
Chapter 2

C

 High-Order Language

 ASSEMBLY LEVEL

 OPERATING SYSTEM LEVEL

 MICROCODE LEVEL

 LOGIC GATE LEVEL

 INSTRUCTION SET
ARCHITECTURE LEVEL

 APPLICATION LEVEL

 LEVEL

 6

 HIGH-ORDER LANGUAGE LEVEL 6

9781284079630_CH02_053_114.indd 53 29/01/16 8:30 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 A program inputs information, processes it, and outputs the results. Th is
chapter shows how a C program inputs, processes, and outputs values. It
reviews programming at Level HOL6 and assumes that you have experience
writing programs in some high-order language—not necessarily C—such as
C++, Java, or Python. Because this text presents concepts that are common
to all those languages, you should be able to follow the discussion despite
any diff erences in the language with which you are familiar.

2.1 Variables
 A computer can directly execute statements in machine language only at
Level ISA3, the instruction set architecture level. So a Level HOL6 statement
must fi rst be translated to Level ISA3 before executing. FIGURE 2.1 shows
the function of a compiler, which performs the translation from a Level
HOL6 language to the Level ISA3 language. Th e fi gure shows translation
to Level 3. Some compilers translate from Level 6 to Level 5, which then
requires another translation from Level 5 to Level 3.

 The C Compiler
 To execute the programs in this text, you need access to a C compiler.
Running a program is a three-step process:

 ❯ Write the program in C using a text editor. Th is version is called the
source program.

 ❯ Invoke the compiler to translate, or compile, the source program
from C to machine language. Th e machine language version is called
the object program.

 ❯ Execute the object program.

 Some systems allow you to specify the last two of these steps with a single
command, usually called the run command. Whether or not you specify the
compilation and execution separately, some translation is required before a
Level HOL6 program can be executed.

 When you write the source program, it will be saved in a fi le on disk just
as any other text document would be. Th e compiler will produce another
fi le, called a code fi le, for the object program. Depending on your compiler,
the object program may or may not be visible on your fi le directory aft er the
compilation.

 If you want to execute a program that was previously compiled, you do
not need to translate it again. You can simply execute the object program

Application
level

High-order
language level

Assembly
level

Operating system
level

Instruction set
architecture level

Microcode
level

Logic gate
level

7

6

5

4

3

2

1

 FIGURE 2 . 1
 The function of a
compiler, which
translates a program
in a Level 6 language
to an equivalent
program in a language
at a lower level.

56 CHAPTER 2 C

9781284079630_CH02_053_114.indd 56 29/01/16 8:30 am

Figure 2.1

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Source

program

Object

program

ProcessingInput Output

Compiler

Figure 2.2

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

directly. If you ever delete the object program from your disk, you can always
get it back from the source program by compiling again. But the translation
can go only from a high level to a low level. If you delete the source program,
you cannot recover it from the object program.

 Your C compiler is soft ware, not hardware. It is a program that is
stored in a fi le on your disk. Like all programs, the compiler has input, does
processing, and produces output. FIGURE 2.2 shows that the input to the
compiler is the source program and the output is the object program.

 Machine Independence
 Level ISA3 languages are machine dependent. If you write a program in a
Level ISA3 language for execution on a Brand X computer, it cannot run on
a Brand Y computer. An important property of the languages at Level HOL6
is their machine independence. If you write a program in a Level HOL6
language for execution on a Brand X computer, it will run with only slight
modifi cation on a Brand Y computer.

 FIGURE 2.3 shows how C achieves its machine independence. Suppose
you write an applications program in C to do some statistical analysis. You
want to sell it to people who own Brand X computers and to others who
own Brand Y. Th e statistics program can be executed only if it is in machine
language. Because machine language is machine dependent, you will need
two machine-language versions, one for Brand X and one for Brand Y.
Because C is a common high-order language, you will probably have access
to a C compiler for the Brand X machine and a C compiler for the Brand
Y machine. If so, you can simply invoke the Brand X C compiler on one
machine to produce the Brand X machine-language version, and invoke the
Brand Y C compiler on the other machine for the Brand Y version. You need
to write only one C program.

 The C Memory Model
 Th e C programming language has three diff erent kinds of variables—global
variables, local variables, and dynamically allocated variables. Th e value of a
variable is stored in the main memory of a computer, but where in memory

 FIGURE 2 . 3
 The machine
independence of a
Level HOL6 language.

C
source

program

Brand X
C

compiler

Brand Y
C

compiler

Brand X
object

program

Brand Y
object

program

Source
program

Object
program

Processing OutputInput

Compiler

 FIGURE 2 . 2
 The compiler as a program.

572.1 Variables

9781284079630_CH02_053_114.indd 57 29/01/16 8:30 am

Figure 2.3

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The C
memory model

• Global variables – fixed location in memory

• Local variables and parameters – run-time
stack

• Dynamically allocated variables – heap

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The C
memory model

• Global variables – fixed location in memory

• Local variables and parameters – run-time
stack

• Dynamically allocated variables – heap

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The C
memory model

• Global variables – fixed location in memory

• Local variables and parameters – run-time
stack

• Dynamically allocated variables – heap

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The C
memory model

• Global variables – fixed location in memory

• Local variables and parameters – run-time
stack

• Dynamically allocated variables – heap

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Function call
• Push storage for the return value

• Push the actual parameters

• Push the return address

• Push storage for the local variables

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Function call
• Push storage for the return value

• Push the actual parameters

• Push the return address

• Push storage for the local variables

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Function call
• Push storage for the return value

• Push the actual parameters

• Push the return address

• Push storage for the local variables

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Function call
• Push storage for the return value

• Push the actual parameters

• Push the return address

• Push storage for the local variables

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Function call
• Push storage for the return value

• Push the actual parameters

• Push the return address

• Push storage for the local variables

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Function return
• Pop the local variables

• Pop the return address

• Pop the parameters

• Pop the return value

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Three attributes of a
C variable

• Name

• Type

• Value

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

// Stan Warford
// A nonsense program to illustrate global variables.

#include <stdio.h>

char ch;
int j;

int main() {
 scanf("%c %d", &ch, &j);
 j += 5;
 ch++;
 printf("%c\n%d\n", ch, j);
 return 0;
}

Input
M 419

Output
N
424

Figure 2.4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Global – Declared outside of main()

• Local – Declared within main()

Variables

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th e standard output device can be either the screen or a disk fi le. In a Unix
environment, the default output device is the screen. You can redirect the
output to go to a disk fi le when you execute the program. \n is the newline
character. Th is output statement sends the value of variable ch to the output
device, moves the cursor to the start of the next line, sends the value of
variable j to the output device, and then moves the cursor to the start of the
next line. Th e printf() function does not use the & character in front of
the variables because it does not change the values of the variables. Instead,
it outputs the values they already have.

FIGURE 2.5 shows the memory model for the program of Figure 2.4
just before the program terminates. Storage for the global variables ch and j
is allocated at a fi xed location in memory, as Figure 2.5(a) shows.

 Remember that when a function is called, four items are allocated
on the run-time stack: return value, parameters, return address, and local
variables. Because the main function in this program has no parameters and
no local variables, the only items allocated on the stack are storage for the
return value, labeled retVal, and the return address, labeled retAddr, in
Figure 2.5(b). Th e fi gure shows the value for the return address as ra0, which
is the address of the instruction in the operating system that will execute
when the program terminates. Th e details of the operating system at Level
OS4 are hidden from us at Level HOL6.

 Local Variables
 Global variables are allocated at a fi xed position in main memory. Local
variables, however, are allocated on the run-time stack. In a C program,
local variables are declared within the main program. Th e program in

FIGURE 2.6 declares a constant and three local variables that represent two
scores on exams for a course, and the total score computed as their average
plus a bonus.

 Before the fi rst variable is the constant bonus. A constant is like a
variable in that it has a name, a type, and a value. Unlike a variable, however,

Local variables are declared
within main().

 FIGURE 2 . 5
 The memory model for the program of Figure 2.4.

(b) Run-time stack.

retAddr

retVal

ra0

0

ch

j

(a) Fixed location.

N

424

62 CHAPTER 2 C

9781284079630_CH02_Pass03.indd 62 19/01/16 5:02 pm

Figure 2.5

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int main() {
 const int bonus = 10;
 int exam1;
 int exam2;
 int score;
 scanf("%d %d", &exam1, &exam2);
 score = (exam1 + exam2) / 2 + bonus;
 printf("score = %d\n", score);
 return 0;
}

Input
68 84

Output
score = 86

Figure 2.6

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Example 2.1 If the input of the program in Figure 2.6 is

 68 85

 then the output is still

 score = 86

 Th e sum of the exams is 153. If you divide 153 by 2.0, you get the fl oating-
point value 76.5. But if you divide 153 by 2, the / operator represents integer
division and the fractional part is truncated—in other words, chopped off —
yielding 76. ❚

 Example 2.2 If you declare score to have a double-precision, fl oating-
point type as follows

 double score;

 and if you force the division to be fl oating point by changing 2 to 2.0 as
follows

 score = (exam1 + exam2) / 2.0 + bonus;

 then the output is

 score = 86.5

 when the input is 68 and 85. ❚

 Floating-point division of two numbers produces only one value, the
quotient. However, integer division produces two values—the quotient
and the remainder—both of which are integers. You can compute
the remainder of an integer division with the C modulus operator %.

FIGURE 2.7 shows some examples of integer division and the modulus
operation.

 Expression Value Expression Value

 15 / 3 5 15 % 3 0

 14 / 3 4 14 % 3 2

 13 / 3 4 13 % 3 1

 12 / 3 4 12 % 3 0

 11 / 3 3 11 % 3 2

 FIGURE 2 . 7
 Some examples of integer division and the modulus operation.

 15 / 3 5 15 % 3 0

64 CHAPTER 2 C

9781284079630_CH02_053_114.indd 64 29/01/16 8:30 am

Figure 2.7

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 2.8 shows the memory model for the local variables in the
program of Figure 2.6. Th e computer allocates storage for all local variables
on the run-time stack. When main() executes, storage for the return value,
the return address, and local variables exam1, exam2, and score are pushed
onto the stack. Because bonus is not a variable, it is not pushed onto the stack.

 2.2 Flow of Control
 A program operates by executing its statements sequentially—that is,
one statement aft er the other. You can alter the sequence by changing the
fl ow of control in two ways: selection and repetition. C has the if and
switch statements for selection, and the while, do, and for statements
for repetition. Each of these statements performs a test to possibly alter
the sequential fl ow of control. Th e most common tests use one of the six
relational operators shown in FIGURE 2.9 .

score

exam2

retVal

(a) Before the input statement executes.

exam1

exam2

exam1

retAddr ra0

(b) After the input statement executes.

84

64

score

retVal

retAddr ra0

FIGURE 2.8
The memory model for the local variables in the program of Figure 2.6.

Operator Meaning

== Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

!= Not equal to

FIGURE 2.9
The relational operators.

Equal to

652.2 Flow of Control

9781284079630_CH02_Pass03.indd 65 19/01/16 5:02 pm

Figure 2.8

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 2.8 shows the memory model for the local variables in the
program of Figure 2.6. Th e computer allocates storage for all local variables
on the run-time stack. When main() executes, storage for the return value,
the return address, and local variables exam1, exam2, and score are pushed
onto the stack. Because bonus is not a variable, it is not pushed onto the stack.

 2.2 Flow of Control
 A program operates by executing its statements sequentially—that is,
one statement aft er the other. You can alter the sequence by changing the
fl ow of control in two ways: selection and repetition. C has the if and
switch statements for selection, and the while, do, and for statements
for repetition. Each of these statements performs a test to possibly alter
the sequential fl ow of control. Th e most common tests use one of the six
relational operators shown in FIGURE 2.9 .

score

exam2

retVal

(a) Before the input statement executes.

exam1

exam2

exam1

retAddr ra0

(b) After the input statement executes.

84

64

score

retVal

retAddr ra0

FIGURE 2.8
The memory model for the local variables in the program of Figure 2.6.

Operator Meaning

== Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

!= Not equal to

FIGURE 2.9
The relational operators.

Equal to

652.2 Flow of Control

9781284079630_CH02_053_114.indd 65 29/01/16 8:30 am

Figure 2.9

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int main() {
 const int limit = 100;
 int num;
 scanf("%d", &num);
 if (num >= limit) {
 printf("high\n");
 }
 else {
 printf("low\n");
 }
 return 0;
}

Input
75

Output
low

Figure 2.10

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e if statement in Figure 2.10 has a single statement in each alternative.
If you want more than one statement to execute in an alternative, you must
enclose the statements in braces, {}. Otherwise, the braces are optional.

 Example 2.4 Th e if statement in Figure 2.10 can be written

 if (num >= limit)

 printf("high\n");

 else

 printf("low\n");

 without the braces around the output statements. ❚

 The Switch Statement
 Th e program in FIGURE 2.12 uses the C switch statement to play a little
guessing game with the user. It asks the user to pick a number. Th en,
depending on the number input, it outputs an appropriate message.

 You can achieve the same eff ect yielded by the switch statement using
the if statement. However, the equivalent if statement is not quite as
effi cient as switch.

 FIGURE 2 . 11
 The Boolean operators.

Symbol Meaning

&& AND

|| OR

! NOT

AND

 #include <stdio.h>

 int main() {
 int guess;
 printf("Pick a number 0..3: ");
 scanf("%d", &guess);
 switch (guess) {
 case 0: printf("Not close\n"); break;
 case 1: printf("Close\n"); break;
 case 2: printf("Right on\n"); break;
 case 3: printf("Too high\n");
 }
 return 0;
 }

 Interactive Input/Output
 Pick a number 0..3: 1
 Close

FIGURE 2.12
The C switch statement.

 int main() {

672.2 Flow of Control

9781284079630_CH02_053_114.indd 67 29/01/16 8:30 am

Figure 2.11

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int main() {
 int guess;
 printf("Pick a number 0..3: ");
 scanf("%d", &guess);
 switch (guess) {
 case 0: printf("Not close\n"); break;
 case 1: printf("Close\n"); break;
 case 2: printf("Right on\n"); break;
 case 3: printf("Too high\n");
 }
 return 0;
}

Interactive Input/Output
Pick a number 0..3: 1
Close

Figure 2.12

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

char letter;

int main() {
 scanf("%c", &letter);
 while (letter != '*') {
 if (letter == ' ') {
 printf("\n");
 }
 else {
 printf("%c", letter);
 }
 scanf("%c", &letter);
 }
 return 0;
}

Input
Hello, world!*

Output
Hello,
world!

Figure 2.13

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int cop;
int driver;

int main() {
 cop = 0;
 driver = 40;
 do {
 cop += 25;
 driver += 20;
 }
 while (cop < driver);
 printf("%d", cop);
 return 0;
}

Output
200

Figure 2.14

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int vector[4];
int j;

int main() {
 for (j = 0; j < 4; j++) {
 scanf("%d", &vector[j]);
 }
 for (j = 3; j >= 0; j--) {
 printf("%d %d\n", j, vector[j]);
 }
 return 0;
}

Input
2 26 -3 9

Output
3 9
2 -3
1 26
0 2

Figure 2.15

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Push the actual parameters

• Push the return address

• Push storage for the local variables

Allocation process
for a void function

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Pop the local variables

• Pop the return address

• Pop the parameters

Deallocation process for
a void function

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int numPts;
int value;
int j;

void printBar(int n) {
 int k;
 for (k = 1; k <= n; k++) {
 printf("*");
 }
 printf("\n");
}

int main() {
 scanf("%d", &numPts);
 for (j = 1; j <= numPts; j++) {
 scanf("%d", &value);
 printBar(value);
 //ra1
 }
 return 0;
}

Figure 2.16

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Input
12 3 13 17 34 27 23 25 29 16 10 0 2

Output

**

Figure 2.16
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin

numPoints

value

j

(b) scanf("%d", &numPts)

12numPoints

value

j

(c) for(j = 1; j <= numPoints; j++)

12

1

numPoints

value

j

(d) scanf("%d", &value)

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

3 3n

retAddr

n

(e) Push formal parameter (f) Push return address

ra1

retAddr

retVal

ra0 retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

12

3

1

numPoints

value

j

k

retAddr

n

(g) Push storage for local variable k

3

ra1

retAddr

retVal

ra0

 FIGURE 2 . 17
 The run-time stack for the program in Figure 2.16.

(a) Begin (b) scanf("%d", &numPts)

 Allocation takes place on the run-time stack in the following order
when you call a void function:

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

Th e allocation process for a
void function

74 CHAPTER 2 C

9781284079630_CH02_053_114.indd 74 29/01/16 8:30 am

Figure 2.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin

numPoints

value

j

(b) scanf("%d", &numPts)

12numPoints

value

j

(c) for(j = 1; j <= numPoints; j++)

12

1

numPoints

value

j

(d) scanf("%d", &value)

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

3 3n

retAddr

n

(e) Push formal parameter (f) Push return address

ra1

retAddr

retVal

ra0 retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

12

3

1

numPoints

value

j

k

retAddr

n

(g) Push storage for local variable k

3

ra1

retAddr

retVal

ra0

 FIGURE 2 . 17
 The run-time stack for the program in Figure 2.16.

(a) Begin (b) scanf("%d", &numPts)

 Allocation takes place on the run-time stack in the following order
when you call a void function:

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

Th e allocation process for a
void function

74 CHAPTER 2 C

9781284079630_CH02_053_114.indd 74 29/01/16 8:30 am

Figure 2.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin

numPoints

value

j

(b) scanf("%d", &numPts)

12numPoints

value

j

(c) for(j = 1; j <= numPoints; j++)

12

1

numPoints

value

j

(d) scanf("%d", &value)

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

3 3n

retAddr

n

(e) Push formal parameter (f) Push return address

ra1

retAddr

retVal

ra0 retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

12

3

1

numPoints

value

j

k

retAddr

n

(g) Push storage for local variable k

3

ra1

retAddr

retVal

ra0

 FIGURE 2 . 17
 The run-time stack for the program in Figure 2.16.

(a) Begin (b) scanf("%d", &numPts)

 Allocation takes place on the run-time stack in the following order
when you call a void function:

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

Th e allocation process for a
void function

74 CHAPTER 2 C

9781284079630_CH02_053_114.indd 74 29/01/16 8:30 am

Figure 2.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin

numPoints

value

j

(b) scanf("%d", &numPts)

12numPoints

value

j

(c) for(j = 1; j <= numPoints; j++)

12

1

numPoints

value

j

(d) scanf("%d", &value)

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

3 3n

retAddr

n

(e) Push formal parameter (f) Push return address

ra1

retAddr

retVal

ra0 retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

12

3

1

numPoints

value

j

k

retAddr

n

(g) Push storage for local variable k

3

ra1

retAddr

retVal

ra0

 FIGURE 2 . 17
 The run-time stack for the program in Figure 2.16.

(a) Begin (b) scanf("%d", &numPts)

 Allocation takes place on the run-time stack in the following order
when you call a void function:

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

Th e allocation process for a
void function

74 CHAPTER 2 C

9781284079630_CH02_053_114.indd 74 29/01/16 8:30 am

Figure 2.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin

numPoints

value

j

(b) scanf("%d", &numPts)

12numPoints

value

j

(c) for(j = 1; j <= numPoints; j++)

12

1

numPoints

value

j

(d) scanf("%d", &value)

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

3 3n

retAddr

n

(e) Push formal parameter (f) Push return address

ra1

retAddr

retVal

ra0 retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

12

3

1

numPoints

value

j

k

retAddr

n

(g) Push storage for local variable k

3

ra1

retAddr

retVal

ra0

 FIGURE 2 . 17
 The run-time stack for the program in Figure 2.16.

(a) Begin (b) scanf("%d", &numPts)

 Allocation takes place on the run-time stack in the following order
when you call a void function:

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

Th e allocation process for a
void function

74 CHAPTER 2 C

9781284079630_CH02_053_114.indd 74 29/01/16 8:30 am

Figure 2.17
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin

numPoints

value

j

(b) scanf("%d", &numPts)

12numPoints

value

j

(c) for(j = 1; j <= numPoints; j++)

12

1

numPoints

value

j

(d) scanf("%d", &value)

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

3 3n

retAddr

n

(e) Push formal parameter (f) Push return address

ra1

retAddr

retVal

ra0 retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

12

3

1

numPoints

value

j

k

retAddr

n

(g) Push storage for local variable k

3

ra1

retAddr

retVal

ra0

 FIGURE 2 . 17
 The run-time stack for the program in Figure 2.16.

(a) Begin (b) scanf("%d", &numPts)

 Allocation takes place on the run-time stack in the following order
when you call a void function:

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

Th e allocation process for a
void function

74 CHAPTER 2 C

9781284079630_CH02_053_114.indd 74 29/01/16 8:30 am

Figure 2.17
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin

numPoints

value

j

(b) scanf("%d", &numPts)

12numPoints

value

j

(c) for(j = 1; j <= numPoints; j++)

12

1

numPoints

value

j

(d) scanf("%d", &value)

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

12

3

1

numPoints

value

j

3 3n

retAddr

n

(e) Push formal parameter (f) Push return address

ra1

retAddr

retVal

ra0 retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

retAddr

retVal

ra0retAddr

retVal

ra0

12

3

1

numPoints

value

j

k

retAddr

n

(g) Push storage for local variable k

3

ra1

retAddr

retVal

ra0

 FIGURE 2 . 17
 The run-time stack for the program in Figure 2.16.

(a) Begin (b) scanf("%d", &numPts)

 Allocation takes place on the run-time stack in the following order
when you call a void function:

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

Th e allocation process for a
void function

74 CHAPTER 2 C

9781284079630_CH02_053_114.indd 74 29/01/16 8:30 am

Figure 2.17
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int num;

int fact(int n) {
 int f, j;
 f = 1;
 for (j = 1; j <= n; j++) {
 f *= j;
 }
 return f;
}

int main() {
 printf("Enter a small integer: ");
 scanf("%d", &num);
 printf("Its factorial is: %d\n", fact(num)); // ra1
 return 0;
}

Interactive Input/Output
Enter a small integer: 3
Its factorial is: 6

Figure 2.18

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num num

ra0 retAddr

retVal

ra0 retAddr

retVal

(a) Begin (b) scanf("%d", &num)

3

3num 3num

retVal

3 n

retVal

ra0 retAddr

retVal

ra0 retAddr

retVal

(d) Push actual parameter(c) Push storage for return value i

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(f) Push storage for local variable f(e) Push return address

3

retAddr

n

retVal

ra1

3

f

retAddr

n

retVal

ra1

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(g) Push storage for local variable j (h) f = 1

1

3

j

f

retAddr

n

retVal

ra1

3

j

f

retAddr

n

retVal

ra1

 FIGURE 2 . 19
 The run-time stack for the program in Figure 2.18.

(a) Begin (b) scanf("%d", &num)

on the run-time stack. When the stack frame is deallocated, any changed
values are deallocated with it.

 If the intent of the procedure is to change the value of the actual parameter
in the calling program, then call by reference is used instead of call by value. In
call by reference, the formal parameter gets a reference to the actual parameter.
If the called procedure changes the value of its formal parameter, the

772.3 Functions

9781284079630_CH02_053_114.indd 77 29/01/16 8:30 am

Figure 2.19

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num num

ra0 retAddr

retVal

ra0 retAddr

retVal

(a) Begin (b) scanf("%d", &num)

3

3num 3num

retVal

3 n

retVal

ra0 retAddr

retVal

ra0 retAddr

retVal

(d) Push actual parameter(c) Push storage for return value i

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(f) Push storage for local variable f(e) Push return address

3

retAddr

n

retVal

ra1

3

f

retAddr

n

retVal

ra1

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(g) Push storage for local variable j (h) f = 1

1

3

j

f

retAddr

n

retVal

ra1

3

j

f

retAddr

n

retVal

ra1

 FIGURE 2 . 19
 The run-time stack for the program in Figure 2.18.

(a) Begin (b) scanf("%d", &num)

on the run-time stack. When the stack frame is deallocated, any changed
values are deallocated with it.

 If the intent of the procedure is to change the value of the actual parameter
in the calling program, then call by reference is used instead of call by value. In
call by reference, the formal parameter gets a reference to the actual parameter.
If the called procedure changes the value of its formal parameter, the

772.3 Functions

9781284079630_CH02_053_114.indd 77 29/01/16 8:30 am

Figure 2.19

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num num

ra0 retAddr

retVal

ra0 retAddr

retVal

(a) Begin (b) scanf("%d", &num)

3

3num 3num

retVal

3 n

retVal

ra0 retAddr

retVal

ra0 retAddr

retVal

(d) Push actual parameter(c) Push storage for return value i

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(f) Push storage for local variable f(e) Push return address

3

retAddr

n

retVal

ra1

3

f

retAddr

n

retVal

ra1

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(g) Push storage for local variable j (h) f = 1

1

3

j

f

retAddr

n

retVal

ra1

3

j

f

retAddr

n

retVal

ra1

 FIGURE 2 . 19
 The run-time stack for the program in Figure 2.18.

(a) Begin (b) scanf("%d", &num)

on the run-time stack. When the stack frame is deallocated, any changed
values are deallocated with it.

 If the intent of the procedure is to change the value of the actual parameter
in the calling program, then call by reference is used instead of call by value. In
call by reference, the formal parameter gets a reference to the actual parameter.
If the called procedure changes the value of its formal parameter, the

772.3 Functions

9781284079630_CH02_053_114.indd 77 29/01/16 8:30 am

Figure 2.19

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num num

ra0 retAddr

retVal

ra0 retAddr

retVal

(a) Begin (b) scanf("%d", &num)

3

3num 3num

retVal

3 n

retVal

ra0 retAddr

retVal

ra0 retAddr

retVal

(d) Push actual parameter(c) Push storage for return value i

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(f) Push storage for local variable f(e) Push return address

3

retAddr

n

retVal

ra1

3

f

retAddr

n

retVal

ra1

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(g) Push storage for local variable j (h) f = 1

1

3

j

f

retAddr

n

retVal

ra1

3

j

f

retAddr

n

retVal

ra1

 FIGURE 2 . 19
 The run-time stack for the program in Figure 2.18.

(a) Begin (b) scanf("%d", &num)

on the run-time stack. When the stack frame is deallocated, any changed
values are deallocated with it.

 If the intent of the procedure is to change the value of the actual parameter
in the calling program, then call by reference is used instead of call by value. In
call by reference, the formal parameter gets a reference to the actual parameter.
If the called procedure changes the value of its formal parameter, the

772.3 Functions

9781284079630_CH02_053_114.indd 77 29/01/16 8:30 am

Figure 2.19

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num num

ra0 retAddr

retVal

ra0 retAddr

retVal

(a) Begin (b) scanf("%d", &num)

3

3num 3num

retVal

3 n

retVal

ra0 retAddr

retVal

ra0 retAddr

retVal

(d) Push actual parameter(c) Push storage for return value i

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(f) Push storage for local variable f(e) Push return address

3

retAddr

n

retVal

ra1

3

f

retAddr

n

retVal

ra1

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(g) Push storage for local variable j (h) f = 1

1

3

j

f

retAddr

n

retVal

ra1

3

j

f

retAddr

n

retVal

ra1

 FIGURE 2 . 19
 The run-time stack for the program in Figure 2.18.

(a) Begin (b) scanf("%d", &num)

on the run-time stack. When the stack frame is deallocated, any changed
values are deallocated with it.

 If the intent of the procedure is to change the value of the actual parameter
in the calling program, then call by reference is used instead of call by value. In
call by reference, the formal parameter gets a reference to the actual parameter.
If the called procedure changes the value of its formal parameter, the

772.3 Functions

9781284079630_CH02_053_114.indd 77 29/01/16 8:30 am

Figure 2.19
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num num

ra0 retAddr

retVal

ra0 retAddr

retVal

(a) Begin (b) scanf("%d", &num)

3

3num 3num

retVal

3 n

retVal

ra0 retAddr

retVal

ra0 retAddr

retVal

(d) Push actual parameter(c) Push storage for return value i

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(f) Push storage for local variable f(e) Push return address

3

retAddr

n

retVal

ra1

3

f

retAddr

n

retVal

ra1

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(g) Push storage for local variable j (h) f = 1

1

3

j

f

retAddr

n

retVal

ra1

3

j

f

retAddr

n

retVal

ra1

 FIGURE 2 . 19
 The run-time stack for the program in Figure 2.18.

(a) Begin (b) scanf("%d", &num)

on the run-time stack. When the stack frame is deallocated, any changed
values are deallocated with it.

 If the intent of the procedure is to change the value of the actual parameter
in the calling program, then call by reference is used instead of call by value. In
call by reference, the formal parameter gets a reference to the actual parameter.
If the called procedure changes the value of its formal parameter, the

772.3 Functions

9781284079630_CH02_053_114.indd 77 29/01/16 8:30 am

Figure 2.19
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num num

ra0 retAddr

retVal

ra0 retAddr

retVal

(a) Begin (b) scanf("%d", &num)

3

3num 3num

retVal

3 n

retVal

ra0 retAddr

retVal

ra0 retAddr

retVal

(d) Push actual parameter(c) Push storage for return value i

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(f) Push storage for local variable f(e) Push return address

3

retAddr

n

retVal

ra1

3

f

retAddr

n

retVal

ra1

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(g) Push storage for local variable j (h) f = 1

1

3

j

f

retAddr

n

retVal

ra1

3

j

f

retAddr

n

retVal

ra1

 FIGURE 2 . 19
 The run-time stack for the program in Figure 2.18.

(a) Begin (b) scanf("%d", &num)

on the run-time stack. When the stack frame is deallocated, any changed
values are deallocated with it.

 If the intent of the procedure is to change the value of the actual parameter
in the calling program, then call by reference is used instead of call by value. In
call by reference, the formal parameter gets a reference to the actual parameter.
If the called procedure changes the value of its formal parameter, the

772.3 Functions

9781284079630_CH02_053_114.indd 77 29/01/16 8:30 am

Figure 2.19
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num num

ra0 retAddr

retVal

ra0 retAddr

retVal

(a) Begin (b) scanf("%d", &num)

3

3num 3num

retVal

3 n

retVal

ra0 retAddr

retVal

ra0 retAddr

retVal

(d) Push actual parameter(c) Push storage for return value i

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(f) Push storage for local variable f(e) Push return address

3

retAddr

n

retVal

ra1

3

f

retAddr

n

retVal

ra1

ra0 retAddr

retVal

ra0 retAddr

retVal3num 3num

(g) Push storage for local variable j (h) f = 1

1

3

j

f

retAddr

n

retVal

ra1

3

j

f

retAddr

n

retVal

ra1

 FIGURE 2 . 19
 The run-time stack for the program in Figure 2.18.

(a) Begin (b) scanf("%d", &num)

on the run-time stack. When the stack frame is deallocated, any changed
values are deallocated with it.

 If the intent of the procedure is to change the value of the actual parameter
in the calling program, then call by reference is used instead of call by value. In
call by reference, the formal parameter gets a reference to the actual parameter.
If the called procedure changes the value of its formal parameter, the

772.3 Functions

9781284079630_CH02_053_114.indd 77 29/01/16 8:30 am

Figure 2.19
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Call by reference
• In call by value, the formal parameter gets

the value of the actual parameter.

‣ If the formal parameter changes, the actual
parameter does not change.

• In call by reference, the formal parameter
gets a reference to the actual parameter.

‣ If the formal parameter changes, the actual
parameter does change.

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int a, b;

void swap(int *r, int *s) {
 int temp;
 temp = *r;
 *r = *s;
 *s = temp;
}

void order(int *x, int *y) {
 if (*x > *y) {
 swap (x, y);
 } // ra2
}

int main() {
 printf("Enter an integer: ");
 scanf("%d", &a);
 printf("Enter an integer: ");
 scanf("%d", &b);
 order (&a, &b);
 printf("Ordered they are: %d, %d\n", a ,b); // ra1
 return 0;
}

Figure 2.20

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Interactive Input/Output
Enter an integer: 6
Enter an integer: 2
Ordered they are: 2, 6

Figure 2.20
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

b

a

(a) Begin (b) Input a, b

b

a

2

6

ra0 retAddr

retVal

ra0 retAddr

retVal

(c) order(&a, &b) (d) swap(x,y)

retAddr

y

x

2

6

b

a

ra1

ra0 retAddr

retVal

b

a

temp

retAddr

s

r

retAddr

y

x

2

6

ra2

ra1

ra0 retAddr

retVal

(f) Return from order()(e) Return from swap()

b

a

b

a

ra1

6

2

6

2

retAddr

y

x

ra0 retAddr

retVal

ra0 retAddr

retVal

 FIGURE 2 . 21
 The run-time stack for Figure 2.20.

(a) Begin (b) Input b

 When a void function terminates and it is time to deallocate its stack
frame, the return address in the frame tells the computer which instruction
to execute next. Figure 2.21(e) shows the return from void function swap,
deallocating its stack frame. Th e return address in the stack frame for swap
tells the computer to execute the statement labeled ra2 in order() aft er
deallocation. Although the listing shows no statement at ra2 in Figure 2.20,
there is an implied return statement at the end of the void function that is
invisible at Level HOL6.

 In Figure 2.21(f), the stack frame for order() is deallocated. Th e return
address in the stack frame for order() tells the computer to execute the
printf() function in the main program aft er deallocation.

80 CHAPTER 2 C

9781284079630_CH02_053_114.indd 80 29/01/16 8:30 am

Figure 2.21

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

b

a

(a) Begin (b) Input a, b

b

a

2

6

ra0 retAddr

retVal

ra0 retAddr

retVal

(c) order(&a, &b) (d) swap(x,y)

retAddr

y

x

2

6

b

a

ra1

ra0 retAddr

retVal

b

a

temp

retAddr

s

r

retAddr

y

x

2

6

ra2

ra1

ra0 retAddr

retVal

(f) Return from order()(e) Return from swap()

b

a

b

a

ra1

6

2

6

2

retAddr

y

x

ra0 retAddr

retVal

ra0 retAddr

retVal

 FIGURE 2 . 21
 The run-time stack for Figure 2.20.

(a) Begin (b) Input b

 When a void function terminates and it is time to deallocate its stack
frame, the return address in the frame tells the computer which instruction
to execute next. Figure 2.21(e) shows the return from void function swap,
deallocating its stack frame. Th e return address in the stack frame for swap
tells the computer to execute the statement labeled ra2 in order() aft er
deallocation. Although the listing shows no statement at ra2 in Figure 2.20,
there is an implied return statement at the end of the void function that is
invisible at Level HOL6.

 In Figure 2.21(f), the stack frame for order() is deallocated. Th e return
address in the stack frame for order() tells the computer to execute the
printf() function in the main program aft er deallocation.

80 CHAPTER 2 C

9781284079630_CH02_053_114.indd 80 29/01/16 8:30 am

Figure 2.21

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

b

a

(a) Begin (b) Input a, b

b

a

2

6

ra0 retAddr

retVal

ra0 retAddr

retVal

(c) order(&a, &b) (d) swap(x,y)

retAddr

y

x

2

6

b

a

ra1

ra0 retAddr

retVal

b

a

temp

retAddr

s

r

retAddr

y

x

2

6

ra2

ra1

ra0 retAddr

retVal

(f) Return from order()(e) Return from swap()

b

a

b

a

ra1

6

2

6

2

retAddr

y

x

ra0 retAddr

retVal

ra0 retAddr

retVal

 FIGURE 2 . 21
 The run-time stack for Figure 2.20.

(a) Begin (b) Input b

 When a void function terminates and it is time to deallocate its stack
frame, the return address in the frame tells the computer which instruction
to execute next. Figure 2.21(e) shows the return from void function swap,
deallocating its stack frame. Th e return address in the stack frame for swap
tells the computer to execute the statement labeled ra2 in order() aft er
deallocation. Although the listing shows no statement at ra2 in Figure 2.20,
there is an implied return statement at the end of the void function that is
invisible at Level HOL6.

 In Figure 2.21(f), the stack frame for order() is deallocated. Th e return
address in the stack frame for order() tells the computer to execute the
printf() function in the main program aft er deallocation.

80 CHAPTER 2 C

9781284079630_CH02_Pass03.indd 80 19/01/16 5:02 pm

Figure 2.21
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

b

a

(a) Begin (b) Input a, b

b

a

2

6

ra0 retAddr

retVal

ra0 retAddr

retVal

(c) order(&a, &b) (d) swap(x,y)

retAddr

y

x

2

6

b

a

ra1

ra0 retAddr

retVal

b

a

temp

retAddr

s

r

retAddr

y

x

2

6

ra2

ra1

ra0 retAddr

retVal

(f) Return from order()(e) Return from swap()

b

a

b

a

ra1

6

2

6

2

retAddr

y

x

ra0 retAddr

retVal

ra0 retAddr

retVal

 FIGURE 2 . 21
 The run-time stack for Figure 2.20.

(a) Begin (b) Input b

 When a void function terminates and it is time to deallocate its stack
frame, the return address in the frame tells the computer which instruction
to execute next. Figure 2.21(e) shows the return from void function swap,
deallocating its stack frame. Th e return address in the stack frame for swap
tells the computer to execute the statement labeled ra2 in order() aft er
deallocation. Although the listing shows no statement at ra2 in Figure 2.20,
there is an implied return statement at the end of the void function that is
invisible at Level HOL6.

 In Figure 2.21(f), the stack frame for order() is deallocated. Th e return
address in the stack frame for order() tells the computer to execute the
printf() function in the main program aft er deallocation.

80 CHAPTER 2 C

9781284079630_CH02_Pass03.indd 80 19/01/16 5:02 pm

Figure 2.21
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 2.21
(continued)

b

a

(a) Begin (b) Input a, b

b

a

2

6

ra0 retAddr

retVal

ra0 retAddr

retVal

(c) order(&a, &b) (d) swap(x,y)

retAddr

y

x

2

6

b

a

ra1

ra0 retAddr

retVal

b

a

temp

retAddr

s

r

retAddr

y

x

2

6

ra2

ra1

ra0 retAddr

retVal

(f) Return from order()(e) Return from swap()

b

a

b

a

ra1

6

2

6

2

retAddr

y

x

ra0 retAddr

retVal

ra0 retAddr

retVal

 FIGURE 2 . 21
 The run-time stack for Figure 2.20.

(a) Begin (b) Input b

 When a void function terminates and it is time to deallocate its stack
frame, the return address in the frame tells the computer which instruction
to execute next. Figure 2.21(e) shows the return from void function swap,
deallocating its stack frame. Th e return address in the stack frame for swap
tells the computer to execute the statement labeled ra2 in order() aft er
deallocation. Although the listing shows no statement at ra2 in Figure 2.20,
there is an implied return statement at the end of the void function that is
invisible at Level HOL6.

 In Figure 2.21(f), the stack frame for order() is deallocated. Th e return
address in the stack frame for order() tells the computer to execute the
printf() function in the main program aft er deallocation.

80 CHAPTER 2 C

9781284079630_CH02_Pass03.indd 80 19/01/16 5:02 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 2.21
(continued)

b

a

(a) Begin (b) Input a, b

b

a

2

6

ra0 retAddr

retVal

ra0 retAddr

retVal

(c) order(&a, &b) (d) swap(x,y)

retAddr

y

x

2

6

b

a

ra1

ra0 retAddr

retVal

b

a

temp

retAddr

s

r

retAddr

y

x

2

6

ra2

ra1

ra0 retAddr

retVal

(f) Return from order()(e) Return from swap()

b

a

b

a

ra1

6

2

6

2

retAddr

y

x

ra0 retAddr

retVal

ra0 retAddr

retVal

 FIGURE 2 . 21
 The run-time stack for Figure 2.20.

(a) Begin (b) Input b

 When a void function terminates and it is time to deallocate its stack
frame, the return address in the frame tells the computer which instruction
to execute next. Figure 2.21(e) shows the return from void function swap,
deallocating its stack frame. Th e return address in the stack frame for swap
tells the computer to execute the statement labeled ra2 in order() aft er
deallocation. Although the listing shows no statement at ra2 in Figure 2.20,
there is an implied return statement at the end of the void function that is
invisible at Level HOL6.

 In Figure 2.21(f), the stack frame for order() is deallocated. Th e return
address in the stack frame for order() tells the computer to execute the
printf() function in the main program aft er deallocation.

80 CHAPTER 2 C

9781284079630_CH02_Pass03.indd 80 19/01/16 5:02 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int num;

int fact(int n) {
 if (n <= 1) {
 return 1;
 }
 else {
 return n * fact(n - 1); // ra2
 }
}

int main() {
 printf("Enter a small integer: ");
 scanf("%d", &num);
 printf("Its factorial is: %d\n", fact(num)); // ra1
 return 0;
}

Interactive Input/Output
Enter a small integer: 4
Its factorial is: 24

Figure 2.22

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num 4

(b) scanf("%d", &num)(a) Begin

4num

3

4

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(e) Call fact (2) (d) Call fact (3)

4

(c) Call fact (4)

1

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(f) Call fact (1)

4

retAddr

n

retVal

4 4

ra2

ra1

ra2

ra2

ra1

ra2

ra2

ra2

ra1

ra1

2

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(h) Return

retAddr

n

retVal

(k) Return

num

4

24

(j) Return

1

1

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(g) Compute retVal

num 4

4

4

4

ra2

ra2

ra2

ra1

ra1

ra2

ra2

ra1

3

6

4

(i) Return

4

retAddr

n

retVal

retAddr

n

retVal

ra2

ra1

 FIGURE 2 . 23
 The run-time stack for Figure 2.22.

84 CHAPTER 2 C

9781284079630_CH02_053_114.indd 84 29/01/16 8:30 am

Figure 2.23

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

num 4

(b) scanf("%d", &num)(a) Begin

4num

3

4

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(e) Call fact (2) (d) Call fact (3)

4

(c) Call fact (4)

1

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(f) Call fact (1)

4

retAddr

n

retVal

4 4

ra2

ra1

ra2

ra2

ra1

ra2

ra2

ra2

ra1

ra1

2

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(h) Return

retAddr

n

retVal

(k) Return

num

4

24

(j) Return

1

1

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(g) Compute retVal

num 4

4

4

4

ra2

ra2

ra2

ra1

ra1

ra2

ra2

ra1

3

6

4

(i) Return

4

retAddr

n

retVal

retAddr

n

retVal

ra2

ra1

 FIGURE 2 . 23
 The run-time stack for Figure 2.22.

84 CHAPTER 2 C

9781284079630_CH02_Pass03.indd 84 19/01/16 5:02 pm

Figure 2.23
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 2.23
(continued)

num 4

(b) scanf("%d", &num)(a) Begin

4num

3

4

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(e) Call fact (2) (d) Call fact (3)

4

(c) Call fact (4)

1

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(f) Call fact (1)

4

retAddr

n

retVal

4 4

ra2

ra1

ra2

ra2

ra1

ra2

ra2

ra2

ra1

ra1

2

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(h) Return

retAddr

n

retVal

(k) Return

num

4

24

(j) Return

1

1

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(g) Compute retVal

num 4

4

4

4

ra2

ra2

ra2

ra1

ra1

ra2

ra2

ra1

3

6

4

(i) Return

4

retAddr

n

retVal

retAddr

n

retVal

ra2

ra1

 FIGURE 2 . 23
 The run-time stack for Figure 2.22.

84 CHAPTER 2 C

9781284079630_CH02_053_114.indd 84 29/01/16 8:30 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 2.23
(continued)

num 4

(b) scanf("%d", &num)(a) Begin

4num

3

4

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(e) Call fact (2) (d) Call fact (3)

4

(c) Call fact (4)

1

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(f) Call fact (1)

4

retAddr

n

retVal

4 4

ra2

ra1

ra2

ra2

ra1

ra2

ra2

ra2

ra1

ra1

2

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(h) Return

retAddr

n

retVal

(k) Return

num

4

24

(j) Return

1

1

2

3

4

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

retAddr

n

retVal

(g) Compute retVal

num 4

4

4

4

ra2

ra2

ra2

ra1

ra1

ra2

ra2

ra1

3

6

4

(i) Return

4

retAddr

n

retVal

retAddr

n

retVal

ra2

ra1

 FIGURE 2 . 23
 The run-time stack for Figure 2.22.

84 CHAPTER 2 C

9781284079630_CH02_053_114.indd 84 29/01/16 8:30 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

in the function tests n for 1. But which n? Figure 2.23(d) shows two ns on
the run-time stack. Th e rule is that any reference to a local variable or formal
parameter is to the one on the top stack frame. Because the value of n is 3,
the else part executes.

 But now the function makes another recursive call. It allocates a third
stack frame, as Figure 2.23(e) shows, and then a fourth, as Figure 2.23(f)
shows. Each time, the newly allocated formal parameter gets a value one less
than the old value of n because the function call is

 fact(n – 1)

 Finally, in Figure 2.23(g), n has the value 1. Th e function gives 1 to the
cell on the stack labeled retVal. It skips the else part and terminates. Th at
triggers a return to the calling statement.

 Th e same events transpire with a recursive return as with a nonrecursive
return. retVal contains the return value, and the return address tells which
statement to execute next. In Figure 2.22(g), retVal is 1 and the return
address is the calling statement in the function. Th e top frame is deallocated,
and the calling statement

 return n * fact(n – 1) // ra2

 completes its execution. It multiplies its value of n, which is 2, by the value
returned, which is 1, and assigns the result to retVal. So, retVal gets 2, as
Figure 2.23(h) shows.

 A similar sequence of events occurs on each return. Figure 2.23(i) and
(j) show that the value returned from the second call is 6 and from the fi rst
call is 24. FIGURE 2.24 shows the calling sequence for Figure 2.22. Th e main
program calls fact. Th en fact calls itself three times. In this example,
fact is called a total of four times.

 You see that the program computes the factorial of 4 the same way you
would compute f (4) from its recursive defi nition. You start by computing f (4)
as 4 times f (3). Th en you must suspend your computation of f (4) to compute
 f (3). Aft er you get your result for f (3), you can multiply it by 4 to get f (4).

 Similarly, the program must suspend its execution of the function to
call the same function again. Th e run-time stack keeps track of the current
values of the variables so they can be used when that instance of the function
resumes.

 Thinking Recursively
 You can take two diff erent viewpoints when dealing with recursion:
microscopic and macroscopic. Figure 2.23 illustrates the microscopic
viewpoint and shows precisely what happens inside the computer during
execution. It is the viewpoint that considers the details of the run-time stack

 Th e microscopic and
macroscopic viewpoints
of recursion

 FIGURE 2 . 24
 The calling sequence
for Figure 2.22. The
solid arrows represent
function calls. The
dotted arrows represent
returns. The value
returned is next to each
return arrow.

Main program

fact(4)

24

6

2

1

fact(3)

fact(2)

fact(1)

852.4 Recursion

9781284079630_CH02_Pass03.indd 85 19/01/16 5:02 pm

Figure 2.24

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int list[4];

int sum(int a[], int n) {
// Returns the sum of the elements of a between a[0] and a[n].
 if (n == 0) {
 return a[0];
 }
 else {
 return a[n] + sum(a, n - 1); // ra2
 }
}

int main() {
 printf("Enter four integers: ");
 scanf("%d %d %d %d", &list[0], &list[1], &list[2], &list[3]);
 printf("Their sum is: %d\n", sum(list, 3));
 return 0;
}

Interactive Input/Output
Enter four integers: 3 2 6 4
Their sum is: 15

Figure 2.25

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 #include <stdio.h>

 int list[4];

 int sum(int a[], int n) {
 // Returns the sum of the elements of a between a[0] and a[n].
 if (n == 0) {
 return a[0];
 }
 else {
 return a[n] + sum(a, n - 1); // ra2
 }
 }

 int main() {
 printf("Enter four integers: ");
 scanf("%d %d %d %d", &list[0], &list[1], &list[2], &list[3]);
 printf("Their sum is: %d\n", sum(list, 3));
 return 0;
 }

 Interactive Input/Output
 Enter four integers: 3 2 6 4
 Their sum is: 15

 FIGURE 2 . 25
 A recursive function that returns the sum of the fi rst n numbers in an array.

 int list[4];

(a) Input list

4
6
2
3list[0]

list[1]
list[2]
list[3]

3

retAddr

n

a

retVal

(b) Call sum (list, 3)

ra1

4
6
2
3list[0]

list[1]
list[2]
list[3]

2

3

retAddr

n

a

retVal

retAddr

n

a

retVal

(c) Call sum (list, 2)

ra2

ra1

4
6
2
3list[0]

list[1]
list[2]
list[3]

 FIGURE 2 . 26
 The run-time stack for the program in Figure 2.25.

88 CHAPTER 2 C

9781284079630_CH02_Pass03.indd 88 19/01/16 5:02 pm

Figure 2.26

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

point from the cells labeled a in the stack frame to the cell labeled list[0]
indicate the reference of a to list.

 In contrast to an array name without an index, an array name with an
index is an individual element of an array and is treated like an individual
variable. In Figure 2.25, the actual parameter list[1] in the call to scanf()
is prefi xed with the & address operator so it can be called by reference. To
summarize, list[1] has type integer and requires the address operator to
be called by reference. list has type array and is called by reference by
default without the address operator.

 A Binomial Coeffi cient Function
 Th e next example of a recursive function has a more complex calling
sequence. It is a function to compute the coeffi cient in the expansion of a
binomial expression.

 Consider the following expansions:

 (x + y) 1 = x + y
 (x + y) 2 = x 2 + 2 xy + y 2
 (x + y) 3 = x 3 + 3 x 2 y + 3 xy 2 + y 3
 (x + y) 4 = x 4 + 4 x 3 y + 6x2y 2 + 4 xy 3 + y 4

 Th e coeffi cients of the terms are called binomial coeffi cients . If you
write the coeffi cients without the terms, they form a triangle of values called
 Pascal’s triangle . FIGURE 2.27 is Pascal’s triangle for the coeffi cients up to the
seventh power.

 You can see from Figure 2.27 that each coeffi cient is the sum of the
coeffi cient immediately above and the coeffi cient above and to the left . For
example, the binomial coeffi cient in row 5, column 2, which is 10, equals 4
plus 6. Six is above 10, and 4 is above and to the left .

0
nPower,

Term number, k

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1

1

1

1

1

1

1

1

2

3

4

5

6

7

1

3

6

10

15

21

1

4

10

20

35

1

5

15

35

1

6

21

1

7 1

FIGURE 2.27
Pascal’s triangle of binomial coeffi cients.

2 1 2 1

892.4 Recursion

9781284079630_CH02_053_114.indd 89 29/01/16 8:30 am

Figure 2.27

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int binCoeff(int n, int k) {
 int y1, y2;
 if ((k == 0) || (n == k)) {
 return 1;
 }
 else {
 y1 = binCoeff(n - 1, k); // ra2
 y2 = binCoeff(n - 1, k - 1); // ra3
 return y1 + y2;
 }
}

int main() {
 printf("binCoeff(3, 1) = %d\n", binCoeff(3, 1)); // ra1
 return 0;
}

Output
binCoeff(3, 1) = 3

Figure 2.28

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin (b) Call BC (3, 1) (c) Call BC (2, 1) (d) Call BC (1, 1)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

2

1

3

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

1

1

2

1

3

y2

y1

retAddr

k

n

retVal

1

3

ra1

ra2

ra1

ra2

ra2

ra1

(e) Return

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

2

1

3

ra2

ra1

(f) Call BC (1, 0)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

0

1

1

1

1

2

1

3

(g) Return (h) Return

y2

y1

retAddr

k

n

retVal

2

1

3

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

1

2

2

1

3

ra3

ra2

ra1

ra2

ra1 ra1

(i) Call BC (2, 0)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

0

2

1

2

1

3

(j) Return

y2

y1

retAddr

k

n

retVal

1

2

1

3

3

(k) Return

ra3

ra1 ra1

 FIGURE 2 . 29
 The run-time stack for Figure 2.28.

k1

912.4 Recursion

9781284079630_CH02_053_114.indd 91 29/01/16 8:30 am

Figure 2.29

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) Begin (b) Call BC (3, 1) (c) Call BC (2, 1) (d) Call BC (1, 1)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

2

1

3

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

1

1

2

1

3

y2

y1

retAddr

k

n

retVal

1

3

ra1

ra2

ra1

ra2

ra2

ra1

(e) Return

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

2

1

3

ra2

ra1

(f) Call BC (1, 0)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

0

1

1

1

1

2

1

3

(g) Return (h) Return

y2

y1

retAddr

k

n

retVal

2

1

3

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

1

2

2

1

3

ra3

ra2

ra1

ra2

ra1 ra1

(i) Call BC (2, 0)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

0

2

1

2

1

3

(j) Return

y2

y1

retAddr

k

n

retVal

1

2

1

3

3

(k) Return

ra3

ra1 ra1

 FIGURE 2 . 29
 The run-time stack for Figure 2.28.

k1

912.4 Recursion

9781284079630_CH02_053_114.indd 91 29/01/16 8:30 am

Figure 2.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Main program

BC (3, 1)

3

1

1

BC (2, 1)

BC (1, 1)

BC (2, 0)

BC (1, 0)

2

1

Main program
Call BC(3,1)

Call BC(2,1)
Call BC(1,1)

Return to BC(2,1)
Call BC(1,0)

Return to BC(2,1)
Return to BC(3,1)

Call BC(2,0)
Return to BC(3,1)

Return to main program

Figure 2.30

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 2.31

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

void reverse(char *str, int j, int k) {
 char temp;
 if (j < k) {
 temp = str[j];
 str[j] = str[k];
 str[k] = temp;
 reverse(str, j + 1, k - 1);
 } // ra2
}

int main() {
 char word[5] = "star";
 printf("%s\n", word);
 reverse(word, 0, 3);
 printf("%s\n", word); // ra1
 return 0;
}

Output
star
rats

Figure 2.32

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 2 . 33
 The run-time stack for the program in Figure 2.32.

 FIGURE 2 . 34
 The Towers of Hanoi
puzzle.

1 2 3

 Th e procedure for solving this problem has three parameters, n, j, and
k, where

 ❯ n is the number of disks to move
 ❯ j is the starting peg
 ❯ k is the goal peg

 j and k are integers that identify the pegs. Given the values of j and k,
you can calculate the intermediate peg, which is the one that is neither the
starting peg nor the goal peg, as 6 – j – k. For example, if the starting peg
is 1 and the goal peg is 3, then the intermediate peg is 6 – 1 – 3 = 2.

 To move the n disks from peg j to peg k, fi rst check whether n = 1. If
it does, then simply move the one disk from peg j to peg k. But if it does not,
then decompose the problem into several smaller parts:

retVal

word[0]

word[1]

word[2]

word[3]

retAddrra0

's'

't'

'a'

'r'

'\0' word[4]

(a) char word[5]
= "star"

retVal

word[0]

word[1]

word[2]

word[3]

retAddrra0

's'

't'

'a'

'r'

'\0' word[4]

k

j
str

retAddr

temp

0

3

ra1

(b) Call reverse
(word, 0, 3)

's'

retVal

word[0]

word[1]

word[2]

word[3]

retAddrra0

'r'

't'

'a'

's'

'\0' word[4]

k

j
str

retAddr

temp

0

3

ra1

(c) Switch s and r

's'

retVal

word[0]

word[1]

word[2]

word[3]

retAddrra0

'r'

't'

'a'

's'

'\0' word[4]

k

j

str

retAddr

temp

0

3

ra1

k

j
str

retAddr

temp

1

2

ra1

(d) Call reverse
(word, 1, 2)

96 CHAPTER 2 C

9781284079630_CH02_Pass03.indd 96 19/01/16 5:02 pm

Figure 2.33

ra2

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

1 2 3

Figure 2.34

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 ❯ Move n – 1 disks from peg j to the intermediate peg.
 ❯ Move one disk from peg j to peg k.
 ❯ Move n – 1 disks from the intermediate peg to peg k.

 FIGURE 2.35 shows this decomposition for the problem of moving four
disks from peg 1 to peg 3.

 Th is procedure guarantees that a disk will not be placed on another
disk with a smaller diameter, assuming that the original n disks are stacked
correctly. Suppose, for example, that four disks are to be moved from peg 1
to peg 3, as in Figure 2.35. Th e procedure says that you should move the top
three disks from peg 1 to peg 2, move the bottom disk from peg 1 to peg 3,
and then move the three disks from peg 2 to peg 3.

 In moving the top three disks from peg 1 to peg 2, you will leave the
bottom disk on peg 1. Remember that it is the disk with the largest diameter,
so any disk you place on it in the process of moving the other disks will be
smaller. In order to move the bottom disk from peg 1 to peg 3, peg 3 must
be empty. You will not place the bottom disk on a smaller disk in this step
either. When you move the three disks from peg 2 to peg 3, you will place
them on the largest disk, now on the bottom of peg 3. So the three disks will
be placed on peg 3 correctly.

 Th e procedure is recursive. In the fi rst step, you must move three
disks from peg 1 to peg 2. To do that, move two disks from peg 1 to peg
3, then one disk from peg 1 to peg 2, then two disks from peg 3 to peg 2.

FIGURE 2.36 shows this sequence. Using the previous reasoning, these steps
will be carried out correctly. In the process of moving two disks from peg 1
to peg 3, you may place any of these two disks on the bottom two disks of
peg 1 without fear of breaking the rules.

 Eventually you will reduce the problem to the basis step, where you need
to move only one disk. But the solution with one disk is easy. Programming

(a) Move three disks from peg 1
 to peg 2.

(b) Move one disk from peg 1
 to peg 3.

(c) Move three disks from peg 2
 to peg 3.

31 2 3 1 2 3 1 2

 FIGURE 2 . 35
 The solution for moving four disks from peg 1 to peg 3, assuming that you can move three disks from
one peg to any other peg.

31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 3 1 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 3 1 21 21 21 21 21 21 2

972.4 Recursion

9781284079630_CH02_053_114.indd 97 29/01/16 8:30 am

Figure 2.35

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

1 2 3 1 2 3 1 2 3

(a) Move two disks from peg 1
 to peg 3.

(b) Move one disk from peg 1
 to peg 2.

(c) Move two disks from peg 3
 to peg 2.

 FIGURE 2 . 36
 The solution for moving three disks from peg 1 to peg 2, assuming that you can move two disks from
one peg to any other peg.

1 2 3 1 2 3 1 2 3

the solution to the Towers of Hanoi puzzle is a problem at the end of the
chapter.

 Mutual Recursion
 Some problems are best solved by procedures that do not call themselves
directly but that are recursive nonetheless. Suppose a main program calls
procedure a, and procedure a contains a call to procedure b. If procedure
b contains a call to procedure a, then a and b are mutually recursive. Even
though procedure a does not call itself directly, it does call itself indirectly
through procedure b.

 Th ere is nothing diff erent about the implementation of mutual
recursion compared to plain recursion. Stack frames are allocated on the
run-time stack the same way, with the return value allocated fi rst, followed
by parameters, followed by the return address, followed by local variables.

 Th ere is one slight problem in specifying mutually recursive procedures
in a C program, however. It arises from the fact that procedures must be
declared before they are used. If procedure a() calls procedure b(),
the declaration of procedure b() must appear before the declaration of
procedure a() in the listing. But if procedure b() calls procedure a(),
the declaration of procedure a() must appear before the declaration of
procedure b() in the listing. Th e problem is that if each calls the other, each
must appear before the other in the listing, an obvious impossibility.

 For this situation, C provides the function prototype , which allows
the programmer to write the fi rst procedure heading without the body.
In a function prototype, you include the complete formal parameter list,
but in place of the body, you put ;. Aft er the function prototype comes
the declaration of the second procedure, followed by the body of the fi rst
procedure.

Th e function prototype

98 CHAPTER 2 C

9781284079630_CH02_053_114.indd 98 29/01/16 8:30 am

Figure 2.36

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 2.37

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The C
memory model

• Global variables – fixed location in memory

• Local variables and parameters – run-time
stack

• Dynamically allocated variables – heap

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Two operators for
dynamic memory

allocation
• malloc(), to allocate from the heap

• free(), to deallocate from the heap

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Two actions of the
malloc() function

• It allocates a memory cell from the heap
large enough to hold a value of the type that
is on its right-hand side.

• It returns a pointer to the newly allocated
storage.

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The pointer assignment
rule

• If p and q are pointers, the assignment

p = q

makes p point to the same cell to which q
points.

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>
#include <stdlib.h>

int *a, *b, *c;

int main() {
 a = (int *) malloc(sizeof(int));
 *a = 5;
 b = (int *) malloc(sizeof(int));
 *b = 3;
 c = a;
 a = b;
 *a = 2 + *c;
 printf("*a = %d\n", *a);
 printf("*b = %d\n", *b);
 printf("*c = %d\n", *c);
 return 0;
}

Output
*a = 7
*b = 7
*c = 5

Figure 2.38

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

a point to the newly allocated cell. Figure 2.39(c) shows how to access the
cell to which a pointer points. Because a is a pointer, *a is the cell to which a
points. Figure 2.39(f) illustrates the pointer assignment rule. Th e assignment
c = a makes c point to the same cell to which a points. Similarly, the assignment
a = b makes a point to the same cell to which b points. In Figure 2.39 (h),
the assignment is not to pointer a but to the cell to which a points.

 Structures
 Structures are the key to data abstraction in C. Th ey let the programmer
consolidate variables with primitive types into a single abstract data type.
Both arrays and structures are groups of values. However, all cells of an array
must have the same type. Each cell is accessed by the numeric integer value
of the index. With a structure, the cells can have diff erent types. C provides
the struct construct to group the values. Th e C programmer gives each
cell, called a fi eld, a fi eld name.

 FIGURE 2.40 shows a program that declares a struct named person
that has four fi elds named first, last, age, and gender. Th e program
declares a global variable named bill that has type person. Fields first,
last, and gender have type char, and fi eld age has type int.

 To access the fi eld of a structure, you place a period between the name
of the variable and the name of the fi eld you want to access. For example, the
test of the if statement

 if (bill.gender == 'm')

 accesses the fi eld named gender in the variable named bill.

a

b

c

(a) Initial state

a 55
b

c

(b) a = ... malloc(...)

a

b

c

(c) *a = 5

a

b

c

(d) b = ... malloc(...)

a

b

c

(e) *b = 3

a 5
b

c

(f) c = a

a

b

c

(g) a = b

a

b

c

(h) *a = 2 + *c

7

5

3

5

3

5

3

FIGURE 2.39
A trace of the program in Figure 2.38.

c c c c

104 CHAPTER 2 C

9781284079630_CH02_053_114.indd 104 29/01/16 8:30 am

Figure 2.39

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

struct person {
 char first;
 char last;
 int age;
 char gender;
};
struct person bill;

int main() {
 scanf("%c%c%d %c", &bill.first, &bill.last, &bill.age, &bill.gender);
 printf("Initials: %c%c\n", bill.first, bill.last);
 printf("Age: %d\n", bill.age);
 printf("Gender: ");
 if (bill.gender == 'm') {
 printf("male\n");
 }
 else {
 printf("female\n");
 }
 return 0;
}

Figure 2.40

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Input
bj 32 m

Output
Initials: bj
Age: 32
Gender: male

Figure 2.40
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>
#include <stdlib.h>

struct node {
 int data;
 struct node *next;
};

int main() {
 struct node *first, *p;
 int value;
 first = 0;
 scanf("%d", &value);
 while (value != -9999) {
 p = first;
 first = (struct node *) malloc(sizeof(struct node));
 first->data = value;
 first->next = p;
 scanf("%d", &value);
 }
 for (p = first; p != 0; p = p->next) {
 printf("%d ", p->data);
 }
 return 0;
}

Figure 2.41

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Input
10 20 30 40 -9999

Output
40 30 20 10

Figure 2.41
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

value

p

first

(a) Initial state in main()

value

p

first

value

p

first

(b) first = 0 (c) scanf("%d", &value)

10

value

p

first

(d) p = first

value

p

first

(e) first = … malloc (…)

value

p

first

(f) first->data = value

10

10

1010

10

20

20

20value

p

first

(g) first->next = p

value

p

first

(h) scanf("%d", &value)

value

p

first

(i) p = first

20

value

p

first

(j) first = … malloc (…)

value

p

first

(k) first->data = value

value

p

first

(l) first->next = p

value

p

first

(m) scanf("%d", &value)

10

10

10 10

1020

10 2020

30

20

10

FIGURE 2.42
A trace of the fi rst few statement executions of the program in Figure 2.41.

1072.5 Dynamic Memory Allocation

9781284079630_CH02_053_114.indd 107 29/01/16 8:30 am

Figure 2.42

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

value

p

first

(a) Initial state in main()

value

p

first

value

p

first

(b) first = 0 (c) scanf("%d", &value)

10

value

p

first

(d) p = first

value

p

first

(e) first = … malloc (…)

value

p

first

(f) first->data = value

10

10

1010

10

20

20

20value

p

first

(g) first->next = p

value

p

first

(h) scanf("%d", &value)

value

p

first

(i) p = first

20

value

p

first

(j) first = … malloc (…)

value

p

first

(k) first->data = value

value

p

first

(l) first->next = p

value

p

first

(m) scanf("%d", &value)

10

10

10 10

1020

10 2020

30

20

10

FIGURE 2.42
A trace of the fi rst few statement executions of the program in Figure 2.41.

1072.5 Dynamic Memory Allocation

9781284079630_CH02_053_114.indd 107 29/01/16 8:30 am

Figure 2.42
(continued)

