E’ﬁ Chapter 8

Nested Selections

Nested boxes consist of an outer large box, inside which there is another box, inside

which there is another box, and so on to the innermost box. Figure 3.1 is a set of

nested boxes that illustrates how procedures are nested in modules, and data is

nested in procedures and modules. Nesting is closely related to the conceThe concept of nesting
abstraction. If the outer large box has a lid, it hides the details of the remaining

boxes that are within it. And hiding detail is the essence of abstraction.

Nested IF statements

Figure 6.11 shows that dRr statement selects one of two alternative statement
sequences, depending on the value of a boolean expression. Component Pascal
allows either of those alternative statements to contain an@tis¢sitement. AnF
statement contained in one of the alternatives of antthstatement is called a
nestedF statement.

Figure 8.1 shows the dialog box for a program that inputs a salary and calculates
an income tax from it. There is no tax at all if the salary is less than or equal to
$10,000. Otherwise, the tax is 20% on the salary between $10,000 and $30,000 and
30% on the salary that is in excess of $30,000. You can see from the figure that a sin-
gle IF statement is not sufficient to compute the tax, because there are three possible
outcomes and the single statement shown in Figure 6.11 has only two alternatives.

O==IIntcomeTax | ==H O==IlIncome Tax | ==H O==IIncomeTax | ==H Figl:”e 8.1)
sal 00000 A dialog box that requires
: more than o altomethe
(Ccompute Tax (Ccompute Tax | (Ccompute Tax | computations.
Your tax is $10000.00 Your tax is $2000.00 Mo tax.

The program in Figure 8.2 implements the dialog box with a n&stdtement.
After the user enters that value tbsalary and clicks the compute button, the outer
IF statement in proceduhecomeTax executes. If its boolean expression,

d.salary > minTaxable

is false, which it will be if the value efsalary is less than or equal to 10,000.00, the

152 Chapter 8 Nested Selections

statement sequence containing the nelstefatement is skipped, and the message
string is set to the “no tax” message.

MODULE Pbox08A,; Figure 8.2
IMPORT Dialog, PboxStrings; An income tax computation
VAR with a nestedF statement.
d*: RECORD

salary*: REAL;
message-: ARRAY 64 OF CHAR
END;

PROCEDURE IncomeTax *;
CONST
lowRate = 0.20;
highRate = 0.30;
minTaxable = 10000.00;
maxTaxable = 30000.00;
VAR
tax: REAL;
taxString: ARRAY 32 OF CHAR;
BEGIN
IF d.salary > minTaxable THEN
IF d.salary <= maxTaxable THEN
tax := (d.salary - minTaxable) * lowRate
ELSE
tax := (maxTaxable - minTaxable) * lowRate + (d.salary - maxTaxable) * highRate
END;
PboxStrings.RealToString(tax, 1, 2, taxString);
d.message := "Your tax is $" + taxString
ELSE
d.message := "No tax."
END;
Dialog.Update(d)
END IncomeTax;

BEGIN
d.salary := 0.0;
d.message := "™
END Pbox08A.

If the boolean expression is true, the nedfeexecutes. It evaluates the boolean
expression

d.salary <= maxTaxable

If this boolean expression is true, it computes the tax according to the low rate, and
if it is false according to the high rate on the excess beyartiaxable.

Figure 8.3 is the flowchart for the listing in Figure 8.2. It shows the iRrstate-
ment nested in the true alternative of the otfestatement. You can see from the

IF statements with an ELSIF partl53

Figure 8.3
The flowchart for the
procedure in Figure 8.2.

Inputd.salary

d.salary > minTaxable

' '

tax := (d.salary - minTaxable) * lowRate | tax := (maxTaxable - minTaxable) * lowRate
+ (d.salary - maxTaxable) * highRate

% \

d.message := tax message fromx | | d.message := N0 tax message*

Outputd.message

Y

T

l

d.salary <= maxTaxable

T

flowchart that the nested condition
d.salary <= maxTaxable

will never be evaluated if the outer condition is false. The flowchart also shows that
eachlF statement terminates with the circular collector symbol aligned vertically
with its condition. Because this program contains twatatements, its flowchart
contains two circular collector symbols.

IF statements with an ELSIF part

The previous program had the nedtedtatement in the true alternative of the outer

IF statement. Component Pascal allows you to neist statement in either the true
alternative or the false alternative of the ouffestatement. Figure 8.4 shows a dia-

log box that computes the letter grade from an integer score according to the tradi-
tional 10-point criteria. That is, a score of 90 or more is an A, between 80 and 89 is a
B, between 70 and 79 is a C, between 60 and 69 is a D, and less than 60 is an F. The
program shown in Figure 8.5 implements this dialog box usistatements that are
nested inside the false alternatives of the dgtetatements.

154 Chapter 8 Nested Selections

&% Exam Grade [H[=] E3 &% Exam Grade [H[=] E3
Score IS? Score |?3

|Y0urgrade isB. |Y0urgrade isC.

&% Exam Grade [H[=] E3
Score |58

|Y0urgrade isF.

MODULE Pbox08B;
IMPORT Dialog;
VAR
d*: RECORD
score*: INTEGER,;
message-: ARRAY 64 OF CHAR
END;

PROCEDURE TestGrade *;
BEGIN
IF d.score >= 90 THEN
d.message :="Your grade is A."
ELSE
IF d.score >= 80 THEN
d.message :="Your grade is B."
ELSE
IF d.score >= 70 THEN
d.message :="Your grade is C."
ELSE
IF d.score >= 60 THEN
d.message :="Your grade is D."
ELSE
d.message :="Your grade is F."
END
END
END
END;
Dialog.Update(d)
END TestGrade;

BEGIN
d.score :=0;
d.message := "™
END Pbox08B.

Figure 8.4

A dialog box for computing a
letter grade from an exam
score.

Figure 8.5
Conversion of an integer
exam score into a letter grade.

You can nestF statements to any level. The l#ststatement in this program is

nested three levels deep. EdElstatement is nested in tAeSE part of its outefF

statement.

Suppose the value of Score is 93. The boolean expression of theFostie-

ment

IF statements with an ELSIF partl55

d.score >=90

would be true, and the “Grade of A” message would be outputET$e part of the
outerIF statement would be skipped. BecauseHlh®E part is a single large nested
IF statement, none of the other boolean expressions is ever tested.

Suppose the value dfscore is 70. The boolean expression of the olkestate-
ment would be false, and tl&.SE part of the outerF statement would execute.
Now the boolean expression

d.score >= 80

of the secondF statement would be tested as false. SEtRE part of the second
IF statement would execute. This time, the boolean expression

d.score >=70

would be true, and the “Grade of C" message would be outpuE@@part of the
third IF statement is skipped. Therefore, the D and F messages are not output.

This pattern of a succession I6f statements nested in the false alternatives
occurs so frequently in practice that Component Pascal has a guStiabption to
perform the equivalent processing with a singlstatement. The same procedure
can be written with a singl€ statement as:

PROCEDURE TestGrade *;
BEGIN
IF d.score >= 90 THEN
d.message :="Your grade is A."
ELSIF d.score >= 80 THEN
d.message := "Your grade is B."
ELSIF d.score >= 70 THEN
d.message :="Your grade is C."
ELSIF d.score >= 60 THEN
d.message :="Your grade is D."
ELSE
d.message := "Your grade is F."
END;
Dialog.Update(d)
END TestGrade;

You can think oELSIF and the lasELSE as a list of conditions that starts with
the firstIF condition. The boolean expressions in the list are evaluated in order, start-
ing with the first. When a boolean expression is false, the next one in the list is
tested. The first boolean expression that tests true causes its alternative to execute
and the rest of thELSIF alternatives in the list to be skipped.

When deciding whether to use this feature ofithgtatement, you must be care-
ful to distinguish between nesté& statements and sequentlstatements, which
are not nested. The following statements are sequential:

156 Chapter 8 Nested Selections

IF d.score >= 90 THEN
d.message :="Your grade is A."
END;
IF d.score >= 80 THEN
d.message := "Your grade is B."
END;
IF d.score >= 70 THEN
d.message :="Your grade is C."
END;
IF d.score >= 60 THEN
d.message := "Your grade is D.";
ELSE
d.message :="Your grade is F.";
END

In this code fragment, suppose thatore gets the value 70 from the dialog box.
The first two boolean expressions would be false and the third one would be true.
But after d.message gets the C message, the néxtstatement would execute.
Becauseal.score >= 60 is true,d.message would get the D message destroying the
previously stored C message. The net result would be an erroneous output of

Your grade is D.

Figure 8.6 shows the difference in flow of control between three sequErdiate-
ments and afF statement with tw&LSIF parts.

Assertions and invariants

When complexXF statements are nested it is sometimes helpful to formulate asser-
tions to keep track of what is happening in the programagsertionis a condition Assertions
that is assumed to be true at a given point in a program. One example of an assertion

is the preconditio® in the Hoare tripld P} S{ @ . It is a condition that is assumed

to be true for stateme®ito execute correctly. P is true, then afteb executes() is
guaranteed to be true.

Another example of an assertion is theariant It differs from a precondition Invariants
only by its physical placement in a program and by its use in program design.
Whereas preconditions are assertions placed at the beginning point of a procedure,
invariants are typically placed within procedure code. Furthermore, preconditions
are frequently provided in the documentation of server modules as guidelines for
use by client programmers. They are especially valuable if the programmer of the
server is a different individual from the programmer of the client. Invariants, how-
ever, are usually intended as guidelines for a single programmer within a single pro-
cedure. They are hidden from the user of the module that contains the procedure.

Component Pascal provides assertions withARSERT procedure ASSERT The ASSERT procedure
takes two parameters, a condition and an error number. The condition is a boolean
expression. That is, it is an expression that evaluates to one of two possible values,
true or false. When you execW®8SERT, it evaluates the condition. If the condition
is true nothing happens and the program continues asABSIERT statement were
not in the program. If the condition is false, however, the program terminates with a

Assertions and invariants157

+ Figure 8.6

= Flowcharts for sequentidiF
T < > F
F

statement with tw&LSIF
parts.

_|
-
-

[] |
>g><

[]

statements versus a singffe

{

[]
oI
7
I:I (b) NestedF statements

—>@<—

(a) SequentialF statements

[]

T
|
R

{

trap. The error number is the number that appears in the trap window.

With Component Pascal, you can use ABSERT procedure to implement pre-
conditions and invariants. Recall from Chapter 7 that one of the programming style
conventions for Component Pascal in the BlackBox framework is that the error
numbers for precondition violations begin with integer 20. Similarly, error numbers
for invariant violations should begin with integer 100.

Example 8.1 The following code fragment is the nestedtatement of Figure 8.2
with invariants. Note that the pseudocode statements in italic may summarize sev-
eral statements from the original program.

158 Chapter 8 Nested Selections

IF d.salary > minTaxable THEN
IF d.salary <= maxTaxable THEN
ASSERT((minTaxable < d.salary) & (d.salary <= maxTaxable), 100);
tax := (d.salary - minTaxable) * lowRate
ELSE
ASSERT(d.salary > maxTaxable, 101);
tax := (maxTaxable - minTaxable) * lowRate + (d.salary - maxTaxable) * highRate
END;
d.message := tax message fromax
ELSE
ASSERT(d.salary <= minTaxable, 102);
d.message := no tax message
END;

To see how invariants are formulated, we will begin with the simplest invariant,
which can be found just before the statement

d.message := no tax message

What condition must be true at this point in the program? In other words, what con-
dition must be true just before this assignment statement executes? The boolean
expression of the out&f statement must be false. But if the expression

d.salary > minTaxable

is false, the expression

d.salary <= minTaxable

must be true, which is the invariant shown in the code fragment.
The next invariant we will consider is the one just before the statement

tax := (d.salary - minTaxable) * lowRate

Why mustd.salary be greater thaminTaxable and less than or equal taxTaxable

at that point in the program? Because to arrive at that point, the boolean expression
of the outelF statement must be true. Then the boolean expression of the Ifested
statement also must be true. The invariant

(minTaxable < d.salary) & (d.salary <= maxTaxable)

is simply reflecting those two conditions.
The remaining invariant is just before the statement

tax := (maxTaxable - minTaxable) * lowRate + (d.salary - maxTaxable) * highRate
To arrive at this point, the boolean expression of the tEtsEatement must be true

and the boolean expression of the negtestatement must be false. Therefore, to
get to this point in the prograni.salary must satisfy

Assertions and invariants159

(d.salary > minTaxable) & (d.salary > maxTaxable)
So why does the implementation of the invariant in the code fragment
ASSERT(d.salary > maxTaxable, 101)

seem to ignore the fact thiéisalary must be greater thaninTaxable?
The answer to this question involves the concept of strong versus weak invari-
ants. One invariant is stronger than another if it places greater limits on the posStiong invariants
values of a variable. In general, stronger invariants are more helpful in analysis of
logic than weaker ones, because they give you more information. Suppose you ask
your teacher for your score on an exam. If she says, “You scored between 50 and
80,” she is not giving as much information as if she says, “You scored between 73
and 75."” The second statement places a greater limitation on the possible values of
your exam score and, therefore, gives you more information.
In this example,

d.salary > minTaxable

is a valid invariant, because it is a condition guaranteed to be true at this point in the
program. However,

d.salary > maxTaxable

is stronger because it places a greater limitation on the possible vadigan.

One way of visualizing strong invariants is with the number line. Figure 8.7
shows the regions of the real number line corresponding to each of the preceding
conditions. Recall from mathematics that the AND operation corresponds to the
intersection of the regions, while the OR operation corresponds to the union of the
regions. The intersection of these two regions is simply the region for

d.salary > maxTaxable
by itself, which is the stronger invariant.

O—> d.salary > maxTaxable Figure 8.7
The real number line showing

> .salary > minT: I o
0 d-salary > minTaxable the conditiongl.salary >
I I maxTaxable andd.salary >
) minTaxable.
minTaxable maxTaxable N

One purpose of an invariant is to document your analysis of what condition you
calculate should be true at a given point of your program. If your analysis is correct,
a call to theASSERT procedure should do nothing. That is, in fact, what the
ASSERT procedure does. If the boolean condition inABSERT procedure call is

160 Chapter 8 Nested Selections

true, nothing happens and the program continues to execute. If the boolean condi-
tion is false, however, theSSERT procedure causes the program to abort with a
trap. Why would a programmer ever want his program to abort with a trap? He never
would! So why would anyone ever put A8SERT call in his program?

The primary purpose of a call ASSERT to implement an invariant is for testingThe purpose of a call to
the correctness of your program. If the analysis of your program is correct, y&#ERT to implement an
assertions will never trigger a trap and all will be well for you and the users of yogiant
software. But if you make an error in your analysis you will have an error in your
program and it will not execute correctly. The trap will show you where your analy-
sis of what should be true at that point of the program is not true after all. You can
then correct the program. Better to have a controlled abort of your program when
you are testing it than to release it for the users with an error in the program.

To write programs that work correctly, you must be able to analyze the logic of
the statements you write. Invariants will help you to think through the logic of your
programs. In the beginning, it may seem that invariants make things more compli-
cated than necessary. But after some practice, you will find that you can formulate
invariants in your mind as you write your programs. That ability will make it easier
for you to write correct programs. Occasionally, it may help to writASBERT
call in a program to make the program easier to understand.

Example 8.2 Consider the following code fragment, wheige is a variable of
type INTEGER.

IF age > 65 THEN
Statement 1
ELSIF age > 21 THEN
Statement 2
ELSE
Statement 3
END

The logic in this code is identical to that in Figure 8.6(b), where the nesting was con-
sistently in the false part of the statements. What are the strongest invariants you
can formulate before each statement?

For Statement 1, the conditiage > 65 must be true. That is the strongest invari-
ant you can formulate at this point of the program.

For Statement 2, the boolean expression of the tutgatementage > 65 must
be false. In other wordage <= 65 must be true. Furthermore, the boolean expres-
sion of theELSIF condition,age > 21, also must be true. So the strongest invariant at
this point is

(21 < age) & (age <= 65)
which corresponds to the intersection of the two regions in Figure 8.8.
For Statement 3, both boolean expressions must be false; thgd +s5 65 and

age <= 21 must be true. The strongest invariant is

Age <= 21

Dead code 161

O » age>21 Figure 8.8
The number line showing the
< <= ..
® age <= 65 two conditionsage > 21 and
I I age <= 65.
21 65

which corresponds to the intersection of the two regions in Figure 8.9. The final
code fragment that implements the strongest invariants is

IF age > 65 THEN
ASSERT(age > 65, 100);
Statement 1
ELSIF age > 21 THEN
ASSERT((21 < age) & (age <= 65), 101);
Statement 2
ELSE
ASSERT(age <= 21, 102);
Statement 3

END

@ age<=21 Figure 8.9

The number line showing the
< <= "
d age <=65 two conditionsage <= 21
I I andage <= 65.
21 65 U

Dead code

Something to avoid when you write nestedtatements is dead codi®ead codas Dead code
a statement that cannot possibly execute. If you ever discover dead code in your own
program or in a program that someone else wrote, you can be sure that it was unin-
tentional. Because dead code never executes, there is never a reason to put it in a
program except by mistake. Formulating the strongest invariant can help you dis-
cover dead code.

Component Pascal provides a procedure that we will use to indicate dead code.
When you execute proceduHALT, the program always terminates with a trap,
regardless of the value of any boolean expression. LikaSBERT procedure, the Typical purpose of a call to
HALT procedure is used for testing large programs. If a programmer wants to HALT
the values of the variables at a given point of a program, she can insert a call to
HALT. When the program reaches that point, it will terminate and show the trap win-
dow including the values of all the variables at the time the program was interrupted.

162 Chapter 8 Nested Selections

The procedure call
HALT(100)
is logically equivalent to
ASSERT(FALSE, 100)

Because the boolean expression in the aB®8ERT call is always false, its execu-
tion would always generate a trap. But this is precisely the behavior of the call to
HALT. The following examples use a callHALT to indicate the strongest invariantThe purpose of a call to
of dead code. In the same way that&$ERT call with the strongest invariant will HALT in this chapter
not affect the execution of a programiALT call with dead code will not affect a
program. Because dead code never executesiAh€ procedure will never be
called.
Keep in mind, however, that this useH¥LT would never be found in production
code because a programmer would never willfully have dead code in her program.
The following examples are designed to teach you skill in identifying dead code, so
you can root it out of your programs.

Example 8.3 Consider the following code fragment:

IF quantity < 200 THEN
Statement 1

ELSIF quantity >= 100 THEN
Statement 2

ELSE
Statement 3

END

Statement 3 can never execute regardless of the vatwerafty. To see why, try to
formulate a strong invariant at the point just before Statement 3. To get to that point
in the program, you must hageantity >= 200 because the first boolean expression
must be false. You must also haumntity < 100 because the second boolean expres-

sion also must be false. But it is impossible to lemtity greater than or equal to

200 and less than 100 at the same time. So Statement 3 can never execute and is
dead code. The code fragment with the strongest invariants implemented using calls
to ASSERT andHALT is

IF quantity < 200 THEN
ASSERT (quantity < 200, 100);
Statement 1
ELSIF quantity >= 100 THEN
ASSERT(quantity >= 200, 101);
Statement 2
ELSE
HALT(102);
Statement 3
END 0

Dead code 163

Do not conclude from this example that dead code is always the last statement in
a sequence @LSIF parts. You must analyze each situation afresh. The general strat-
egy to determine the strongest invariant at a given point is to list the boolean condi-
tions that must be true. This may involve taking the NOT of some expressions if the
nesting is in the false part of &#hstatement. The intersection of the corresponding
regions represents the strongest invariant. If the intersection at a given point is
empty, the statement at that point is dead code.

Example 8.4 Consider the following code fragment, wharbas typeNTEGER.

IF (15 <=n) & (n < 20) THEN
IF (n > 10) THEN
Statement 1
ELSE
Statement 2
END
ELSE
Statement 3
END

What is the strongest invariant you can formulate at each statement? The first step is
to draw a sketch of the number line with the integer values in their proper order, as
in Figure 8.10.

e — O (15 <=n) & (n < 20) Figure 8.10
O > n>10 ;T number line for Example
- O @ > (n<15)OR (n>=20) -
| | |
I I I
10 15 20

For Statement 1, you can see from the figure that the intersection of the top two
lines corresponds to both boolean expressions being true. The strongest invariant is

(15<=n) & (n < 20)

For Statement 2y must be less than or equal to 10 and between 15 and 20, which
is impossible. So Statement 2 is dead code.

For Statement 3, the first boolean expression must be false. From De Morgan’s
law it follows that the strongest invariant is

(n < 15) OR (n >= 20)
This corresponds to the third region of Figure 8.10, which is that part of the number

line not included in the first region. The code with all the invariants implemented
with calls toASSERT andHALT is

164 Chapter 8 Nested Selections

IF (15 <= n) & (n < 20) THEN
IF (n > 10) THEN
ASSERT((15 <= n) & (n < 20), 100);
Statement 1
ELSE
HALT(101);
Statement 2
END
ELSE
ASSERT((n < 15) OR (n >= 20), 102);
Statement 3
END U

Using nested IF statements

One of the most common problems beginning programmers have is a failure to rec-
ognize the appropriateness of the logic characterized by a sequeFicaifoparts
in anIF statement.

Example 8.5 Suppose you need to perform three different computations depend-
ing on the value ofveight, a real variable. The following code:

IF weight > 150.0 THEN
Statement 1

END;

IF (weight > 50.0) & (weight <= 150.0) THEN
Statement 2

END;

IF (weight <= 50.0) THEN
Statement 3

END

is not as efficient as the equivaléstatement with a sequencexfSIF parts:

IF weight > 150.0 THEN
Statement 1

ELSIF weight > 50.0 THEN
Statement 2

ELSE
Statement 3

END

For example, suppose weight has a value of 200.0. In the first code fragment, every
boolean expression must be evaluated becausg thatements are sequential. But

in the second fragment, only the first boolean expression is evaluated because the
sequence dELSIFs is skipped. 0

Another tendency when programming WithSIF logic is to include an unneces-
sary redundant test at the end.

Using nested IF statementsl 65

Example 8.6 The following code fragment has a redundant test.

IF price > 2000 THEN
Statement 1

ELSIF price > 1000 THEN
Statement 2

ELSIF price <= 1000 THEN
Statement 3

END

The last boolean expression is redundant. In the following code fragment, you can
assert thaprice <= 1000 when Statement 3 executes.

IF price > 2000 THEN
Statement 1

ELSIF price > 1000 THEN
Statement 2

ELSE
Statement 3

END

This code fragment executes exactly the same as the previous one, but without the
extra test. The redundant test should not be included. 0

[l The guarded command if statement

The guarded commarifistatement can have more than just two guards. For exam-
ple anif statement with four guards has the form

if B1- Sl
[B2- S2
[B3- S3
[B4-4
fi

Each one of th&'s is a boolean guard that must be true for the corresponding state-
ment sequenc8to execute. The behavior of the GELstatement is quite different
from the CRF statement in two respects.
First, the CRF statement has an optior&alSE part. Suppose thiE statement
does not have aBLSE part, the condition in this part is not true, and none of the
conditions in any of th&LSIF parts are true either. Then each condition will be
tested, none of the statement sequences will execute, and execution will continue
with the statement sequentially following tiestatement. However, suppose thathe if statement aborts when
the above GCILif statement executes when none of the guards are true. Themahe of the guards are true.
statement aborts, which is the equivalent of a program crash or a trap in CP. In other
words, GCL has nothing equivalent to #IeSE part, and requires at least one of the
guards to be true to avoid a program abort.

166 Chapter 8 Nested Selections

Example 8.7 Suppose you want to put the values<x@ndy in order so thax is
guaranteed to be less than or equal the GCL statement

fi

works correctly if, for example, the initial statexs), , 3). In that case, the guard
x>y is true and the values are exchanged making the final st&e ¢, 7). How-
ever, if the initial state isx(4), §, 9) then no guards are true when ithstatement
executes and the program aborts. 0

A second difference betweeh andif is the order in which the conditions are
evaluated. In CP, the conditions are evaluated in order starting with the condition of
the IF, then the condition of the fir&lLSIF if necessary, then the condition of the
seconcELSIF if necessary, and so on. In GCL, however, you should visuallitiee
guards being evaluated at the same time. If no guard is true the statement aborts. If
one guard is true its corresponding statement sequence executes. But if mor@Hhérstatement selects at
one guard is true the computer randomly picks the statement sequence of sandmn when more than or
guard to execute. In this case, it may be impossible to predict the exact outcor@iéatstis true.
the computation.

Example 8.8 Suppose you write the processing of Example 8.6 in GCL as

if price>2000- S1
[[price>1000- S2
[[price<1000- S3
fi

This translation from CP to GCL may seem plausible, but it is not correct. There is
no problem if the initial state ip(ice, 500), which guarantees tH&8 will execute.

Nor is there a problem if the initial state wi¢e, 1500), which guarantees tHa

will execute. With both initial states exactly one guard is true so that the correspond-
ing statement sequence can be determined. Suppose, however, the initial state is
(price, 2500), when the CP statement in Example 8.6 guaranteeStétament 1

will execute. The problem is that the above GCL statement has both guards
price> 2000 and price> 1000 true and so will randomly pick eitH&lr or 2 to
execute. 0

So how do you translate a @Pstatement to a GCIf statement? You simply useTo translate from CP to GC
the strongest invariant as the guard. use the strongest invariant :
the guard.

Example 8.9 The processing of Example 8.6 is correctly written in GCL as

if price>2000- S1

[[1000< price<2000- S2

[[price<1000- S3

fi U

Exercises

1. (a) What is an assertior{B) Name two kinds of assertior(s) What is dead code?

2. Draw the flowcharts for the following code fragments.

(@)
IF Condition 1THEN
IF Condition 2THEN
Statement 1
ELSE
Statement 2
END
ELSE
Statement 3
END

(c)

IF Condition 1THEN
Statement 1
IF Condition 2THEN

Statement 2

END

ELSE
Statement 3

END

()
IF Condition 1THEN
IF Condition 2THEN
Statement 1
ELSE
Statement 2
END ;
Statement 3
ELSE
Statement 4
END

(d)
IF Condition 1THEN
Statement 1
ELSE
IF Condition 2THEN
Statement 2
END ;
Statement 3
END

3. Rewrite the following code fragments with the correct indentation and draw their flow-

charts.

(@)

IF Condition 1ITHEN
IF Condition 2THEN
Statement 1

ELSE

Statement 2

END

END

(b)

IF Condition 1THEN

IF Condition 2THEN
Statement 1

END

ELSE

Statement 2

END

4, Rewrite the following code fragments with the correct indentation and draw their flow-

charts.

Exercises 167

168 Chapter 8 Nested Selections

(a)

IF Condition 1THEN
IF Condition 2THEN
IF Condition 3THEN

(b)

IF Condition 1THEN
IF Condition 2THEN
IF Condition 3THEN

Statement 1 Statement 1
ELSE ELSE

Statement 2 Statement 2

END END

ELSE END

Statement 3 ELSE

END Statement 3

END END

(c) (d)

IF Condition 1THEN IF Condition 1THEN
Statement 1 Statement 1

END ; ELSIF Condition 2THEN
IF Condition 2THEN Statement 2
Statement 2 ELSE

ELSE Statement 3
Statement 3 END

END

5. Rewrite the following code fragment with only orfestatement. Your revised code
fragment must perform the same processing as the original one.

IF Condition 1ITHEN
IF Condition 2THEN
Statement 1
END
END;
Statement 2

6. The following code fragment makes four comparisons. Simplify it so that only two
comparisons are needede is a variable of typeNTEGER.

IF age > 64 THEN
Statement 1

END;

IF age < 18 THEN
Statement 2

END;

IF (age >= 18) & (age < 65) THEN
Statement 3

END

7. Determine the output, if any, of the following code fragment, andw are variables
of typeINTEGER. Hint: Rewrite with correct indentation first.

IFh>mTHEN
IFw>mTHEN
StdLog.Int(m)
ELSE
StdLog.Int(h)
END

END

(@) Assumeh =10, m = 3, andw = 4.
(b) Assumeh =10, m = 20, andw = 15.
(c) Assumeh =10, m =5, andw = 3.

Determine the output, if any, of the following code fragment.z, andg are variables
of typeINTEGER. Hint: Rewrite with correct indentation first.

IF x>y THEN
StdLog.Int(y)
ELSIF x >z THEN
IF x>qTHEN
StdLog.Int(q)
ELSE
StdLog.Int(x)

END

END

(@) Assumex =10,y =5,z=0, andqg = 1.
(b) Assumex =10,y =20,z=5, andq = 1.
(c) Assumex =10,y =10,z =12, andg = 5.
(d) Assumex =10,y =5, z =20, andq = 15.

Write the strongest possible invariants just before each statement in the following code
fragments. Assume thatim is a variable of typeNTEGER.

(@)
IF num < 23 THEN
IF num >= 15 THEN
Statement 1
ELSE
Statement 2
END
ELSE
Statement 3
END

(c)

IF num >= 60 THEN
Statement 1
ELSIF num < 80 THEN
Statement 2

END

()
IF num >= 50 THEN
Statement 1
ELSIF num >= 25 THEN
Statement 2
ELSE
Statement 3
END

(d)

IF (num < 30) OR (num > 40) THEN
Statement 1

ELSIF num < 35 THEN
Statement 2

ELSE

Statement 3
END

Exercises 169

170 Chapter 8 Nested Selections

10. Write the strongest possible invariant just before each statement in the code fragment.
Use theHALT procedure just before each statement that is dead code. Assumenthat

is a variable of typéNTEGER.

(@)
IF num < 70 THEN
IF num >= 80 THEN
Statement 1
ELSE
Statement 2
END
ELSE
Statement 3
END

(c)

IF num > 35 THEN
Statement 1
ELSIF num > 45 THEN
Statement 2

ELSE
Statement 3
END

(e)

IF (num < 40) OR (num > 50) THEN
Statement 1

ELSIF num > 30 THEN
Statement 2

ELSE
Statement 3

END

(b)
IF num >= 45 THEN
Statement 1
ELSIF num <= 35 THEN
Statement 2
ELSIF num >= 55 THEN
Statement 3
ELSE
Statement 4
END

(d)

IF (num < 5) OR (num > 9) THEN
Statement 1

ELSIF (5 < num) & (num < 9) THEN
Statement 2

ELSE
Statement 3

END

®

IF (40 <= num) & (num <= 50) THEN
Statement 1

ELSIF (num < 42) OR (num > 48) THEN
Statement 2

ELSE
Statement 3

END

11. Write theif statement in Example 8.7 so that it executes correctly with any initial state.

12. For the GCLif statement

if age<18 - S1
[age<21- 2
[age<65 - S3
fi

tell which statements could possibly execute for each of the following initial states.

(a) (age 10) (b) (age 19)

13. For the GCLif statement
if j<40- S1

[20<j<60- S2
fi

(c) (age 21)

(d) (age 40) (e) (age 70)

tell whether the statement will abort and if not, which statements could possibly exe-

14.

cute for each of the following initial states.

@ (. 10) (b) (. 30) (c) (5. 50) (d) @, 70)

Translate each code fragment in Exercise 9 into a singleifc&Zatement.

Problems

15.

16.

17.

18.

19.

Write a program to input three integers in a dialog box and print them in descending
order on the Log. Your program must contain no local or global variables other than the
ones for input in the dialog box. It must use no more than five comparisons and must
work correctly even if some of the integers are equal.

Write a program to input three integers in a dialog box and output the number that is
neither the smallest nor the largest in an output field of the dialog box. If two or more
of the numbers are equal output that number.

Write a program to input two integers in a dialog box and output to the dialog box
either the larger integer or a message stating that they are equal.

A salesperson gets a 5% commission on sales of $1000 or less, and a 10% commission
on sales in excess of $1000. For example, a sale of $1300 earns him $80; that is, $50 on
the first $1000 of the sale and $30 on the $300 in excess of the first $1000. Write a pro-
gram that inputs a sales figure in a dialog box and outputs the commission to the dialog
box. Output an error message if the user enters a negative sales figure.

The fine for speeding in a 45 MPH zone is $10 for every mile per hour over the speed
limit for speeds from 46 to 55 MPH. It is $15 for every additional mile per hour
between 56 and 65 MPH. It is $20 for every additional mile per hour over 65 MPH. For
example, the fine for driving 57 MPH is $100 for the first 10 MPH plus $30 for the 2
MPH in excess of 55 MPH, for a total of $130. Write a program that inputs the speed in

a dialog box as an integer and outputs the fine, or a message that there is no fine, to the
dialog box. Output an error message if the user enters a negative speed. Use the small-
est possible number of comparisons.

Temperature T Message
90<T Go swimming
80<T<90 Play tennis
70<T<80 Study
60<T<70 Go to sleep

T <60 Go to Hawaii

Problems 171

Figure 8.11
The table for Problem 21.

172 Chapter 8 Nested Selections

20.

21.

22.

23.

24.

25.

Design a dialog box that has two input fields—an integer field for the temperature and
a check box labeled Humid—and one output field. If the temperature is greater than 85
output the message “It is muggy” if the check box is checked or “Dry heat” if the box
is not checked. Otherwise output “Cool man”.

Write a program to input the temperature (integer value) in a dialog box, then output
the appropriate message for a given value of temperature to the dialog box, as the table
in Figure 8.11 shows. Use the smallest possible number of comparisons.

The price per Frisbee depends on the quantity ordered, as the table in Figure 8.12 indi-
cates. Write a program to input the quantity requested from a dialog box and output the
total cost of an order, including a 6.5% sales tax, to the dialog box. Output an error

message if a negative quantity is entered.

- - - Figure 8.12
Quantity Price per Frisbee The price schedule for
0—99 $5.00 Problem 22.
100 - 199 3.00
200 - 299 2.50
300 or more 2.00

You are eligible for a tax benefit if you are married and have an income of $30,000 or
less, or unmarried and have an income of $20,000 or less. Design a dialog box that asks
for the user's marital status (check box) and income (real), then outputs a message in
the dialog box stating whether the user is eligible for the tax benefit. Output an error
message if negative input is entered.

Avyear is a leap year if it is divisible by 4 but not by 100. The only exception to this rule

is that years divisible by 400 are leap years. Design a dialog box that asks the user to
enter a positive integer for the year and displays a message that states whether the year
is a leap year.

The following statements are from the United States Department of Internal Revenue
Form 1040 for 1997:

Enter on line 35 the larger of your itemized deductions or the standard deduction
shown below for your filing status.

= Single—$4,150

= Married filing jointly or Qualifying widow(er)—$6,900
s Head of household—$6,050

= Married filing separately—$3,450.

Write a program that implements the dialog box of Figure 8.13 to output the value for
line 35. Note that the first radio button is labeled 1 for the user, but should have a level

26.

Problems 173

number of O in your program. Output an error message on Line 35 if the amount
entered for the standard deduction is negative.

O =1 Income Tax |

Filing status
(1. Single
() 2. Married, joint return
() 3. Married, separate returns
@ 4. Head of household

(5. Qualifying widowl(er)

Itemized deductions 66688.88

Line 35: $6050.00

Rewrite moduld®?box08B in Listing 8.5 using &ASE statement instead of #hstate-

O =1 Income Tax |

Filing status
(1. Single
() 2. Married, joint return
() 3. Married, separate returns
@ 4. Head of household

(3 5. Qualifying widowler)

Itemized deductions -10686.6806
[(compute]

Line 35: Megative input not allowed.

Figure 8.13
The dialog box for Problem
25.

ment. The dialog box should appear as in Figure 8.4 without any radio buttons. Use the
fact that ifd.score is in the range 70-79, for example, thiestore DIV 10 is 7.

174 Chapter 8 Nested Selections

	8 Nested Selections
	Nested IF statements
	IF statements with an ELSIF part
	Assertions and invariants
	Dead code
	Using nested IF statements
	The guarded command if statement
	Exercises
	Problems

