needs to be executed. The program
in Figure 3.12 outputs a pattern on the Log.

MODULE Hw99Pr0383;
IMPORT StdLog;

PROCEDURE PrintPattern*;
BEGIN

StdLog.String("@"); StdLog.Ln;
StdLog.String("@@"); StdLog.Ln;
StdLog.String("@@@"); StdLog.Ln;
StdLog.String("@@@@"); StdLog.Ln;
StdLog.String("@"); StdLog.Ln;
StdLog.String("@@"); StdLog.Ln;
StdLog.String("@@@"); StdLog.Ln;
StdLog.String("@@@@"); StdLog.Ln;
StdLog.String("@"); StdLog.Ln;
StdLog.String("@@"); StdLog.Ln;
StdLog.String("@@@"); StdLog.Ln;
StdLog.String("@@@@"); StdLog.Ln

END PrintPattern;

END Hw99Pr0383.

The exported procedure PrintPattern in Figure 3.12 outputs a pattern of asterisks
without using another procedure. The pattern is a repetition of three smaller patterns
in the shape of a triangle. The module in Figure 3.13, on the other hand, collects the
statements that print a single triangle into another procedure that is not exported.
The programmer declared the procedure and gave it the name PrintTriangle. She then
called the procedure three times to produce the final pattern.

In Figure 3.13, PrintTriangle is an identifier that names the procedure. Figure 3.14
shows that procedures PrintTriangle and PrintPattern are both nested in module
Hw99Pr0384. The StdLog.String statements in region (1) belong to procedure Print-
Triangle. The procedure call statements in region (2) belong to the procedure Print-
Pattern.

When PrintPattern is invoked the first statement in region (2) is executed. It is a
call to procedure PrintTriangle defined earlier in the listing, and causes execution to
jump to the first statement of region (1). The computer then executes all the state-
ments of region (1). After it executes the last statement of region (1), it transfers exe-
cution to the statement after the one that made the call in the calling procedure. At
this point the first triangle has been printed.

Figure 3.12
This procedure prints three 
triangles to the Log.



44 Chapter 3 Modules and Interfaces
MODULE Hw99Pr0384;
IMPORT StdLog;

PROCEDURE PrintTriangle;
BEGIN

StdLog.String("@"); StdLog.Ln;
StdLog.String("@@"); StdLog.Ln;
StdLog.String("@@@"); StdLog.Ln;
StdLog.String("@@@@"); StdLog.Ln

END PrintTriangle;

PROCEDURE PrintPattern*;
BEGIN

PrintTriangle;
PrintTriangle;
PrintTriangle

END PrintPattern;

END Hw99Pr0384.

Next, the computer executes the second statement in region (2), which is another
call to procedure PrintTriangle. So, the statements in region (1) execute again. Simi-
larly, the third statement in region (2) makes them execute a third time. In general, a
procedure call causes control to jump to the previously defined procedure. After the
procedure executes, control returns to the statement after the calling statement. Fig-
ure 3.15 shows the order in which statements are executed in a module that has
ProcedureP2, which is exported, making two procedure calls to ProcedureP1, which
is not exported.

Because PrintTriangle is an identifier, the programmer determined it arbitrarily.
The program would produce the exact output if the programmer wrote

PROCEDURE WriteTriangle

in the definition of the procedure, and then called it with

WriteTriangle

in the main program. The only requirement is that the name in the procedure defini-
tion match the name in the procedure call. Of course, the identifiers you choose for
the names of your procedures should be mnemonic.

Procedures are useful when you need to perform the same task at several different
points in a program. They are also useful in structuring a program into levels of
abstraction, even if the task is only performed once. Although this program uses a
procedure to output text to the Log, later programs will use procedures to process
data as well.

The StdLog.String and StdLog.Ln statements are procedure calls. They differ
from PrintTriangle in two respects. First, they are imported from a framework mod-
ule as opposed to being user-defined procedures. Their declaration part is hidden

Figure 3.13
This procedure prints three 
triangles to the Log using a 
procedure.

Figure 3.14
Procedures PrintPattern and 
PrintTriangle nested in 
module Hw99Pr0384.

Hw99Pr0384

PrintTriangle

(1)

PrintPattern

(2)



Exercises 45
from the programmer, although their interface is available on-line. This is in contrast
to a programmer-defined procedure, which must be declared within the program-
mer’s module.

Second, StdLog.String calls include a string parameter enclosed in parentheses.
The declaration part needs this information to do its task. It needs the string to know
what to output to the Log. Programmer-defined procedures can also have parame-
ters. Later chapters will explain how to define procedures with parameters.

Figure 3.16 shows the interface for module Hw99Pr0384. Only the exported pro-
cedure PrintPattern shows in the interface. Because procedure PrintTriangle is not
exported, it does not appear in the interface.

DEFINITION Hw99Pr0384;

PROCEDURE  PrintPattern;

END Hw99Pr0384.

Exercises

1. Define the following terms.

(a) module (b) global data (c) local data

ProcedureP1

ProcedureP2

Call

Call

(a) The first call 
transfers control to the 
procedure. The 
procedure executes.

(b) The procedure 
returns control to the 
statement following the 
first call.

(c) The second call 
transfers control to the 
procedure. The 
procedure executes 
again.

(d) The procedure 
returns control to the 
statement following the 
second call.

ProcedureP1

ProcedureP2

Call

Call

ProcedureP2

Call

Call

ProcedureP1 ProcedureP1

ProcedureP2

Call

Call

Figure 3.15
The order of execution when 
a procedure has two 
procedure calls.

Figure 3.16
The interface for the module 
in Listing 3.13.



46 Chapter 3 Modules and Interfaces
2. What is an interface? What is its purpose?

3. What is the essence of abstraction?

4. What is the function of a compiler?

5. State whether each of the following Component Pascal identifiers is valid. For those
that are not valid, explain why they are not.

(a) hourlyWage (b) last 1 (c) WITH
(d) one Name (e) 1stOne (f) %Profit
(g) Acme-Tool (h) A

6. State whether each of the following Component Pascal identifiers is valid. For those
that are not valid, explain why they are not.

(a) amountOnHand (b) 2Day (c) superCallifragillistic
(d) BY (e) Soc-Sec-Num (f) John Smith
(g) tools/Bolts (h) i

7. Find all the syntax errors in the following Component Pascal procedure. Assume that
module StdLog has been imported correctly.

PROCEDURE PrintString; *
BEGIN

StdLog.String ('Is this wrong?'); StdLog.Ln;
StdLog.String ('Maybe it's right'); StdLog.Ln

END;

8. Find all the syntax errors in the following Component Pascal procedure. Assume that
module StdLog has been imported correctly.

PROCEDURE PrintString *;
BEGIN

StdLog.String (“This can’t be wrong!); StdLog.Ln;
StdLog.String (“Or can it?”); StdLog.Ln

END;

9. Inspect the interface of module TextViews, and answer the following questions about
the procedures that are listed in it.

(a) Does procedure SetCtrlDir have a parameter list?
(b) Does procedure Deposit have a parameter list?
(c) What is the signature of procedure SetDir? What is the name of its formal parame-
ter? What is its type?

Problems

10. Write a Component Pascal program to output the following two-line message on the
Log:



Problems 47
She said, "Hi there.
What's up?"

Use two StdLog.String procedure calls for the second line to print both the single and
the double quote marks. Test your program by inserting a commander button in a docu-
mentation file to execute the procedure.

11. Write a Component Pascal program to output to the Log your name and address suit-
able for use as a mailing label. Test your program by inserting a commander button in a
documentation file to execute the procedure.

12. Using a procedure that is not exported to output a single pattern, write a Component
Pascal program to output the following triple pattern on the Log:

+
+++
+++++
+++
+
+
+++
+++++
+++
+
+
+++
+++++
+++
+

Test your program by inserting a commander button in a documentation file to execute
the exported procedure.



48 Chapter 3 Modules and Interfaces


	3 Modules and Interfaces
	Modules
	Interfaces
	Compilers
	Programs
	Comments
	Reserved words
	Identifiers
	Exporting and importing procedures
	Statements
	Syntax errors
	Documentation files
	Program style
	Proper procedures
	Exercises
	Problems


