

Instruction Set Architecture

(a) A seven-bit cell.

Figure 3.1 (continued)

(b) Some possible values in a seven-bit cell.

Figure 3.1
(continued)

(c) Some impossible values in a seven-bit cell.

Computer Systems fiftu eotrion

Counting in decimal

0	7	14	21	28	35
1	8	15	22	29	36
2	9	16	23	30	37
3	10	17	24	31	38
4	11	18	25	32	.
5	12	19	26	33	.
6	13	20	27	34	.

Computer Systems firtu eortion

Counting in octal

0	7	16	25	34	43
1	10	17	26	35	44
2	11	20	27	36	45
3	12	21	30	37	46
4	13	22	31	40	.
5	14	23	32	41	.
6	15	24	33	42	.

Computer Systems fifth edition

Counting in base 3

0	21	112	210	1001	1022
1	22	120	211	1002	1100
2	100	121	212	1010	1101
10	101	122	220	1011	1102
11	102	200	221	1012	.
12	110	201	222	1020	.
20	111	202	1000	1021	.

Computer Systems fifth edition

Counting in binary

0	111	1110	10101	11100	100011
1	1000	1111	10110	11101	100100
10	1001	10000	10111	11110	100101
11	1010	10001	11000	11111	100110
100	1011	10010	11001	100000	.
101	1100	10011	11010	100001	.
110	1101	10100	11011	100010	.

(a) The place values for 10110 (bin).

0 1's place $=0$
1 2's place $=2$
1 4's place $=4$
0 8's place $=0$
1 16's place $=16$
$\overline{22}$ (dec)
(b) Converting 10110 (bin) to decimal.

Computer Systems

Figure 3.3

Computer Systems firtu eortion

Figure 3.4

$$
1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
$$

(a) The binary number 10110 .
$5 \times 10^{4}+8 \times 10^{3}+0 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}$
(b) The decimal number 58,036 .

Computer Systems rirfu forion

Binary addition rules

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10
\end{aligned}
$$

Figure 3.8

- The NEG operation
- Taking the two's complement
- The NOT operation
- Change the I's to 0's and the 0's to I's

Computer Systems firtu eortion

The two's complement rule

- The two's complement of a number is I plus its one's complement
- NEG $x=1+$ NOT x

Decimal

$$
\begin{array}{ll}
-7 & 1001 \\
-6 & 1010 \\
-5 & 1011 \\
-4 & 1100 \\
-3 & 1101 \\
-2 & 1110 \\
-1 & 1111
\end{array}
$$

Computer Systems

Decimal	Binary		
-8	1000	0	0000
-7	1001	1	0001
-6	1010	3	0010
-5	1011		0011
-4	1100	4	0100
-3	1101	5	0101
-2	1110	6	0110
-1	1111	7	0111

Computer Systems

Figure 3.II

Computer Systems

Figure 3.12

Computer Systems

Figure 3.13

(a) Breaking the number line in the middle.

(b) Shifting the right part to the left side.

Computer Systems

Computer Systems

```
#include <stdio.h>
#include <limits.h>
int main() {
    int n = INT_MAX - 2;
    for (int i = 0; i < 6; i++) {
        printf("n == %d\n", n);
        n++;
        }
        return 0;
}
```

Output
$\mathrm{n}=\mathrm{n}^{2147483645}$
$\mathrm{n}==2147483646$
$\mathrm{n}=2147483647$
$\mathrm{n}==-2147483648$
$\mathrm{n}==-2147483647$
$\mathrm{n}=\mathbf{- 2 1 4 7 4 8 3 6 4 6}$

Computer Systems firtu eortion

The status bits

- $N=I$ if the result is negative
$\mathrm{N}=0$ otherwise
- $Z=I$ if the result is all zeros
$Z=0$ otherwise
- $\mathrm{V}=\mathrm{I}$ if a signed integer overflow occurred $\mathrm{V}=0$ otherwise
- $C=I$ if an unsigned integer overflow occurred
$C=0$ otherwise

Computer Systems

Addition with a 6-bit cell

Adding two positives:

	000011			
			010110	
ADD	010101			
$\mathrm{~V}=0$	011000			
$\mathrm{C}=0$			ADD $\mathrm{V}=1$ $\mathrm{~V}=1$	100010
$\mathrm{C}=0$				

Adding a positive and a negative:

	000101			
			001000	
ADD	110111			
$\mathrm{~V}=0$	111100		ADD	111010
$\mathrm{C}=0$			$\mathrm{V}=0$ $\mathrm{C}=1$	000010

Adding two negatives:

	111010		
			100110
ADD	110111		
$\mathrm{~V}=0$	110001		
$\mathrm{C}=1$			ADD C $\mathrm{V}=100010$ $\mathrm{~V}=1$

Computer Systems

Figure 3.16

\mathbf{p}	\mathbf{q}	$\mathbf{p A N D} \mathbf{q}$	\mathbf{p}	\mathbf{q}	\mathbf{p} OR q	\mathbf{p}	\mathbf{q}	$\mathbf{p X O R} \mathbf{q}$
0	0	0	0	0	0	0	0	0
0	1	0	0	1	1	0	1	1
1	0	0	1	0	1	1	0	1
1	1	1	1	1	1	1	1	0

Computer Systems

\mathbf{p}	\mathbf{q}	$\mathbf{p A N D} \mathbf{q}$	\mathbf{p}	\mathbf{q}	$\mathbf{p O R q}$	\mathbf{p}	\mathbf{q}	\mathbf{p} XOR \mathbf{q}
true	false							
true	false	false	true	false	true	true	false	true
false	true	false	false	true	true	false	true	true
false		(a) HOL6 table for AND.	(b) HOL6 table for OR.					
:---	:---							

Computer Systems

OperationAND
OR
XOR
NOT
Implies
Transfer
Bit indexInformal descriptionSequential separator
RTL Symbol
\wedge v
\oplus
$\neg$$\Rightarrow$$\leftarrow$〈〉\{ \};

Computer Systems firtu eortion

RTL specification of $O R$ operation

$c \leftarrow a \vee b ; \mathrm{N} \leftarrow c<0, \mathrm{Z} \leftarrow c=0$

Computer Systems firtu eortion

Figure 3.19

Arithmetic shift left (ASL)

$$
\begin{aligned}
& \mathrm{C} \leftarrow r\langle 0\rangle, r\langle 0 . .4\rangle \leftarrow r\langle 1 . .5\rangle, r\langle 5\rangle \leftarrow 0 \\
& \mathrm{~N} \leftarrow r<0, \mathrm{Z} \leftarrow r=0, \mathrm{~V} \leftarrow\{\text { overflow }\}
\end{aligned}
$$

Arithmetic shift right (ASR)

RTL specification is a problem for the student

Figure 3.21
Rotate left (ROL)

Figure 3.21
(continued)

Rotate right (ROR)

Computer Systems firtu eortion

Counting in hexadecimal

0	7	E	I5	IC	23
I	8	F	16	ID	24
2	9	10	17	IE	25
3	A	11	18	IF	26
4	B	12	19	20	.
5	C	13	IA	21	.
6	D	14	IB	22	.

Computer Systems

Figure 3.22

(a) The place values for 8 BE 7 .

$$
\begin{array}{rrr}
7 \times & 1 & =7 \\
14 \times 16 & =224 \\
11 \times 256 & = & 2,816 \\
8 \times 4096 & =\frac{32,768}{35,815}
\end{array}
$$

(b) Converting 8BE7 to decimal.

Figure 3.23

| | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{E} | \mathbf{F} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| $\mathbf{1}_{-}$ | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| $\mathbf{2}_{-}$ | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| $\mathbf{3}_{-}$ | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| $\mathbf{4}_{-}$ | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
| $\mathbf{5}_{-}$ | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 |
| $\mathbf{6}_{-}$ | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |
| $\mathbf{7 -}_{-}$ | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
| $\mathbf{8}_{-}$ | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 |
| $\mathbf{Q -}_{-}$ | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
| \mathbf{A}_{-} | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
| $\mathbf{B -}_{-}$ | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 |
| \mathbf{C}_{-} | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 |
| \mathbf{D}_{-} | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 |
| \mathbf{E}_{-} | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
| \mathbf{F}_{-} | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 |

Hexadecimal Binary

0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	B	1011

4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Char	Bin	Hex									
NUL	0000000	00	SP	0100000	20	@	1000000	40	,	1100000	60
SOH	0000001	01	!	0100001	21	A	1000001	41	a	1100001	61
STX	0000010	02	"	0100010	22	B	1000010	42	b	1100010	62
ETX	0000011	03	\#	0100011	23	C	1000011	43	c	1100011	63
EOT	0000100	04	\$	0100100	24	D	1000100	44	d	1100100	64
ENQ	0000101	05	\%	0100101	25	E	1000101	45	e	1100101	65
ACK	0000110	06	\&	0100110	26	F	1000110	46	f	1100110	66
BEL	0000111	07	'	0100111	27	G	1000111	47	g	1100111	67
BS	0001000	08	(0101000	28	H	1001000	48	h	1101000	68
HT	0001001	09)	0101001	29	I	1001001	49	i	1101001	69
LF	0001010	0A	*	0101010	2A	J	1001010	4A	j	1101010	6A
VT	0001011	OB	+	0101011	2B	K	1001011	4B	k	1101011	6B
FF	0001100	OC	,	0101100	2 C	L	1001100	4 C	1	1101100	6 C
CR	0001101	OD	-	0101101	2D	M	1001101	4D	m	1101101	6D
SO	0001110	OE	-	0101110	2E	N	1001110	4E	n	1101110	6E
SI	0001111	OF	/	0101111	2F	0	1001111	4F	\bigcirc	1101111	6F
DLE	0010000	10	0	0110000	30	P	1010000	50	p	1110000	70
DC1	0010001	11	1	0110001	31	Q	1010001	51	q	1110001	71
DC2	0010010	12	2	0110010	32	R	1010010	52	r	1110010	72
DC3	0010011	13	3	0110011	33	S	1010011	53	s	1110011	73
DC4	0010100	14	4	0110100	34	T	1010100	54	t	1110100	74
NAK	0010101	15	5	0110101	35	U	1010101	55	u	1110101	75
SYN	0010110	16	6	0110110	36	V	1010110	56	v	1110110	76
ETB	0010111	17	7	0110111	37	W	1010111	57	w	1110111	77
CAN	0011000	18	8	0111000	38	X	1011000	58	x	1111000	78
EM	0011001	19	9	0111001	39	Y	1011001	59	y	1111001	79
SUB	0011010	1A	:	0111010	3 A	Z	1011010	5A	z	1111010	7A
ESC	0011011	1B	;	0111011	3B	[1011011	5B	1	1111011	7B
FS	0011100	1C	<	0111100	3 C	\backslash	1011100	5C		1111100	7 C
GS	0011101	1D	=	0111101	3D]	1011101	5D	\}	1111101	7D
RS	0011110	1E	>	0111110	3E		1011110	5E	\sim	1111110	7E
US	0011111	1F	?	0111111	3F		1011111	5F	DEL	1111111	7F

Figure 3.25 (continued)

Abbreviations for Control Characters

NUL	null, or all zeros
SOH	start of heading
STX	start of text
ETX	end of text
EOT	end of transmission
ENO	enquiry
ACK	acknowledge
BEL	bell
BS	backspace
HT	horizontal tabulation
LF	line feed
VT	vertical tabulation

FF	form feed
CR	carriage return
SO	shift out
SI	shift in
DLE	data link escape
DC1	device control 1
DC2	device control 2
DC3	device control 3
DC4	device control 4
NAK	negative acknowledge
SYN	synchronous idle
ETB	end of transmission block

CAN	cancel
EM	end of medium
SUB	substitute
ESC	escape
FS	file separator
GS	group separator
RS	record separator
US	unit separator
SP	space
DEL	delete

Computer Systems

Figure 3.26

Unicode Script	Code Point	Glyphs							
		0	1	2	3	4	5	6	7
Arabic	U＋063＿	ذ	J	j	س	ش	－	ض	b
Armenian	U＋054＿	2	2	亿．	χ	U	3	b	c
Braille Patterns	U＋287＿	：	\because	\because	\because	：	\vdots	：	！：
CJK Unified	U＋4EB＿	京	但	亲	毫	毫	熟	亶	廉
Cyrillic	U＋041＿	A	Б	B	Γ	Д	E	Ж	3
Egyptian Hieroglyphs	U＋1300＿	易	賏	通	曷		䫃	䱊	暘
Emoticons	U＋1F61＿	；	Θ	\bigcirc	（3）	O	（2）	（）	－
Hebrew	U＋05D＿	\aleph	\geq	λ	7	\cdots	1	i	Π
Basic Latin（ASCII）	U＋004＿	＠	A	B	C	D	E	F	G
Latin－1 Supplement	U＋00E＿	à	á	â	a	ä	a	æ	ç

Computer Systems

UTF-8 encoding

| Bits | First Code Point | Last Code Point | Byte 1 | Byte 2 | Byte 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | Byte 4

Floating point representation

Computer Systems

(a) The place values for 101.011 (bin).
$11 / 8$'s place $=0.125$
1 1/4's place $=0.25$
$0 \frac{1}{2}$'s place $=0.0$
1 1's place $=1.0$
0 2's place $=0.0$
1 4's place $=4.0$ 5.375 (dec)
(b) Converting 101.011 (bin) to decimal.

Computer Systems

Figure 3.29

$$
1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}
$$

(a) The binary number 101.011.
$5 \times 10^{2}+0 \times 10^{1}+6 \times 10^{0}+7 \times 10^{-1}+2 \times 10^{-2}+1 \times 10^{-3}$
(b) The decimal number 506.721.

Computer Systems

6.5859375
$6(\mathrm{dec})=110(\mathrm{bin})$
(a) Convert the whole part

	.5859375
1	.171875
0	.34375
0	.6875
1	.375
0	.75
1	.5
1	.0

(b) Convert the fractional part

Computer Systems rifтu eortion

Normalized

- Leading I on the left of the binary point
- $6.5859375(\mathrm{dec})=110.1001011$ (bin)
- Normalized scientific notation:
I.101001011 $\times 2^{2}$

Computer Systems fifth edition

The hidden bit

- Normalized scientific notation always has I to the left of the binary point
- So, do not store it
- Increases precision in the significand
- Floating point unit inserts hidden bit before doing computation
- Floating point unit removes leading I from significand before storing result

Computer Systems

Figure 3.33

Decimal Excess 3 Two's Complement

-4	
-3	000
-2	001
-1	010
0	011
1	100
2	101
3	110
4	111

Computer Systems firtu eortion

Figure 3.34

Round to nearest

Ties to even

Decimal	Decimal Rounded	Binary	Binary Rounded
23.499	23	1011.011	1011
23.5	24	1011.1	1100
23.501	24	1011.101	1100
24.499	24	1100.011	1100
24.5	24	1100.1	1100
24.501	25	1100.101	1101

Computer Systems firtu eortion

Special value

- Zero
- Exponent field all 0's
- Significand all 0's
- There is a +0 and a -0

Computer Systems

Special Value

Zero
Denormalized
Infinity
Not a number

Exponent

All zeros
All zeros
All ones
All ones

Significand
All zeros
Nonzero
All zeros
Nonzero

Computer Systems firtu eortion

Special value

- Infinity
- Exponent field all I's
- Significand all 0's
- There is a $+\infty$ and $\mathrm{a}-\infty$
- Produced by operation that gives result in overflow region

Computer Systems firtu eortion

Special value

- Not a Number ($\mathrm{NaN)}$
- Exponent field all I's
- Significand nonzero
- Produced by illegal math operations

Computer Systems fieru sortion

Special value

- Denormalized number
- Exponent field all 0's
- Significand nonzero
- Hidden bit is assumed to be 0 instead of I
- If the exponent is stored in excess n for normalized numbers, it is stored in excess $n-1$ for denormalized numbers

Computer Systems

Figure 3.37

Normalized

Denormalized

Computer Systems

	Binary	Scientific Notation	Decimal
Not a number	1111 nonzero		
Negative infinity	11110000		$-\infty$
Negative	11101111	-1.1111×2^{3}	-15.5
normalized	11101110	-1.1110×2^{3}	-15.0
	\ldots	\ldots	\ldots
	10110001	-1.0001×2^{0}	-1.0625
	10110000	-1.0000×2^{0}	-1.0
	10101111	-1.1111×2^{-1}	-0.96875
	\ldots	\ldots	\ldots
	10010001	-1.0001×2^{-2}	-0.265625
	10010000	-1.0000×2^{-2}	-0.25
	10001111	-0.1111×2^{-2}	-0.234375
Negative	10001110	-0.1110×2^{-2}	-0.21875
denormalized	\ldots	\ldots	\ldots
	10000010	-0.0010×2^{-2}	-0.03125
	10000001	-0.0001×2^{-2}	-0.015625
	10000000		-0.0

Computer Systems

Positive zero	00000000		+0.0
Positive	00000001	0.0001×2^{-2}	0.015625
denormalized	00000010	0.0010×2^{-2}	0.03125
	\ldots	\ldots	\ldots
	00001110	0.1110×2^{-2}	0.21875
	00001111	0.1111×2^{-2}	0.234375
Positive	00010000	1.0000×2^{-2}	0.25
normalized	00010001	1.0001×2^{-2}	0.265625
	\ldots	\ldots	\ldots
	00101111	1.1111×2^{-1}	0.96875
	00110000	1.0000×2^{0}	1.0
	00110001	1.0001×2^{0}	1.0625
	\ldots	\ldots	\ldots
	01101110	1.1110×2^{3}	15.0
	01101111	1.1111×2^{3}	15.5
Positive infinity	01110000		$+\infty$
Not a number	0111 nonzero		

Computer Systems

Figure 3.39

IEEE 754 floating point

Computer Systems fieru eortion

Single precision

- C type: float
- Exponent: 8-bit cell
- Excess 127 representation
- Excess 126 for denormalized numbers
- Exponent: 8-bit cell
- Significand: 23-bit cell

Computer Systems rifтu eortion

Double precision

- C type: double
- Exponent: Il-bit cell
- Excess 1023 representation
- Excess 1022 for denormalized numbers
- Exponent: 8-bit cell
- Significand: 52-bit cell

