

B B

Chapter

6

Selection
Some problems can be solved by a fixed computation. For example, to compute the
area of a rectangle you always multiply the length by the width. Many problems,
however, cannot be solved by a fixed computation. For instance, some businesses
sell their products at a price that depends on the quantity of the order. They charge a
lower price per ball for an order of 200 golf balls than for an order of 10 golf balls. A
program to calculate the total dollar amount of an order cannot simply multiply the
quantity by a fixed unit price if the unit price itself depends on the quantity.

This chapter describes boolean expressions and IF statements. Together these fea-
tures of the Component Pascal language permit the programmer to alter, or select,
the computation depending on the outcome of a test on one or more data values.

Boolean expressions and types

Boolean expressions always have one of two values, either true or false. The sim-
plest boolean expressions use the relational operators of Figure 6.1. In mathematics
notation, the “less than or equal to” operator is ≤. This symbol is not available on
most keyboards, so Component Pascal programs require that you write “less than or
equal to” as the two symbols <= without a space between them. The same idea
applies to the “greater than or equal to” operator. The “not equal to” sign # resem-
bles the mathematical symbol ≠.

Figure 6.1
The relational operators.Operator Meaning

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Not equal to

88

Chapter

6 Selection

Example 6.1 An example of a boolean expression is

income > 2400

where income is an integer variable. This expression is either true or false, depend-
ing on the value of income. If income has the value 2500, the expression is true. If it
has the value 2300 or even 2400, the expression is false. ❚

Example 6.2 In contrast to the previous example, the expression

income >= 2400

evaluates to true if income has the value 2400. ❚

Variables of type boolean are declared in the variable declaration part similarly to
the way numeric and character variables are declared. A boolean variable can have
one of two values, true or false.

Example 6.3 The following variable declaration part declares rich to be a boolean
variable.

VAR
rich: BOOLEAN;

The assignment statement

rich := income > 2400

gives rich the value true if income has value greater than 2400, and gives the value
false otherwise. ❚

The ODD function is a built-in Component Pascal function that takes an integer
parameter and returns true if the value of the integer is odd. There is no correspond-
ing even function.

Example 6.4 Suppose that i is a variable of type integer that has the value 14.
Then the boolean expression

ODD(i)

has the value false, and the expression

ODD(i + 1)

has the value true. ❚

Boolean expressions may contain the AND operator, written &. Suppose p is the
statement “The sky is green,” which is obviously false, and q is the statement “Com-

Boolean expressions and types

89

puter science is fun,” which is obviously true. Then, p & q is the statement “The sky
is green and computer science is fun,” which is false. For the entire statement p & q
to be true, p must be true apart from q, and q must be true apart from p. If either or
both are false, then the entire statement is false. Figure 6.2(a), the truth table for the
& operator, summarizes these ideas.

Boolean expressions may also contain the OR operator, written OR. With p and q
representing the same statements about the sky and computer science, p OR q is the
statement “The sky is green or computer science is fun.” This time, the entire state-
ment is true. p OR q is true if p is true, if q is true, or if they are both true. Figure
6.2(b), the truth table for the OR operator, summarizes these ideas.

One other boolean operator is the NOT operator, written ~. If p is the statement
“The sky is green,” which is false, then ~ p is the statement “The sky is not green,”
which is true. Figure 6.2(c) is the truth table for the ~ operator.

Example 6.5 Suppose that i is a variable of type integer that has the value 8. Then
the boolean expression

~ODD(i)

has the value true. ❚

Sometimes it is possible to simplify a boolean expression that contains the ~
operator with a relational operator.

Example 6.6 The boolean expression

~(numSides > 8)

first evaluates the boolean expression (numSides > 8). If numSides has the value 10,
then (numSides > 8) is true, and ~(numSides > 8) is false. A simpler way to write an
equivalent boolean expression is

numSides <= 8

Suppose again that numSides has the value 10. Then numSides <= 8 is false, as it
was in the previous expression. The two boolean expressions are the same regardless
of the value of numSides. ❚

Figure 6.2
Truth tables for the boolean
operators.

(c) The ~ operator.

p ~ p

TRUE FALSE

FALSE TRUE

(b) The OR operator.

p q p OR q

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

(a) The & operator.

p q p & q

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

90

Chapter

6 Selection

This example demonstrates that the <= operator is the inverse of the > operator.
Figure 6.3 shows the relational operators and their inverses.

Example 6.7 You could write the expression

~(numTrials = maxTrials)

more simply as

numTrials # maxTrials

because the # operator is the inverse of the = operator. ❚

A common mistake you should avoid is putting the ~ operator next to a relational
operator. A relational operator must be placed between two integers, reals, or char-
acters and cannot be next to a ~.

Example 6.8 The compiler will not accept the expression

numTrials ~= maxTrials

because the equals operator cannot have the NOT operator to its left. ❚

Another error you should avoid is combining two relational operators with one
variable, as is frequently done in mathematics. The mathematical expression

5 ≤ n < 10

means that n is greater than or equal to 5 and less than 10. Such expressions are
common in mathematics. However, they are illegal in Component Pascal.

Example 6.9 To test if the variable numTrials is greater than or equal to 5 and less
than 10, you may be tempted to write the boolean expression as

5 <= numTrials < 10

This expression is illegal, because the same operand, numTrials, is used by both
operators. You should write it with the & operator as follows:

Operator Inverse Operator

= #

< >=

<= >

Figure 6.3
The inverses of the relational
operators.

Boolean expressions and types

91

(5 <= numTrials) & (numTrials < 10)

If numTrials has the value 6, this boolean expression evaluates to true AND true,
which is true. ❚

Two other rules, known as De Morgan’s laws, can sometimes help to simplify
boolean expressions. Suppose that p and q are boolean expressions. De Morgan’s
laws are

~(p OR q) = ~p & ~q
~(p & q) = ~p OR ~q

Example 6.10 As an example of the first of De Morgan’s laws, you can write the
boolean expression

~((slope >= 1.0) OR (length <= 0.0))

more simply as

(slope < 1.0) & (length > 0.0)

because < is the inverse of >=, and > is the inverse of <=. ❚

When the Component Pascal compiler encounters a boolean expression in your
program, it gives the NOT operator the highest precedence, the AND operator the
next highest precedence, and the OR operator the lowest precedence of the three.
Figure 6.4 summarizes these precedence rules and also compares the precedence of
the boolean operators to the relational and arithmetic operators.

Example 6.11 The Component Pascal compiler interprets the boolean expression

~ p & q

as (~p) & q rather than ~(p & q). ❚

Example 6.12 If alpha, beta, and gamma are integer variables, the boolean
expression

Operator Precedence

~ Highest

&, DIV, MOD, /, *

OR, +, -

=, #, <, >, <=, >= Lowest

Figure 6.4
Precedence of the Component
Pascal operators.

92 Chapter 6 Selection
alpha < beta & gamma = 0

is illegal because the compiler groups beta & gamma first. The & operator expects
boolean operands, but beta and gamma are integers. You should write the expression
as

(alpha < beta) & (gamma = 0)

which is now a legal boolean expression. ❚

IF statements

IF statements allow you to solve problems that are not based on fixed computations.
The idea is to evaluate a boolean expression, and if that expression is true, perform a
computation. Figure 6.5 shows an example of such a conditional computation. The
dialog box is for computing the wages for an employee who may have worked over-
time. Customarily, weekly wages are computed as the hourly rate times the number
of hours worked, as long as the employee does not work more than 40 hours. If the
employee works more than 40 hours, then the number of hours in excess of 40 are
paid at time and a half. That is, the hourly rate for those hours beyond 40 is 1.5 times
the normal rate.

The listing in Figure 6.6 shows an implementation of the dialog box for calculat-
ing the payroll. The assignment statement

wages := d.hours * d.rate

computes wages as the product of d.hours and d.rate assuming no overtime. When
the input is 50 for the hours worked and 12 for the hourly rate as shown in Figure
6.5(b), wages gets the value 600.00. This value is not yet correct because the 10
hours beyond 40 were computed at straight time, not time and a half.

Figure 6.5
The dialog box for a payroll
calculation.

(a) Without overtime. (b) With overtime.

IF statements 93
MODULE Pbox06A;
IMPORT Dialog, PboxStrings;
VAR

d*: RECORD
hours*, rate*: REAL;
message-: ARRAY 32 OF CHAR

END;

PROCEDURE ComputeWages*;
VAR

wages: REAL;
wageString: ARRAY 32 OF CHAR;

BEGIN
wages := d.hours * d.rate;
IF d.hours > 40.0 THEN

wages := wages + (d.hours - 40.0) * 0.5 * d.rate
END;
PboxStrings.RealToString(wages, 1, 2, wageString);
d.message := "$" + wageString;
Dialog.Update(d)

END ComputeWages;

BEGIN
d.hours := 0.0; d.rate := 0.0;
d.message := ""

END Pbox06A.

The words IF and THEN are Component Pascal reserved words. When an IF state-
ment executes, it first evaluates the boolean expression following the reserved word
IF. If the boolean expression is true, it executes the statement sequence between the
reserved word THEN and the reserved word END. Otherwise, it skips the statement
sequence. In this example, after Wages is computed as d.hours * d.rate, the IF state-
ment evaluates the boolean expression

d.hours > 40.0

which is true, because the value of d.hours is 50. So the assignment statement fol-
lowing the IF statement

wages := wages + (d.hours - 40.0) * 0.5 + d.rate

executes. The value of wages is increased to reflect the extra amount (at half time)
earned in overtime.

Appendix A shows that the EBNF syntax for an IF statement is

IF Expr THEN StatementSeq {ELSIF Expr THEN StatementSeq} [ELSE StatementSeq] END

The IF statement in Listing 6.6 does not have an ELSIF part, nor does it have an
ELSE part.

Figure 6.6
A payroll calculation
program. It uses an IF
statement without an ELSE
part.

94 Chapter 6 Selection
Flowcharts

You can visualize the action of an IF statement with a flowchart. Figure 6.7 shows
some of the more common flowchart symbols. The start symbol corresponds to the
reserved word BEGIN, which starts the executable statements of a Component Pas-
cal procedure. The stop symbol, which is the same shape as the start symbol, corre-
sponds to the reserved word END. The parallelogram corresponds to input and
output statements. Rectangles correspond to processing, performed by the assign-
ment statement in Component Pascal. The hexagon is a symbol that indicates the
test of some condition. It is used in several Component Pascal statements, including
the IF statement. The symbol that looks like a hamburger corresponds to the CASE
statement, a selection statement described later in this chapter. The circle is the col-
lector symbol for joining lines from other flowchart symbols.

Figure 6.8 is the flowchart for an IF statement without an ELSE part. The incom-
ing arrow from the top points to the test condition box, which represents the boolean
expression of the IF statement. If the boolean expression is true, control branches to
the left to the processing box, which represents the statement sequence after the
reserved word THEN. If the boolean expression is false, control branches to the
right, skipping execution of the statement sequence after the reserved word THEN.
The two branches of the IF statement join at the collector symbol corresponding to
the reserved word END. Figure 6.9 is the program of Figure 6.6 in flowchart form.

Flowcharts are useful for visualizing the logic of a program. They used to be con-
sidered helpful in software design, but have fallen out of favor for several reasons.
Flowcharts are fine for small programs but they require huge pages of paper for
large programs. They also require artwork and are consequently more difficult to
modify than the programs they represent. This book presents flowcharts to help you
visualize the behavior of some Component Pascal statements. As you gain experi-
ence writing Component Pascal programs, however, you will not need to rely on
flowcharts to design your software.

IF statements with an ELSE part

The listing in Figure 6.10 presents a different way to compute the wage correctly. Its
output is identical to the output of Figure 6.6.

The program uses an IF statement with an ELSE part. If the boolean expression in
the IF statement is true, the statement sequence following the THEN part

Figure 6.7
The flowchart symbols.

Start or stop

Test condition

Input/output Process

CollectorCase selection

Figure 6.8
The flowchart for an IF
statement without an ELSE

T F

S1

C1

IF statements with an ELSE part 95
wages := d.hours * d.rate

executes. After it executes, the statement sequence after the reserved word ELSE

wages := 40.0 * d.rate + (d.hours - 40.0) * 1.5 * d.rate

is skipped. If, on the other hand, the boolean expression in the IF statement is false,
the THEN part is skipped, and the ELSE part executes. The effect of the IF statement
is to select one of the two statements to execute.

There is no semicolon after the statement following the reserved word THEN. You
can see in Appendix A that there are no semicolons in the syntax definition for an IF
statement. Then why is there a semicolon after the reserved word END? That semi-
colon is there to separate the entire IF statement from the following Pbox-
Strings.RealToString. These statements are part of the statement sequence of the
body of the procedure. The EBNF description of a procedure declaration is

PROCEDURE [Receiver] IdentDef [FormalPars] “ ; ” DeclSeq [BEGIN StatementSeq] END Ident.

and the EBNF description of a statement sequence is

Statement {“ ; ” Statement}.

Figure 6.9
The flowchart for the program
of Figure 6.6.

Start

d.hours > 40.0

Input d.hours, d.rate

wages := d.hours * d.rate

Stop

T F

wages := wages + (d.hours - 40.0) * 0.5 * d.rate

Output wages

96 Chapter 6 Selection
MODULE Pbox06B;
IMPORT Dialog, PboxStrings;
VAR

d*: RECORD
hours*, rate*: REAL;
message-: ARRAY 32 OF CHAR

END;

PROCEDURE ComputeWages*;
VAR

wages: REAL;
wageString: ARRAY 32 OF CHAR;

BEGIN
IF d.hours <= 40.0 THEN

wages := d.hours * d.rate
ELSE

wages := 40.0 * d.rate + (d.hours - 40.0) * 1.5 * d.rate
END;
PboxStrings.RealToString(wages, 1, 2, wageString);
d.message := "$" + wageString;
Dialog.Update(d)

END ComputeWages;

BEGIN
d.hours := 0.0; d.rate := 0.0;
d.message := ""

END Pbox06B.

So, the statements in the statement sequence between the BEGIN and END of the
procedure are separated by semicolons. We now have three general rules for placing
semicolons:

■ Do not place a semicolon after a THEN.

■ Do not place a semicolon before an END.

■ Do not place a semicolon before an ELSE.

Figure 6.11 shows the flowchart for an IF statement with an ELSE part. It is simi-
lar to the flowchart for an IF statement without an ELSE part in two respects. Both
flowcharts have exactly one collector, and both have exactly one arrow coming in at
the top and one arrow going out at the bottom.

Boolean variables

Figure 6.12 shows the dialog box for the next program. The program determines
whether a customer qualifies for a 15% airline discount. If the customer qualifies, it
computes the discounted fare. Otherwise, it states that the customer does not qualify.
A customer qualifies by having made more than 4 flights during the previous 12
months and being 65 years of age or older.

The dialog contains a control called a check box. The user can check the square

Figure 6.10
A payroll calculation
program that uses an IF
statement with an ELSE part.

Figure 6.11
The flowchart for an IF
statement with an ELSE part.

T F

S1

C1

S2

Boolean variables 97
input field to indicate whether she is older than 65. It is clear that the input field for
Fare is linked to a variable of type real, and the input field for the number of flights
is linked to a variable of type integer. But what is type of the variable to which the
check box is linked? There are two possibilities for the input of this field. Either the
box is checked or it is not checked. So, the variable to which it is linked has type
boolean. If the box is checked the boolean variable gets the value true, and if it is not
checked the variable gets the value false. The listing in Figure 6.13 shows the pro-
gram for this dialog box.

The constant section is similar to the variable section, except that an equal sign
follows the identifier instead of a colon. Another difference is that in the variable
section a type is associated with each identifier, while in the constant section a value
is associated with each identifier. Constants are similar to variables in that you refer
to them by their names, which are Component Pascal identifiers. However, you can-
not change the value of a constant the way you can the value of a variable.

Example 6.13 The assignment statement

discount := 0.20

would be illegal in this program, because discount is a constant. ❚

Procedure FlightDiscount defines the identifier discount to be the constant 0.15
and flightLimit to be 4. The program would produce exactly the same result without
the constant section and with the expression in the IF statement changed from

IF (d.numFlights > flightLimit) & d.olderThan65 THEN

to

IF (d.numFlights > 4) & d.olderThan65 THEN

and the computation for the fare changed from

fare := (1.0 - discount) * d.fare;

Figure 6.12
The dialog box for computing
a possible discount for an
airline fare.

(a) Fare with discount. (b) Fare without discount.

Constants

98 Chapter 6 Selection
MODULE Pbox06C;
IMPORT Dialog, PboxStrings;
VAR

d*: RECORD
fare*: REAL;
numFlights*: INTEGER;
olderThan65*: BOOLEAN;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE FlightDiscount*;
CONST

discount = 0.15;
flightLimit = 4;

VAR
fare: REAL;
fareString: ARRAY 32 OF CHAR;

BEGIN
IF (d.numFlights > flightLimit) & d.olderThan65 THEN

fare := (1.0 - discount) * d.fare;
PboxStrings.RealToString(fare, 1, 2, fareString);
d.message := "Discounted fare: $" + fareString

ELSE
d.message := "You do not qualify for discount."

END;
Dialog.Update(d)

END FlightDiscount;

BEGIN
d.fare := 0.0; d.numFlights := 0;
d.olderThan65 := FALSE;
d.message := ""

END Pbox06C.

to

fare := 0.85 * d.fare;

So, what is the advantage of a constant section? One advantage is the ease with
which you can modify the program. This program is short, and it is easy to locate the
assignment statement where it computes the discount. If you wanted to modify the
program to change the discount to 20% instead of 15%, you could find the assign-
ment statement with your text editor and change the 0.85 to 0.80. But in a large pro-
gram, the statement that performs the computation may be difficult to locate. Also,
more than one computation may need to be modified to make one change.

For example, suppose you write a big tax computation program in which a tax
rate for both businesses and individuals is 20%. These rates are used in many differ-
ent computations. You do not use a constant definition part, so that the value 0.20 is
scattered in various expressions throughout the program. Now suppose that a new

Figure 6.13
A program to compute the
discount on an airline ticket.

The advantages of a constant

Selection with strings 99
tax law changes the rate for businesses to 30% but leaves the rate for individuals
unchanged. To modify the program you cannot simply use your text editor to change
every occurrence of 0.20 to 0.30, because that would change the rate for individuals
as well.

On the other hand, suppose you write the program with a constant section that
defines

CONST
businessRate = 0.20;
individualRate = 0.20;

and use these identifiers in the appropriate expressions in the program. Then, if the
tax law changes the business rate to 30% you only need to change one value at the
beginning of the program to modify it correctly.

Another advantage of constants is the increased readability that identifiers pro-
vide. In this program, the expression

(1.0 - discount) * d.fare

represents the meaning of the computation better than the expression

0.85 * d.fare

The presence of identifier discount tells the reader explicitly that a discounted fare is
being computed.

Selection with strings

Component Pascal provides a convenient feature for testing strings according to
alphabetic order. Consider the problem to determine whether string “berry” comes
before “bear” in alphabetic order. The proper algorithm compares the first two let-
ters. Because the first b in “berry” equals the first b in “bear”, you must compare the
second letters. Alas, the e in “berry” equals the e in “bear” as well, so you must go to
the third letter. Finally, the third letters are not equal. Because a is less than r, as
shown on the number line for the character values in Figure 4.11, “bear” is less than
“berry” and so comes first in alphabetic order regardless of the letters beyond the
third. Of course, the algorithm must handle words of unequal length as well. Which
comes first in alphabetic order, “batter” or “bat”?

With Component Pascal, you can use the relational operators of Figure 6.1 to
compare not only integers, reals, and individual characters, but strings of characters
as well. The comparison of two strings takes complete account of the above algo-
rithm, including the case where two strings are of unequal length. Figure 6.14 shows
a dialog box, which is implemented by the program of Figure 6.15, to compare two
strings entered by the user. Regardless of whether the user enters “bear” or “berry”
first, the output indicates which comes first in alphabetic order. It also correctly han-
dles the case of unequal word lengths.

The alphabetizing algorithm

100 Chapter 6 Selection
MODULE Pbox06D;
IMPORT Dialog;
VAR

d*: RECORD
string1*, string2*: ARRAY 16 OF CHAR;
message-: ARRAY 64 OF CHAR;

END;

PROCEDURE Alphabetize*;
BEGIN

IF d.string1 < d.string2 THEN
d.message := d.string1 + " comes before " + d.string2

ELSE
d.message := d.string2 + " comes before " + d.string1

END;
Dialog.Update(d)

END Alphabetize;

BEGIN
d.string1 := ""; d.string2 := ""

END Pbox06D.

Although this program correctly alphabetizes strings whose letters are all lower-
case or all uppercase, it will not always work correctly if the user enters strings that
contain both upper- and lowercase letters. Figure 6.16 shows what happens when the
user enters “bear” and “Berry”. The output erroneously claims that “Berry” comes
before “bear”. The origin of the problem lies in the ordering of the characters on the
number line in Figure 4.11. All the uppercase characters lie to the left of all the low-
ercase characters. Therefore, the character B is less than the character b, and the
alphabetizing algorithm blindly concludes that “Berry” is less than “bear” without
even considering the characters beyond the first one in the string. Because every
uppercase letter is less than every lowercase letter, the program will even claim that
“Zebra” comes before “antelope”!

This program needs to be improved, and it can be with the help of module Pbox-
Strings, whose interface is listed in Figure 4.12. The module contains procedure
ToLower, which is listed as

Figure 6.14
A dialog box for comparing
strings in alphabetic order.

(a) First “berry”, then “bear”. (b) First “bear”, then “berry”.

Figure 6.15
A program to compare two
strings.

Figure 6.16
Erroneous output from the
program of Figure 6.15.

Using IF statements 101
PROCEDURE ToLower (from: ARRAY OF CHAR; OUT to: ARRAY OF CHAR);

You supply an actual parameter for from that has already been given a string value,
and a variable for to that is initially undefined. When you call ToLower, the proce-
dure will copy all the characters from from to to, converting any uppercase letters to
lowercase. Recall that OUT specifies call by result, which has the effect of changing
your actual parameter.

How does this procedure help solve the problem? You can declare two local vari-
ables, say lower1 and lower2, in procedure Alphabetize and use ToLower to give them
the lowercase versions of d.string1 and d.string2 respectively. In the IF statement,
compare lower1 with lower2 instead of d.string1 with d.string2. Because lower1 and
lower2 will contain only lowercase characters, the comparison will be correct. Of
course, all this manipulation should take place behind the scenes unknown to the
user. If the user enters “bear” and “Berry” the message on the dialog box should
read

Berry comes before bear

and not

berry comes before bear

Implementation of this improvement is a problem at the end of the chapter.

Using IF statements

This section points out some aspects of IF statements that tend to give beginning
programmers problems. Some are style guidelines that have been mentioned previ-
ously, while others are unique to IF statements. In the following discussion and
throughout the remainder of the book, we will sometimes use the word code. One
meaning for code is what a programmer writes in a program listing. Coding an algo-
rithm means writing a program in some programming language that will execute the
algorithm on a computer. A code fragment is a few lines of code from a program
listing.

A common tendency with boolean variables is to use a redundant computation
with the equals operator. A boolean variable is a special case of a boolean expres-
sion, and so can be used alone as a boolean expression in an IF statement.

Example 6.14 In the listing of Figure 6.13, you could write the test for the IF
statement as

IF (d.numFlights > flightLimit) & (d.olderThan65 = TRUE) THEN

With this test the program still works correctly, because the expression
d.olderThan65 = TRUE evaluates to true when d.olderThan65 has the value true and
to false when d.olderThan65 has the value false. But this is bad style because it con-
tains a redundant computation. The more straightforward test

The word code

102 Chapter 6 Selection
IF (d.numFlights > flightLimit) & d.olderThan65 THEN

presented in Listing 6.13 is better. ❚

Boolean variables are useful because they allow Component Pascal IF statements
to be written similar to English phrases whose meaning is close to the effect of the
Component Pascal statement. In the previous example, IF (d.numFlights > flightLimit)
& d.olderThan65 THEN is much like an English phrase. You should name your bool-
ean variables so that the test of an IF statement corresponds to the way you would
phrase the test in English.

Example 6.15 Suppose that exempt is a boolean variable that indicates whether a
taxpayer is exempt from a tax. Instead of writing the test

IF exempt = FALSE THEN

you should write the equivalent test

IF ~exempt THEN

because this corresponds more closely to the way you would state the test in
English. ❚

It is worth repeating a point here that was made in a previous chapter: do not save
typing time by choosing extremely short identifiers at the expense of program read-
ability.

Example 6.16 In the previous example, if you choose e for the identifier instead
of exempt, the test of the IF statement becomes

IF ~e THEN

which would be more difficult for a human reader to understand. ❚

Our last problem area concerns the unnecessary duplication of code. Suppose
you write an IF statement with an ELSE part that has the following form:

IF Condition 1 THEN
Statement 1 ;
Statement 2

ELSE
Statement 3 ;
Statement 2

END

where Statement 2 is the same statement in both alternatives of the IF statement.
Condition 1 is a boolean expression. If it is true, Statement 1 executes, followed by
Statement 2. Otherwise, Statement 3 executes, followed by Statement 2. Regardless
of whether Condition 1 is true or false, Statement 2 executes. It is simpler to write

Radio buttons 103
IF Condition 1 THEN
Statement 1

ELSE
Statement 3

END;
Statement 2

which executes like the previous code but does not duplicate Statement 2 in the code
fragment.

Radio buttons

Each test in an IF statement evaluates a boolean expression, which can have the val-
ues true or false. So every test selects between two alternatives. A single CASE state-
ment, however, can select between more than just two alternatives. The type of the
expression to be tested cannot be a boolean because more than two alternatives are
possible. Its type is usually integer.

Radio buttons are common controls in dialog boxes when the user is required to
make one of several choices. They are a generalization of check boxes, which
require that the user select one of two choices—either checked or not checked.
Radio buttons always come in sets of two or more. Figure 6.17 shows a dialog box
with four radio buttons. The dialog box requests that the user answer a multiple
choice question about U.S. history. It provides four choices, only one of which is
correct. A CASE statement is an appropriate way to analyze the input from this set
of radio buttons because more than two alternatives is possible.

The controls are called radio buttons because of their similarity to the push but-
tons on old automobile radios for tuning in stations. You can only have one station
tuned in at a time. If you change the setting to a new radio station by pushing a but-
ton, then any button that was previously pressed is released. Similarly, in a dialog
box with radio buttons if one button is pressed, as indicated by the solid circle, then
any button that was previously pressed is released, as indicated by the open circles.

Until now, each input/output control in a dialog box has been linked to a variable
in an exported record that has consistently been named d. It would appear from Fig-
ure 6.17 that we would need five fields in d—one for each of the four radio buttons
and one for the result. Such is not the case, however. Instead, all four radio buttons
are linked to a single integer variable in d. The listing in Figure 6.18 shows this inte-

Figure 6.17
A dialog box with a set of
four radio buttons.

104 Chapter 6 Selection
ger as multipleChoice.

MODULE Pbox06E;
IMPORT Dialog;
VAR

d*: RECORD
multipleChoice*: INTEGER;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE PresidentQuiz*;
BEGIN

CASE d.multipleChoice OF
0:

d.message := "Abraham Lincoln is not correct." |
1:

d.message := "Albert Einstein is not correct." |
2:

d.message := "That is correct." |
3:

d.message := "Franklin Roosevelt is not correct."
END;
Dialog.Update(d)

END PresidentQuiz;

BEGIN
d.multipleChoice := 0;
d.message := ""

END Pbox06E.

 The radio buttons are linked such that when the button for Abraham Lincoln is
pressed the value of d.multipleChoice is 0, when the button for Albert Einstein is
pressed its value is 1, when the button for Washington is pressed its value is 2, and
when the button for Roosevelt is pressed its value is 3.

It is a bit cumbersome to set up the links for radio buttons compared to setting up
the links for the other controls. The problem is that when you declare multipleChoice
to be an integer in record d and create a new form linked to it by choosing Con-
trols→New Form… the BlackBox system will supply an integer input field instead
of a set of four radio buttons. You must delete the integer input field, insert four radio
buttons, then set up their proper links manually. Figure 6.19 shows this process.

Figure 6.19(a) shows the controls that are provided by the BlackBox forms gen-
erator when you create a new form by selecting Controls→New Form… and link it
to Pbox09A.d. The forms generator inserts an integer input field for the integer
d.multipleChoice. Part (b) of the figure shows the result of selecting the input field
and deleting it by pressing the delete key. Part (c) shows how to enlarge the forms
document to make room for the radio buttons. Choose Edit→Select Document to
select the forms document for enlarging. Part (d) shows the result of choosing Con-
trols→Insert Radio Button. A radio button control is inserted in the forms document

Figure 6.18
A module that takes its input
from a set of radio buttons. It
uses a CASE statement.

Radio buttons 105
Figure 6.19
The process of constructing a
dialog box with four radio
buttons.

(a) Select the integer field provided by the
forms generator.

(b) Delete the integer field by pressing the
delete key.

(c) Select the document and enlarge it to
make room for the radio buttons.

(d) Insert the first radio button by selecting
Controls→Insert Radio Button.

(e) Insert three more radio buttons and
arrange them.

(f) Set the proper links manually with the
component Inspector.

106 Chapter 6 Selection
at some random location. Part (e) shows the dialog box after arranging the radio but-
ton where you want it and inserting and arranging the other three radio buttons.

The last step is to set the proper links with the component inspector as shown in
Figure 6.19(f). The figure shows the settings for the fourth radio button. You must
manually enter the link to the exported integer, which in this case is Pbox09A.d.muti-
pleChoice. Enter the text that you want to appear next to the radio button in the label
field, which in this case is Franklin Roosevelt. Because you want the value of d.mul-
tipleChoice to be 3 when this radio button is pushed, you must enter 3 for the level of
the control as shown in the inspector in part (f).

The CASE statement

The listing in Figure 6.18 shows how the CASE statement can select from more than
just two alternatives. The Component Pascal syntax for a CASE statement is

CASE Expr OF Case {“ | ” Case} [ELSE StatementSeq] END

In this program, the expression Expr between reserved words CASE and OF is sim-
ply d.multipleChoice. Following OF is a list of one or more cases, each case sepa-
rated by a vertical bar |. This program has four cases separated by three vertical bars.
It does not have the optional ELSE part.

The Component Pascal syntax for an individual Case is

[CaseLabels {“ , ” CaseLabels} “ : ” StatementSeq]

Each Case consists of one or more CaseLabels separated by commas followed by a
colon followed by our familiar StatementSeq. In this program, the case label for the
second case is 1, and the statement sequence is the single assignment statement

d.message := “Albert Einstein is not correct.”

When the user selects one of the radio buttons in the dialog box of Figure 6.17
and presses the button labeled Enter Choice, procedure PresidentQuiz executes. The
first statement in the procedure is the CASE statement, which evaluates the expres-
sion d.multipleChoice. Execution then skips directly to the statement sequence of the
corresponding case label skipping all other cases. Following execution of that state-
ment sequence, execution skips directly to the end of the CASE statement again
skipping all other cases. In this program, suppose the user has clicked the fourth
radio button corresponding to Roosevelt. This selection causes d.mutipleChoice to
have the value 3. When the CASE statement executes, it skips directly to the assign-
ment statement

d.message := “Franklin Roosevelt is not correct.”

skipping all other cases.
If the value of the expression does not occur as a label of any case, the statement

sequence following the ELSE is selected, if there is an ELSE. Otherwise, the pro-
gram is aborted with a trap. This program does not require an ELSE part if the levels

The CASE statement 107
for the radio buttons are set up correctly. Because each level is set to have a value of
0, 1, 2, or 3 we are guaranteed that d.multipleChoice can have no other value.

Figure 6.20 shows the flowchart for the module in Figure 6.18. Note how the case
selection symbol has more than one alternative arrow leaving it compared to the IF
hexagon flowchart symbol that always has two arrows leaving it.

★ Guarded commands

The Component Pascal (CP) operations of &, OR, and ~ correspond directly to the
Guarded Command Language (GCL) operators of conjunction, disjunction, and
negation as Figure 6.21 shows. Not only are the symbols different but the prece-
dence is different as well. In CP, ~ has the highest precedence, & has the second
highest, and OR has the lowest of the three. But in GCL, and have the same
precedence, although has higher precedence than both as in CP. Consequently,
you must be careful to place parentheses in a GCL statement where you might not
need it in a CP one.

Example 6.17 The CP boolean expression

 (sum < 100) OR (a < b) & (b < c)

Figure 6.20
The flowchart for the module
of Figure 6.18.

Start

d.multipleChoice

Input d.multipleChoice

Stop

d.message := Lincoln message

Output d.message

d.message := Einstein message

d.message := correct message

d.message := Roosevelt message

0

3

2

1

Figure 6.21
The boolean operators in
GCL.

CP GCL

&

OR

~

 ∧

 ∨

 ¬

 ∧ ∨
 ¬

108 Chapter 6 Selection
causes the & operation to execute first followed by the OR operation. However, the
equivalent boolean expression in GCL is

where the parentheses are required to indicate that the operation occurs first. ❚

The guarded command language is so called because several of its statements,
including the if statement, contain a phrase of the form known as a guarded
command. B is a boolean condition that must be true in order for statement S to exe-
cute. In the same way that semicolons separate statements, the symbol separates
guarded commands. In CP, every IF statement terminates with an END. In GCL,
every if statement terminates with fi, which is if spelled backward. Another differ-
ence between GCL and CP is that there is no phrase corresponding to ELSE in GCL.
Instead, a guarded command is used for the ELSE part. If there is no ELSE part in
the CP statement, you must use a guarded command with the skip statement, which
does nothing when it executes.

Example 6.18 In Figure 6.6, using w for wages, h for d.hours, and r for d.rate the
CP statements

IF d.hours > 40.0 THEN
wages := wages + (d.hours - 40.0) * 0.5 * d.rate

END

are written in GCL as

if

fi ❚

If there is an ELSE part in the CP statement, you still specify what happens in the
false alternative with a guarded command in GCL.

Example 6.19 In Figure 6.7, again using w for wages, h for d.hours, and r for
d.rate the CP statements

IF d.hours <= 40.0 THEN
wages := d.hours * d.rate

ELSE
wages := 40.0 * d.rate + (d.hours - 40.0) * 1.5 * d.rate

END

are written in GCL as

if

fi ❚

sum 100<() a b<() b c<()∧()∨

 ∧

B S→

[]

h 40.0> w w h 40.0–() 0.5 r* *+:=→
[] h 40.0≤ skip→

h 40.0≤ w d r*:=→
[] h 40.0> w 40.0 r* h 40.0–() 1.5 r* *+:=→

Exercises 109
From these examples, you can see that GCL requires the programmer to be more
explicit in the precondition that must be true for one of the alternatives of an if state-
ment to execute. In Example 6.19, you cannot tell simply by reading the code what
must be true for the false alternative to execute. You must deduce that for the false
alternative to execute the boolean expression

d.hours <= 40.0

must be false, and from that fact reason that d.hours > 40.0 must be true. On the
other hand, in GCL the guard tells you explicitly what must be true for the else part
to execute.

Exercises

1. State whether the boolean expression

ODD(num1) & (num2 <= 10)

is true or false for each of the following sets of values for the integer variables num1
and num2.

(a) num1 = 6, num2 = 10
(b) num1 = 5, num2 = 11
(c) num1 = 5, num2 = 10

2. State whether the boolean expression

(num1 >5) OR (num2 <= 12)

is true or false for each of the following sets of values for the integer variables num1
and num2.

(a) num1 = 20, num2 = 12
(b) num1 = 7, num2 = 8
(c) num1 = 2, num2 = 13

3. Write the equivalent of the following IF tests without using the ~ operator.

(a) IF ~(num < 16) THEN
(b) IF ~((num1 < 20) OR (num2 >= 10)) THEN
(c) IF ~((num1 = 20) & (num2 > 10)) THEN

4. Predict the output of the program in Figure 6.6 for the following inputs.

(a) d.hours = 38.0, d.rate = 4.75
(b) d.hours = 50.0, d.rate = 5.00
(c) d.hours = –2.0, d.rate = 10.00

5. Predict the output of the program in Figure 6.10 for the following inputs.

110 Chapter 6 Selection
(a) d.hours = 36.0, d.rate = 5.00
(b) d.hours = 48.0, d.rate = 6.00
(c) d.hours = –1.0, d.rate = 10.00

6. Predict the output of the program in Figure 6.13 for the following inputs.

(a) d.fare = 100.00, d.numFlights = 9, d.olderThan65 = false
(b) d.fare = 100.00, d.numFlights = 19, d.olderThan65 = true
(c) d.fare = 100.00, d.numFlights = 14, d.olderThan65 = true

7. Draw the flowcharts for the procedures in (a) Figure 6.10 and (b) Figure 6.13.

8. Draw the flowcharts for the following code fragments.

(a) (b)
IF Condition 1 THEN IF Condition 1 THEN

Statement 1 Statement 1
ELSE ELSE

Statement 2 ; Statement 2
Statement 3 END;

END Statement 3

9. Simplify the following code fragment. Assume that none of the statements change the
variables in Condition 1.

IF Condition 1 THEN
Statement 1 ;
Statement 2

ELSE
Statement 1 ;
Statement 3

END

10. Rewrite the following code fragments with the correct indentation and draw their flow-
charts.

(a) (b)
Statement 1 ; Statement 1 ;
IF Condition 1 THEN IF Condition 1 THEN
Statement 2 Statement 2
ELSE ELSE
Statement 3 Statement 3 ;
END; Statement 4
Statement 4 ; END;
Statement 5 Statement 5

11. Translate the following code fragments from CP to GCL.

Problems 111
(a) (b)
IF d.age > 65 THEN IF d.xCoordinate > 1000 THEN

rate := 0.2 * d.wages d.xCoordinate := d.xCoordinate - 1000
ELSE END

rate := 0.3 * d.wages
END

12. Translate the following code fragments from GCL to CP.

(a) (b)
if if “large”

“small”
fi fi

Problems

13. A salesperson’s commission is computed as 15% of the sales that exceed $1000. Write
a Component Pascal program to input a sales figure from a dialog box and output the
salesperson’s commission in a dialog box message. Use an IF statement without an
ELSE part.

14. In a bowling tournament, participants bowl three games and receive a consolation prize
of $15 regardless of their score. Those bowlers whose three-game average exceeds 200
get an additional prize of $50. Write a program to input a bowler’s three scores from a
dialog box and output his prize earnings in a dialog box message.

15. Write a Component Pascal program to input two integer values from a dialog box and
output them in numeric order in a dialog box message.

16. A student gets on the dean’s list if her grade point average (GPA) is at least 3.5 (based
on a scale of 4.0 for an A, 3.0 for a B, etc.). Write a program that implements a dialog
box with input fields for the number of A’s, B’s, C’s, D’s, and F’s a student earned dur-
ing a given semester and with output fields for her GPA and a message telling whether
she made the dean’s list.

17. Design a dialog box with an integer input field for “Age” and a check box for “Depen-
dent”. If the age field is less than 21 and the check box is checked output the message,
“You qualify.”, otherwise, “You do not qualify.” in an output field in the dialog box.

18. Make the improvement described in the text to the program of Figure 6.15.

19. A person’s last initial determines her registration period, as the table in Figure 6.22(a)
shows. Write a program using a CASE statement that asks a user to select the initial of
her last name as shown in the dialog box of Figure 6.22(b) and output the registration
period.

a b≥ a b, b a,:=→ j 100> m :=→
[] a b< skip→ [] j 100≤ m :=→

112 Chapter 6 Selection
Figure 6.22
The information for Problem
19.

Last
initial

Registration
period

A, B, C 9:00

D, E, F, G 10:00

H, I, J, K, L 11:00

M, N, O, P 12:00

Q, R, S 1:00

T, U, V, W 2:00

X, Y, Z 3:00

(a) Table of registration periods. (b) Dialog box.

	6 Selection
	Boolean expressions and types
	IF statements
	Flowcharts
	IF statements with an ELSE part
	Boolean variables
	Selection with strings
	Using IF statements
	Radio buttons
	The CASE statement
	Guarded commands
	Exercises
	Problems

