

B B

Chapter

8

Nested Selections
Nested boxes consist of an outer large box, inside which there is another box, inside
which there is another box, and so on to the innermost box. Figure 3.1 is a set of
nested boxes that illustrates how procedures are nested in modules, and data is
nested in procedures and modules. Nesting is closely related to the concept of
abstraction. If the outer large box has a lid, it hides the details of the remaining
boxes that are within it. And hiding detail is the essence of abstraction.

Nested IF statements

Figure 6.11 shows that an IF statement selects one of two alternative statement
sequences, depending on the value of a boolean expression. Component Pascal
allows either of those alternative statements to contain another IF statement. An IF
statement contained in one of the alternatives of another IF statement is called a
nested IF statement.

Figure 8.1 shows the dialog box for a program that inputs a salary and calculates
an income tax from it. There is no tax at all if the salary is less than or equal to
$10,000. Otherwise, the tax is 20% on the salary between $10,000 and $30,000 and
30% on the salary that is in excess of $30,000. You can see from the figure that a sin-
gle IF statement is not sufficient to compute the tax, because there are three possible
outcomes and the single IF statement shown in Figure 6.11 has only two alternatives.

The program in Figure 8.2 implements the dialog box with a nested IF statement.
After the user enters that value for d.salary and clicks the compute button, the outer
IF statement in procedure IncomeTax executes. If its boolean expression,

d.salary > minTaxable

is false, which it will be if the value of d.salary is less than or equal to 10,000.00, the

The concept of nesting

Figure 8.1
A dialog box that requires
more than two alternative
computations.

152

Chapter

8 Nested Selections

statement sequence containing the nested IF statement is skipped, and the message
string is set to the “no tax” message.

MODULE Pbox08A;
IMPORT Dialog, PboxStrings;
VAR

d*: RECORD
salary*: REAL;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE IncomeTax *;
CONST

lowRate = 0.20;
highRate = 0.30;
minTaxable = 10000.00;
maxTaxable = 30000.00;

VAR
tax: REAL;
taxString: ARRAY 32 OF CHAR;

BEGIN
IF d.salary > minTaxable THEN

IF d.salary <= maxTaxable THEN
tax := (d.salary - minTaxable) * lowRate

ELSE
tax := (maxTaxable - minTaxable) * lowRate + (d.salary - maxTaxable) * highRate

END;
PboxStrings.RealToString(tax, 1, 2, taxString);
d.message := "Your tax is $" + taxString

ELSE
d.message := "No tax."

END;
Dialog.Update(d)

END IncomeTax;

BEGIN
d.salary := 0.0;
d.message := ""

END Pbox08A.

If the boolean expression is true, the nested IF executes. It evaluates the boolean
expression

d.salary <= maxTaxable

If this boolean expression is true, it computes the tax according to the low rate, and
if it is false according to the high rate on the excess beyond maxTaxable.

Figure 8.3 is the flowchart for the listing in Figure 8.2. It shows the inner IF state-
ment nested in the true alternative of the outer IF statement. You can see from the

Figure 8.2
An income tax computation
with a nested IF statement.

IF statements with an ELSIF part

153

flowchart that the nested condition

d.salary <= maxTaxable

will never be evaluated if the outer condition is false. The flowchart also shows that
each IF statement terminates with the circular collector symbol aligned vertically
with its condition. Because this program contains two IF statements, its flowchart
contains two circular collector symbols.

IF statements with an ELSIF part

The previous program had the nested IF statement in the true alternative of the outer
IF statement. Component Pascal allows you to nest an IF statement in either the true
alternative or the false alternative of the outer IF statement. Figure 8.4 shows a dia-
log box that computes the letter grade from an integer score according to the tradi-
tional 10-point criteria. That is, a score of 90 or more is an A, between 80 and 89 is a
B, between 70 and 79 is a C, between 60 and 69 is a D, and less than 60 is an F. The
program shown in Figure 8.5 implements this dialog box using IF statements that are
nested inside the false alternatives of the outer IF statements.

Figure 8.3
The flowchart for the
procedure in Figure 8.2.

d.salary > minTaxable

Input d.salary

T F

tax := (d.salary - minTaxable) * lowRate

Output d.message

d.salary <= maxTaxable

tax := (maxTaxable - minTaxable) * lowRate
+ (d.salary - maxTaxable) * highRate

d.message := tax message from tax d.message := no tax message

Start

Stop

T F

154

Chapter

8 Nested Selections

MODULE Pbox08B;
IMPORT Dialog;
VAR

d*: RECORD
score*: INTEGER;
message-: ARRAY 64 OF CHAR

END;

PROCEDURE TestGrade *;
BEGIN

IF d.score >= 90 THEN
d.message := "Your grade is A."

ELSE
IF d.score >= 80 THEN

d.message := "Your grade is B."
ELSE

IF d.score >= 70 THEN
d.message := "Your grade is C."

ELSE
IF d.score >= 60 THEN

d.message := "Your grade is D."
ELSE

d.message := "Your grade is F."
END

END
END

END;
Dialog.Update(d)

END TestGrade;

BEGIN
d.score := 0;
d.message := ""

END Pbox08B.

You can nest IF statements to any level. The last IF statement in this program is
nested three levels deep. Each IF statement is nested in the ELSE part of its outer IF
statement.

Suppose the value of Score is 93. The boolean expression of the outer IF state-
ment

Figure 8.4
A dialog box for computing a
letter grade from an exam
score.

Figure 8.5
Conversion of an integer
exam score into a letter grade.

IF statements with an ELSIF part

155

d.score >= 90

would be true, and the “Grade of A” message would be output. The ELSE part of the
outer IF statement would be skipped. Because the ELSE part is a single large nested
IF statement, none of the other boolean expressions is ever tested.

Suppose the value of d.score is 70. The boolean expression of the outer IF state-
ment would be false, and the ELSE part of the outer IF statement would execute.
Now the boolean expression

d.score >= 80

of the second IF statement would be tested as false. So the ELSE part of the second
IF statement would execute. This time, the boolean expression

d.score >= 70

would be true, and the “Grade of C” message would be output. The ELSE part of the
third IF statement is skipped. Therefore, the D and F messages are not output.

This pattern of a succession of IF statements nested in the false alternatives
occurs so frequently in practice that Component Pascal has a special ELSIF option to
perform the equivalent processing with a single IF statement. The same procedure
can be written with a single IF statement as:

PROCEDURE TestGrade *;
BEGIN

IF d.score >= 90 THEN
d.message := "Your grade is A."

ELSIF d.score >= 80 THEN
d.message := "Your grade is B."

ELSIF d.score >= 70 THEN
d.message := "Your grade is C."

ELSIF d.score >= 60 THEN
d.message := "Your grade is D."

ELSE
d.message := "Your grade is F."

END;
Dialog.Update(d)

END TestGrade;

You can think of ELSIF and the last ELSE as a list of conditions that starts with
the first IF condition. The boolean expressions in the list are evaluated in order, start-
ing with the first. When a boolean expression is false, the next one in the list is
tested. The first boolean expression that tests true causes its alternative to execute
and the rest of the ELSIF alternatives in the list to be skipped.

When deciding whether to use this feature of the IF statement, you must be care-
ful to distinguish between nested IF statements and sequential IF statements, which
are not nested. The following IF statements are sequential:

156

Chapter

8 Nested Selections

IF d.score >= 90 THEN
d.message := "Your grade is A."

END;
IF d.score >= 80 THEN

d.message := "Your grade is B."
END;
IF d.score >= 70 THEN

d.message := "Your grade is C."
END;
IF d.score >= 60 THEN

d.message := "Your grade is D.";
ELSE

d.message := "Your grade is F.";
END

In this code fragment, suppose that d.score gets the value 70 from the dialog box.
The first two boolean expressions would be false and the third one would be true.
But after d.message gets the C message, the next IF statement would execute.
Because d.score >= 60 is true, d.message would get the D message destroying the
previously stored C message. The net result would be an erroneous output of

Your grade is D.

Figure 8.6 shows the difference in flow of control between three sequential IF state-
ments and an IF statement with two ELSIF parts.

Assertions and invariants

When complex IF statements are nested it is sometimes helpful to formulate asser-
tions to keep track of what is happening in the program. An assertion is a condition
that is assumed to be true at a given point in a program. One example of an assertion
is the precondition P in the Hoare triple . It is a condition that is assumed
to be true for statement S to execute correctly. If P is true, then after S executes, Q is
guaranteed to be true.

Another example of an assertion is the invariant. It differs from a precondition
only by its physical placement in a program and by its use in program design.
Whereas preconditions are assertions placed at the beginning point of a procedure,
invariants are typically placed within procedure code. Furthermore, preconditions
are frequently provided in the documentation of server modules as guidelines for
use by client programmers. They are especially valuable if the programmer of the
server is a different individual from the programmer of the client. Invariants, how-
ever, are usually intended as guidelines for a single programmer within a single pro-
cedure. They are hidden from the user of the module that contains the procedure.

Component Pascal provides assertions with the ASSERT procedure. ASSERT
takes two parameters, a condition and an error number. The condition is a boolean
expression. That is, it is an expression that evaluates to one of two possible values,
true or false. When you execute ASSERT, it evaluates the condition. If the condition
is true nothing happens and the program continues as if the ASSERT statement were
not in the program. If the condition is false, however, the program terminates with a

Assertions

P{ } S Q{ }

Invariants

The ASSERT procedure

Assertions and invariants

157

trap. The error number is the number that appears in the trap window.
With Component Pascal, you can use the ASSERT procedure to implement pre-

conditions and invariants. Recall from Chapter 7 that one of the programming style
conventions for Component Pascal in the BlackBox framework is that the error
numbers for precondition violations begin with integer 20. Similarly, error numbers
for invariant violations should begin with integer 100.

Example 8.1 The following code fragment is the nested IF statement of Figure 8.2
with invariants. Note that the pseudocode statements in italic may summarize sev-
eral statements from the original program.

Figure 8.6
Flowcharts for sequential IF
statements versus a single IF
statement with two ELSIF
parts.

(a) Sequential IF statements

(b) Nested IF statements

T F

T F

T F

T F

T F

T F

158

Chapter

8 Nested Selections

IF d.salary > minTaxable THEN
IF d.salary <= maxTaxable THEN

ASSERT((minTaxable < d.salary) & (d.salary <= maxTaxable), 100);
tax := (d.salary - minTaxable) * lowRate

ELSE
ASSERT(d.salary > maxTaxable, 101);
tax := (maxTaxable - minTaxable) * lowRate + (d.salary - maxTaxable) * highRate

END;
d.message := tax message from tax

ELSE
ASSERT(d.salary <= minTaxable, 102);
d.message := no tax message

END;

To see how invariants are formulated, we will begin with the simplest invariant,
which can be found just before the statement

d.message := no tax message

What condition must be true at this point in the program? In other words, what con-
dition must be true just before this assignment statement executes? The boolean
expression of the outer IF statement must be false. But if the expression

d.salary > minTaxable

is false, the expression

d.salary <= minTaxable

must be true, which is the invariant shown in the code fragment.
The next invariant we will consider is the one just before the statement

tax := (d.salary - minTaxable) * lowRate

Why must d.salary be greater than minTaxable and less than or equal to maxTaxable
at that point in the program? Because to arrive at that point, the boolean expression
of the outer IF statement must be true. Then the boolean expression of the nested IF
statement also must be true. The invariant

(minTaxable < d.salary) & (d.salary <= maxTaxable)

is simply reflecting those two conditions.
The remaining invariant is just before the statement

tax := (maxTaxable - minTaxable) * lowRate + (d.salary - maxTaxable) * highRate

To arrive at this point, the boolean expression of the outer IF statement must be true
and the boolean expression of the nested IF statement must be false. Therefore, to
get to this point in the program, d.salary must satisfy

Assertions and invariants159
(d.salary > minTaxable) & (d.salary > maxTaxable)

So why does the implementation of the invariant in the code fragment

ASSERT(d.salary > maxTaxable, 101)

seem to ignore the fact that d.salary must be greater than minTaxable?
The answer to this question involves the concept of strong versus weak invari-

ants. One invariant is stronger than another if it places greater limits on the possible
values of a variable. In general, stronger invariants are more helpful in analysis of
logic than weaker ones, because they give you more information. Suppose you ask
your teacher for your score on an exam. If she says, “You scored between 50 and
80,” she is not giving as much information as if she says, “You scored between 73
and 75.” The second statement places a greater limitation on the possible values of
your exam score and, therefore, gives you more information.

In this example,

d.salary > minTaxable

is a valid invariant, because it is a condition guaranteed to be true at this point in the
program. However,

d.salary > maxTaxable

is stronger because it places a greater limitation on the possible values of d.salary.
One way of visualizing strong invariants is with the number line. Figure 8.7

shows the regions of the real number line corresponding to each of the preceding
conditions. Recall from mathematics that the AND operation corresponds to the
intersection of the regions, while the OR operation corresponds to the union of the
regions. The intersection of these two regions is simply the region for

d.salary > maxTaxable

by itself, which is the stronger invariant.

One purpose of an invariant is to document your analysis of what condition you
calculate should be true at a given point of your program. If your analysis is correct,
a call to the ASSERT procedure should do nothing. That is, in fact, what the
ASSERT procedure does. If the boolean condition in the ASSERT procedure call is

Strong invariants

Figure 8.7
The real number line showing
the conditions d.salary >
maxTaxable and d.salary >
minTaxable.

minTaxable maxTaxable

d.salary > minTaxable

d.salary > maxTaxable

❚

160 Chapter 8 Nested Selections
true, nothing happens and the program continues to execute. If the boolean condi-
tion is false, however, the ASSERT procedure causes the program to abort with a
trap. Why would a programmer ever want his program to abort with a trap? He never
would! So why would anyone ever put an ASSERT call in his program?

The primary purpose of a call to ASSERT to implement an invariant is for testing
the correctness of your program. If the analysis of your program is correct, your
assertions will never trigger a trap and all will be well for you and the users of your
software. But if you make an error in your analysis you will have an error in your
program and it will not execute correctly. The trap will show you where your analy-
sis of what should be true at that point of the program is not true after all. You can
then correct the program. Better to have a controlled abort of your program when
you are testing it than to release it for the users with an error in the program.

To write programs that work correctly, you must be able to analyze the logic of
the statements you write. Invariants will help you to think through the logic of your
programs. In the beginning, it may seem that invariants make things more compli-
cated than necessary. But after some practice, you will find that you can formulate
invariants in your mind as you write your programs. That ability will make it easier
for you to write correct programs. Occasionally, it may help to write an ASSERT
call in a program to make the program easier to understand.

Example 8.2 Consider the following code fragment, where age is a variable of
type INTEGER.

IF age > 65 THEN
Statement 1

ELSIF age > 21 THEN
Statement 2

ELSE
Statement 3

END

The logic in this code is identical to that in Figure 8.6(b), where the nesting was con-
sistently in the false part of the IF statements. What are the strongest invariants you
can formulate before each statement?

For Statement 1, the condition age > 65 must be true. That is the strongest invari-
ant you can formulate at this point of the program.

For Statement 2, the boolean expression of the outer IF statement, age > 65 must
be false. In other words, age <= 65 must be true. Furthermore, the boolean expres-
sion of the ELSIF condition, age > 21, also must be true. So the strongest invariant at
this point is

(21 < age) & (age <= 65)

which corresponds to the intersection of the two regions in Figure 8.8.
For Statement 3, both boolean expressions must be false; that is, age <= 65 and

age <= 21 must be true. The strongest invariant is

Age <= 21

The purpose of a call to
ASSERT to implement an
invariant

Dead code 161
which corresponds to the intersection of the two regions in Figure 8.9. The final
code fragment that implements the strongest invariants is

IF age > 65 THEN
ASSERT(age > 65, 100);
Statement 1

ELSIF age > 21 THEN
ASSERT((21 < age) & (age <= 65), 101);
Statement 2

ELSE
ASSERT(age <= 21, 102);
Statement 3

END

Dead code

Something to avoid when you write nested IF statements is dead code. Dead code is
a statement that cannot possibly execute. If you ever discover dead code in your own
program or in a program that someone else wrote, you can be sure that it was unin-
tentional. Because dead code never executes, there is never a reason to put it in a
program except by mistake. Formulating the strongest invariant can help you dis-
cover dead code.

Component Pascal provides a procedure that we will use to indicate dead code.
When you execute procedure HALT, the program always terminates with a trap,
regardless of the value of any boolean expression. Like the ASSERT procedure, the
HALT procedure is used for testing large programs. If a programmer wants to view
the values of the variables at a given point of a program, she can insert a call to
HALT. When the program reaches that point, it will terminate and show the trap win-
dow including the values of all the variables at the time the program was interrupted.

Figure 8.8
The number line showing the
two conditions age > 21 and
age <= 65.

21 65

age <= 65

age > 21

Figure 8.9
The number line showing the
two conditions age <= 21
and age <= 65.

❚21 65

age <= 65

age <= 21

Dead code

Typical purpose of a call to
HALT

162 Chapter 8 Nested Selections
The procedure call

HALT(100)

is logically equivalent to

ASSERT(FALSE, 100)

Because the boolean expression in the above ASSERT call is always false, its execu-
tion would always generate a trap. But this is precisely the behavior of the call to
HALT. The following examples use a call to HALT to indicate the strongest invariant
of dead code. In the same way that an ASSERT call with the strongest invariant will
not affect the execution of a program, a HALT call with dead code will not affect a
program. Because dead code never executes, the HALT procedure will never be
called.

Keep in mind, however, that this use of HALT would never be found in production
code because a programmer would never willfully have dead code in her program.
The following examples are designed to teach you skill in identifying dead code, so
you can root it out of your programs.

Example 8.3 Consider the following code fragment:

IF quantity < 200 THEN
Statement 1

ELSIF quantity >= 100 THEN
Statement 2

ELSE
Statement 3

END

Statement 3 can never execute regardless of the value of quantity. To see why, try to
formulate a strong invariant at the point just before Statement 3. To get to that point
in the program, you must have quantity >= 200 because the first boolean expression
must be false. You must also have quantity < 100 because the second boolean expres-
sion also must be false. But it is impossible to have quantity greater than or equal to
200 and less than 100 at the same time. So Statement 3 can never execute and is
dead code. The code fragment with the strongest invariants implemented using calls
to ASSERT and HALT is

IF quantity < 200 THEN
ASSERT(quantity < 200, 100);
Statement 1

ELSIF quantity >= 100 THEN
ASSERT(quantity >= 200, 101);
Statement 2

ELSE
HALT(102);
Statement 3

END

The purpose of a call to
HALT in this chapter

❚

Dead code 163
Do not conclude from this example that dead code is always the last statement in
a sequence of ELSIF parts. You must analyze each situation afresh. The general strat-
egy to determine the strongest invariant at a given point is to list the boolean condi-
tions that must be true. This may involve taking the NOT of some expressions if the
nesting is in the false part of an IF statement. The intersection of the corresponding
regions represents the strongest invariant. If the intersection at a given point is
empty, the statement at that point is dead code.

Example 8.4 Consider the following code fragment, where n has type INTEGER.

IF (15 <= n) & (n < 20) THEN
IF (n > 10) THEN

Statement 1
ELSE

Statement 2
END

ELSE
Statement 3

END

What is the strongest invariant you can formulate at each statement? The first step is
to draw a sketch of the number line with the integer values in their proper order, as
in Figure 8.10.

For Statement 1, you can see from the figure that the intersection of the top two
lines corresponds to both boolean expressions being true. The strongest invariant is

(15 <= n) & (n < 20)

For Statement 2, n must be less than or equal to 10 and between 15 and 20, which
is impossible. So Statement 2 is dead code.

For Statement 3, the first boolean expression must be false. From De Morgan’s
law it follows that the strongest invariant is

(n < 15) OR (n >= 20)

This corresponds to the third region of Figure 8.10, which is that part of the number
line not included in the first region. The code with all the invariants implemented
with calls to ASSERT and HALT is

Figure 8.10
The number line for Example
8.4.

15 20

(n < 15) OR (n >= 20)

n > 10

10

(15 <= n) & (n < 20)

164 Chapter 8 Nested Selections
IF (15 <= n) & (n < 20) THEN
IF (n > 10) THEN

ASSERT((15 <= n) & (n < 20), 100);
Statement 1

ELSE
HALT(101);
Statement 2

END
ELSE

ASSERT((n < 15) OR (n >= 20), 102);
Statement 3

END

Using nested IF statements

One of the most common problems beginning programmers have is a failure to rec-
ognize the appropriateness of the logic characterized by a sequence of ELSIF parts
in an IF statement.

Example 8.5 Suppose you need to perform three different computations depend-
ing on the value of weight, a real variable. The following code:

IF weight > 150.0 THEN
Statement 1

END;
IF (weight > 50.0) & (weight <= 150.0) THEN

Statement 2
END;
IF (weight <= 50.0) THEN

Statement 3
END

is not as efficient as the equivalent IF statement with a sequence of ELSIF parts:

IF weight > 150.0 THEN
Statement 1

ELSIF weight > 50.0 THEN
Statement 2

ELSE
Statement 3

END

For example, suppose weight has a value of 200.0. In the first code fragment, every
boolean expression must be evaluated because the IF statements are sequential. But
in the second fragment, only the first boolean expression is evaluated because the
sequence of ELSIFs is skipped. ❚

Another tendency when programming with ELSIF logic is to include an unneces-
sary redundant test at the end.

❚

Using nested IF statements165
Example 8.6 The following code fragment has a redundant test.

IF price > 2000 THEN
Statement 1

ELSIF price > 1000 THEN
Statement 2

ELSIF price <= 1000 THEN
Statement 3

END

The last boolean expression is redundant. In the following code fragment, you can
assert that price <= 1000 when Statement 3 executes.

IF price > 2000 THEN
Statement 1

ELSIF price > 1000 THEN
Statement 2

ELSE
Statement 3

END

This code fragment executes exactly the same as the previous one, but without the
extra test. The redundant test should not be included. ❚

★ The guarded command if statement

The guarded command if statement can have more than just two guards. For exam-
ple an if statement with four guards has the form

if

fi

Each one of the B’s is a boolean guard that must be true for the corresponding state-
ment sequence S to execute. The behavior of the GCL if statement is quite different
from the CP IF statement in two respects.

First, the CP IF statement has an optional ELSE part. Suppose the IF statement
does not have an ELSE part, the condition in the IF part is not true, and none of the
conditions in any of the ELSIF parts are true either. Then each condition will be
tested, none of the statement sequences will execute, and execution will continue
with the statement sequentially following the IF statement. However, suppose that
the above GCL if statement executes when none of the guards are true. Then the
statement aborts, which is the equivalent of a program crash or a trap in CP. In other
words, GCL has nothing equivalent to the ELSE part, and requires at least one of the
guards to be true to avoid a program abort.

B1 S1→
[] B2 S2→
[] B3 S3→
[] B4 S4→

The if statement aborts when
none of the guards are true.

166 Chapter 8 Nested Selections
Example 8.7 Suppose you want to put the values of x and y in order so that x is
guaranteed to be less than or equal to y. The GCL statement

if
fi

works correctly if, for example, the initial state is (x, 7), (y, 3). In that case, the guard
 is true and the values are exchanged making the final state (x, 3), (y, 7). How-

ever, if the initial state is (x, 4), (y, 9) then no guards are true when the if statement
executes and the program aborts. ❚

A second difference between IF and if is the order in which the conditions are
evaluated. In CP, the conditions are evaluated in order starting with the condition of
the IF, then the condition of the first ELSIF if necessary, then the condition of the
second ELSIF if necessary, and so on. In GCL, however, you should visualize all the
guards being evaluated at the same time. If no guard is true the statement aborts. If
one guard is true its corresponding statement sequence executes. But if more than
one guard is true the computer randomly picks the statement sequence of a true
guard to execute. In this case, it may be impossible to predict the exact outcome of
the computation.

Example 8.8 Suppose you write the processing of Example 8.6 in GCL as

if

fi

This translation from CP to GCL may seem plausible, but it is not correct. There is
no problem if the initial state is (price, 500), which guarantees that S3 will execute.
Nor is there a problem if the initial state is (price, 1500), which guarantees that S2
will execute. With both initial states exactly one guard is true so that the correspond-
ing statement sequence can be determined. Suppose, however, the initial state is
(price, 2500), when the CP statement in Example 8.6 guarantees that Statement 1
will execute. The problem is that the above GCL statement has both guards

 and true and so will randomly pick either S1 or S2 to
execute.

So how do you translate a CP IF statement to a GCL if statement? You simply use
the strongest invariant as the guard.

Example 8.9 The processing of Example 8.6 is correctly written in GCL as

if

fi

x y> x y, y x,:=→

x y>

The if statement selects at
random when more than one
guard is true.

price 2000> S1→
[] price 1000> S2→
[] price 1000≤ S3→

price 2000> price 1000>
❚

To translate from CP to GCL
use the strongest invariant as
the guard.

price 2000> S1→
[] 1000 price 2000≤< S2→
[] price 1000≤ S3→

❚

Exercises 167
Exercises

1. (a) What is an assertion? (b) Name two kinds of assertions. (c) What is dead code?

2. Draw the flowcharts for the following code fragments.

(a) (b)
IF Condition 1 THEN IF Condition 1 THEN

IF Condition 2 THEN IF Condition 2 THEN
Statement 1 Statement 1

ELSE ELSE
Statement 2 Statement 2

END END ;
ELSE Statement 3

Statement 3 ELSE
END Statement 4

END

(c) (d)
IF Condition 1 THEN IF Condition 1 THEN

Statement 1 ; Statement 1
IF Condition 2 THEN ELSE

Statement 2 IF Condition 2 THEN
END Statement 2

ELSE END ;
Statement 3 Statement 3

END END

3. Rewrite the following code fragments with the correct indentation and draw their flow-
charts.

(a) (b)
IF Condition 1 THEN IF Condition 1 THEN
IF Condition 2 THEN IF Condition 2 THEN
Statement 1 Statement 1
ELSE END
Statement 2 ELSE
END Statement 2
END END

4. Rewrite the following code fragments with the correct indentation and draw their flow-
charts.

168 Chapter 8 Nested Selections
(a) (b)
IF Condition 1 THEN IF Condition 1 THEN
IF Condition 2 THEN IF Condition 2 THEN
IF Condition 3 THEN IF Condition 3 THEN
Statement 1 Statement 1
ELSE ELSE
Statement 2 Statement 2
END END
ELSE END
Statement 3 ELSE
END Statement 3
END END

(c) (d)
IF Condition 1 THEN IF Condition 1 THEN
Statement 1 Statement 1
END ; ELSIF Condition 2 THEN
IF Condition 2 THEN Statement 2
Statement 2 ELSE
ELSE Statement 3
Statement 3 END
END

5. Rewrite the following code fragment with only one IF statement. Your revised code
fragment must perform the same processing as the original one.

IF Condition 1 THEN
IF Condition 2 THEN

Statement 1
END

END;
Statement 2

6. The following code fragment makes four comparisons. Simplify it so that only two
comparisons are needed. age is a variable of type INTEGER.

IF age > 64 THEN
Statement 1

END;
IF age < 18 THEN

Statement 2
END;
IF (age >= 18) & (age < 65) THEN

Statement 3
END

7. Determine the output, if any, of the following code fragment. h, m, and w are variables
of type INTEGER. Hint: Rewrite with correct indentation first.

Exercises 169
IF h > m THEN
IF w > m THEN
StdLog.Int(m)
ELSE
StdLog.Int(h)
END
END

(a) Assume h = 10, m = 3, and w = 4.
(b) Assume h = 10, m = 20, and w = 15.
(c) Assume h = 10, m = 5, and w = 3.

8. Determine the output, if any, of the following code fragment. x, y, z, and q are variables
of type INTEGER. Hint: Rewrite with correct indentation first.

IF x > y THEN
StdLog.Int(y)
ELSIF x > z THEN
IF x > q THEN
StdLog.Int(q)
ELSE
StdLog.Int(x)
END
END

(a) Assume x = 10, y = 5, z = 0, and q = 1.
(b) Assume x = 10, y = 20, z = 5, and q = 1.
(c) Assume x = 10, y = 10, z = 12, and q = 5.
(d) Assume x = 10, y = 5, z = 20, and q = 15.

9. Write the strongest possible invariants just before each statement in the following code
fragments. Assume that num is a variable of type INTEGER.

(a) (b)
IF num < 23 THEN IF num >= 50 THEN

IF num >= 15 THEN Statement 1
Statement 1 ELSIF num >= 25 THEN

ELSE Statement 2
Statement 2 ELSE

END Statement 3
ELSE END

Statement 3
END

(c) (d)
IF num >= 60 THEN IF (num < 30) OR (num > 40) THEN

Statement 1 Statement 1
ELSIF num < 80 THEN ELSIF num < 35 THEN

Statement 2 Statement 2
END ELSE

Statement 3
END

170 Chapter 8 Nested Selections
10. Write the strongest possible invariant just before each statement in the code fragment.
Use the HALT procedure just before each statement that is dead code. Assume that num
is a variable of type INTEGER.

(a) (b)
IF num < 70 THEN IF num >= 45 THEN

IF num >= 80 THEN Statement 1
Statement 1 ELSIF num <= 35 THEN

ELSE Statement 2
Statement 2 ELSIF num >= 55 THEN

END Statement 3
ELSE ELSE

Statement 3 Statement 4
END END

(c) (d)
IF num > 35 THEN IF (num < 5) OR (num > 9) THEN

Statement 1 Statement 1
ELSIF num > 45 THEN ELSIF (5 < num) & (num < 9) THEN

Statement 2 Statement 2
ELSE ELSE

Statement 3 Statement 3
END END

(e) (f)
IF (num < 40) OR (num > 50) THEN IF (40 <= num) & (num <= 50) THEN

Statement 1 Statement 1
ELSIF num > 30 THEN ELSIF (num < 42) OR (num > 48) THEN

Statement 2 Statement 2
ELSE ELSE

Statement 3 Statement 3
END END

11. Write the if statement in Example 8.7 so that it executes correctly with any initial state.

12. For the GCL if statement

if

fi

tell which statements could possibly execute for each of the following initial states.

(a) (age, 10) (b) (age, 19) (c) (age, 21) (d) (age, 40) (e) (age, 70)

13. For the GCL if statement

if

fi

tell whether the statement will abort and if not, which statements could possibly exe-

age 18< S1→
[] age 21≤ S2→
[] age 65< S3→

j 40< S1→
[] 20 j 60<≤ S2→

Problems 171
cute for each of the following initial states.

(a) (j, 10) (b) (j, 30) (c) (j, 50) (d) (j, 70)

14. Translate each code fragment in Exercise 9 into a single GCL if statement.

Problems

15. Write a program to input three integers in a dialog box and print them in descending
order on the Log. Your program must contain no local or global variables other than the
ones for input in the dialog box. It must use no more than five comparisons and must
work correctly even if some of the integers are equal.

16. Write a program to input three integers in a dialog box and output the number that is
neither the smallest nor the largest in an output field of the dialog box. If two or more
of the numbers are equal output that number.

17. Write a program to input two integers in a dialog box and output to the dialog box
either the larger integer or a message stating that they are equal.

18. A salesperson gets a 5% commission on sales of $1000 or less, and a 10% commission
on sales in excess of $1000. For example, a sale of $1300 earns him $80; that is, $50 on
the first $1000 of the sale and $30 on the $300 in excess of the first $1000. Write a pro-
gram that inputs a sales figure in a dialog box and outputs the commission to the dialog
box. Output an error message if the user enters a negative sales figure.

19. The fine for speeding in a 45 MPH zone is $10 for every mile per hour over the speed
limit for speeds from 46 to 55 MPH. It is $15 for every additional mile per hour
between 56 and 65 MPH. It is $20 for every additional mile per hour over 65 MPH. For
example, the fine for driving 57 MPH is $100 for the first 10 MPH plus $30 for the 2
MPH in excess of 55 MPH, for a total of $130. Write a program that inputs the speed in
a dialog box as an integer and outputs the fine, or a message that there is no fine, to the
dialog box. Output an error message if the user enters a negative speed. Use the small-
est possible number of comparisons.

Temperature T Message

Go swimming

Play tennis

Study

Go to sleep

Go to Hawaii

90 T≤

80 T 90<≤

70 T 80<≤

60 T 70<≤

T 60<

Figure 8.11
The table for Problem 21.

172 Chapter 8 Nested Selections
20. Design a dialog box that has two input fields—an integer field for the temperature and
a check box labeled Humid—and one output field. If the temperature is greater than 85
output the message “It is muggy” if the check box is checked or “Dry heat” if the box
is not checked. Otherwise output “Cool man”.

21. Write a program to input the temperature (integer value) in a dialog box, then output
the appropriate message for a given value of temperature to the dialog box, as the table
in Figure 8.11 shows. Use the smallest possible number of comparisons.

22. The price per Frisbee depends on the quantity ordered, as the table in Figure 8.12 indi-
cates. Write a program to input the quantity requested from a dialog box and output the
total cost of an order, including a 6.5% sales tax, to the dialog box. Output an error
message if a negative quantity is entered.

23. You are eligible for a tax benefit if you are married and have an income of $30,000 or
less, or unmarried and have an income of $20,000 or less. Design a dialog box that asks
for the user’s marital status (check box) and income (real), then outputs a message in
the dialog box stating whether the user is eligible for the tax benefit. Output an error
message if negative input is entered.

24. A year is a leap year if it is divisible by 4 but not by 100. The only exception to this rule
is that years divisible by 400 are leap years. Design a dialog box that asks the user to
enter a positive integer for the year and displays a message that states whether the year
is a leap year.

25. The following statements are from the United States Department of Internal Revenue
Form 1040 for 1997:

Enter on line 35 the larger of your itemized deductions or the standard deduction
shown below for your filing status.

■ Single—$4,150

■ Married filing jointly or Qualifying widow(er)—$6,900

■ Head of household—$6,050

■ Married filing separately—$3,450.

Write a program that implements the dialog box of Figure 8.13 to output the value for
line 35. Note that the first radio button is labeled 1 for the user, but should have a level

Quantity Price per Frisbee

0 – 99 $5.00

100 – 199 3.00

200 – 299 2.50

300 or more 2.00

Figure 8.12
The price schedule for
Problem 22.

Problems 173
number of 0 in your program. Output an error message on Line 35 if the amount
entered for the standard deduction is negative.

26. Rewrite module Pbox08B in Listing 8.5 using a CASE statement instead of an IF state-
ment. The dialog box should appear as in Figure 8.4 without any radio buttons. Use the
fact that if d.score is in the range 70–79, for example, then d.score DIV 10 is 7.

Figure 8.13
The dialog box for Problem
25.

174 Chapter 8 Nested Selections

	8 Nested Selections
	Nested IF statements
	IF statements with an ELSIF part
	Assertions and invariants
	Dead code
	Using nested IF statements
	The guarded command if statement
	Exercises
	Problems

