
Chapter 3

Information
Representation

 Instruction
Set Architecture

3

 APPLICATION LEVEL

 HIGH-ORDER LANGUAGE LEVEL

 ASSEMBLY LEVEL

 OPERATING SYSTEM LEVEL

 MICROCODE LEVEL

 LOGIC GATE LEVEL

 INSTRUCTION SET
ARCHITECTURE LEVEL

 LEVEL

 3

9781284079630_CH03_115_182.indd 115 29/01/16 8:30 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a)

(c)

A seven-bit cell.

 Some possible values in a
seven-bit cell.

0 1 1 0 1 0 1

1 1 0 1 1 0 0

0 0 0 0 0 0 0

 Some impossible values in a
seven-bit cell.

6 8 0 7 2 5 1

J A N U A R Y

1 1 0 1 0

(b)

Figure 3.1

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a)

(c)

A seven-bit cell.

 Some possible values in a
seven-bit cell.

0 1 1 0 1 0 1

1 1 0 1 1 0 0

0 0 0 0 0 0 0

 Some impossible values in a
seven-bit cell.

6 8 0 7 2 5 1

J A N U A R Y

1 1 0 1 0

(b)

Figure 3.1
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a)

(c)

A seven-bit cell.

 Some possible values in a
seven-bit cell.

0 1 1 0 1 0 1

1 1 0 1 1 0 0

0 0 0 0 0 0 0

 Some impossible values in a
seven-bit cell.

6 8 0 7 2 5 1

J A N U A R Y

1 1 0 1 0

(b) Figure 3.1
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 7 14 21 28 35
1 8 15 22 29 36
2 9 16 23 30 37
3 10 17 24 31 38
4 11 18 25 32 .
5 12 19 26 33 .
6 13 20 27 34 .

Counting in decimal

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 7 16 25 34 43
1 10 17 26 35 44
2 11 20 27 36 45
3 12 21 30 37 46
4 13 22 31 40 .
5 14 23 32 41 .
6 15 24 33 42 .

Counting in octal

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 21 112 210 1001 1022
1 22 120 211 1002 1100
2 100 121 212 1010 1101

10 101 122 220 1011 1102
11 102 200 221 1012 .
12 110 201 222 1020 .
20 111 202 1000 1021 .

Counting in base 3

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 111 1110 10101 11100 100011
1 1000 1111 10110 11101 100100

10 1001 10000 10111 11110 100101
11 1010 10001 11000 11111 100110

100 1011 10010 11001 100000 .
101 1100 10011 11010 100001 .
110 1101 10100 11011 100010 .

Counting in binary

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(b)(a) The place values for
10110 (bin).

1ʼs place

2ʼs place

4ʼs place

8ʼs place

16ʼs place

1 0 1 1 0

0
2
4
0

16

0
1
1
0
1

1ʼs place
2ʼs place
4ʼs place
8ʼs place

16ʼs place

=
=
=
=
=

22 (dec)

 Converting 10110 (bin) to
decimal.

Figure 3.2

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

1ʼs place

10ʼs place

100ʼs place

1,000ʼs place

10,000ʼs place

5 8 0 63

Figure 3.3

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) The binary number 10110.

1 2 0 1s 4 s 2� s 21 0 s 201 s 22

5 10 8 0s 4 s 103 s 102 3 s 101 6 s 100

(b) The decimal number 58,036.

� � � �

� � � �

Figure 3.4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Remainders

Dividends

22
11
5
2
1
0

0
1
1
0
1

Figure 3.5

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 0 1 0 1 1 0

Figure 3.6

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Binary addition rules

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

– 0 0 1 0 1

Figure 3.7

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Magnitude
Sign bit

Figure 3.8

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• The NEG operation

‣ Taking the two’s complement

• The NOT operation

‣ Change the 1’s to 0’s and the 0’s to 1’s

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• The two’s complement of a number is 1 plus
its one’s complement

• NEG x = 1 + NOT x

The two’s complement
rule

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 ! e general rule for negating a number regardless of how many bits the
number contains is

 ! ! e two’s complement of a number is 1 plus its ones’ complement.

 Or, in terms of the NEG and NOT operations,

 ! NEG x = 1 + NOT x

 In our familiar decimal system, if you take the negative of a value that is
already negative, you get a positive value. Algebraically,

–(– x) = x

 where x is some positive value. If the rule for taking the two’s complement
is to be useful, the two’s complement of a negative value should be the
corresponding positive value.

 Example 3.11 What happens if you take the two’s complement of –5 (dec)?

 NOT 11 1011 = 00 0100

 00 0100
ADD 00 0001
 00 0101

 Voilà! You get +5 (dec) back again, as you would expect. ❚

 Two’s Complement Range
 Suppose you have a four-bit cell to store integers in two’s complement
representation. What is the range of integers for this cell?

 ! e positive integer with the greatest magnitude is 0111 (bin), which
is +7 (dec). It cannot be 1111 as in unsigned binary because the " rst bit
is reserved for the sign and must be 0. In unsigned binary, you can store
numbers as high as +15 (dec) with four bits. All four bits are used for the
magnitude. In two’s complement representation, you can store numbers only
as high as +7 (dec), because only three bits are reserved for the magnitude.

 What is the negative number with the greatest magnitude? ! e answer
to this question might not be obvious. FIGURE 3.9 shows the result of taking
the two’s complement of each positive number up to +7. What pattern do
you see in the " gure?

 Notice that the two’s complement operation automatically produces a 1
in the sign bit of the negative numbers, as it should. Even numbers still end
in 0, and odd numbers end in 1.

 Also, –5 is obtained from –6 by adding 1 to –6 in binary, as you would
expect. Similarly, –6 is obtained from –7 by adding 1 to –7 in binary. We
can squeeze one more negative integer out of our four bits by including –8.

! e two’s complement rule

 FIGURE 3 . 9
 The result of taking the
two’s complement in a
four-bit cell.

Decimal Binary

−7 1001

−6 1010

−5 1011

−4 1100

−3 1101

−2 1110

−1 1111

−7 1001

128 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 128 29/01/16 8:30 am

Figure 3.9

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 3.10

When you add 1 to –8 in binary, you get –7. ! e number –8 should therefore
be represented as 1000. FIGURE 3.10 shows the complete table for signed
integers assuming a four-bit memory cell.

 ! e number –8 (dec) has a peculiar property not shared by any of the
other negative integers. If you take the two’s complement of –7, you get +7,
as follows:

 NOT 1001 = 0110

 0110
 ADD 0001
 0111

 But if you take the two’s complement of –8, you get –8 back again:

 NOT 1000 = 0111

 0111
 ADD 0001
 1000

 ! is property exists because there is no way to represent +8 with only
four bits.

 We have determined the range of numbers for a four-bit cell with two’s
complement binary representation. It is

 1000 to 0111

 as written in binary, or

 –8 to +7

 as written in decimal.
 ! e same patterns hold regardless of how many bits are contained

in the cell. ! e largest positive integer is a single 0 followed by all 1’s. ! e
negative integer with the largest magnitude is a single 1 followed by all 0’s.
Its magnitude is 1 greater than the magnitude of the largest positive integer.
! e number –1 (dec) is represented as all 1’s.

 Example 3.12 ! e range for six-bit two’s complement representation is

 10 0000 to 01 1111

 as written in binary, or

 –32 to 31

 as written in decimal. Unlike all the other negative integers, the two’s
complement of 10 0000 is itself, 10 0000. Also notice that –1 (dec) =
11 1111 (bin). ❚

 FIGURE 3 . 10
 The signed integers
for a four-bit cell.

Decimal Binary

−8 1000

−7 1001

−6 1010

−5 1011

−4 1100

−3 1101

−2 1110

−1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

1293.2 Two’s Complement Binary Representation

9781284079630_CH03_115_182.indd 129 29/01/16 8:30 am

When you add 1 to –8 in binary, you get –7. ! e number –8 should therefore
be represented as 1000. FIGURE 3.10 shows the complete table for signed
integers assuming a four-bit memory cell.

 ! e number –8 (dec) has a peculiar property not shared by any of the
other negative integers. If you take the two’s complement of –7, you get +7,
as follows:

 NOT 1001 = 0110

 0110
 ADD 0001
 0111

 But if you take the two’s complement of –8, you get –8 back again:

 NOT 1000 = 0111

 0111
 ADD 0001
 1000

 ! is property exists because there is no way to represent +8 with only
four bits.

 We have determined the range of numbers for a four-bit cell with two’s
complement binary representation. It is

 1000 to 0111

 as written in binary, or

 –8 to +7

 as written in decimal.
 ! e same patterns hold regardless of how many bits are contained

in the cell. ! e largest positive integer is a single 0 followed by all 1’s. ! e
negative integer with the largest magnitude is a single 1 followed by all 0’s.
Its magnitude is 1 greater than the magnitude of the largest positive integer.
! e number –1 (dec) is represented as all 1’s.

 Example 3.12 ! e range for six-bit two’s complement representation is

 10 0000 to 01 1111

 as written in binary, or

 –32 to 31

 as written in decimal. Unlike all the other negative integers, the two’s
complement of 10 0000 is itself, 10 0000. Also notice that –1 (dec) =
11 1111 (bin). ❚

 FIGURE 3 . 10
 The signed integers
for a four-bit cell.

Decimal Binary

−8 1000

−7 1001

−6 1010

−5 1011

−4 1100

−3 1101

−2 1110

−1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

1293.2 Two’s Complement Binary Representation

9781284079630_CH03_115_182.indd 129 29/01/16 8:30 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

1 1 1 1 0 1 1 0 1 0

1ʼs place
4ʼs place

32ʼs place

Figure 3.11

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 1 2 3 4 5 6 7

111110101100011010001000

Figure 3.12

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

–4 –3 –2 –1 0 1 2 3

011010001000111110101100

(b) Shifting the right part to the left side.

0 1 2 3 4 5 6 7

111110101100011010001000

(a) Breaking the number line in the middle.

Figure 3.13

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

–4 –3 –2 –1 0 1 2 3

32107654

Figure 3.14

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>
#include <limits.h>

int main() {
 int n = INT_MAX - 2;
 for (int i = 0; i < 6; i++) {
 printf("n == %d\n", n);
 n++;
 }
 return 0;
}

Output
n == 2147483645
n == 2147483646
n == 2147483647
n == -2147483648
n == -2147483647
n == -2147483646

Figure 3.15

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The status bits
• N = 1 if the result is negative

N = 0 otherwise

• Z = 1 if the result is all zeros

Z = 0 otherwise

• V = 1 if a signed integer overflow occurred

V = 0 otherwise

• C = 1 if an unsigned integer overflow occurred

C = 0 otherwise

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Addition with a 6-bit cell

hardware makes no distinction between the two types. It stores only the bit
pattern.

 When the CPU adds the contents of two memory cells, it uses the
rules for binary addition on the bit sequences, regardless of their types. In
unsigned binary, if the sum is out of range, the hardware simply stores the
(incorrect) result, sets the C bit accordingly, and goes on. It is up to the
so! ware to examine the C bit a! er the addition to see if a carry out occurred
from the most signi" cant column and to take appropriate action if necessary.

 We noted above that in two’s complement binary representation, the
carry bit no longer indicates whether a sum is in range or out of range. An
over! ow condition occurs when the result of an operation is out of range.
To # ag this condition for signed numbers, the CPU contains another
special bit called the over! ow bit, denoted by the letter V. When the CPU
adds two binary integers, if their sum is out of range when interpreted in
the two’s complement representation, then V is set to 1. Otherwise V is
cleared to 0.

 $ e CPU performs the same addition operation regardless of the
interpretation of the bit pattern. As with the C bit, the CPU does not stop
if a two’s complement over# ow occurs. It sets the V bit and continues with
its next task. It is up to the so! ware to examine the V bit a! er the addition.

 Example 3.17 Here are some examples with a six-bit cell, showing the
e% ects on the carry bit and on the over# ow bit:

 Adding two 00 0011 01 0110
 positives: ADD 01 0101 ADD 00 1100
 V = 0 01 1000 V = 1 10 0010
 C = 0 C = 0

 Adding a positive 00 0101 00 1000
 and a negative: ADD 11 0111 ADD 11 1010
 V = 0 11 1100 V = 0 00 0010
 C = 0 C = 1

 Adding two 11 1010 10 0110
 negatives: ADD 11 0111 ADD 10 0010
 V = 0 11 0001 V = 1 00 1000
 C = 1 C = 1

 Notice that all combinations of values are possible for V and C. ❚

 How can you tell if an over# ow condition will occur? One way would
be to convert the two numbers to decimal, add them, and see if their sum
is outside the range as written in decimal. If so, an over# ow has occurred.

 " e C bit detects over! ow
for unsigned integers.

 " e V bit detects over! ow
for signed integers.

134 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 134 29/01/16 8:30 am

Example 3.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Logical Operators
 You are familiar with the logical operations AND and OR. Another logical
operator is the exclusive or, denoted XOR. ! e exclusive or of logical values
 p and q is true if p is true, or if q is true, but not both. ! at is, p must be true
exclusive of q , or q must be true exclusive of p .

 One interesting property of binary digits is that you can interpret them
as logical quantities. At Level ISA3, a 1 bit can represent true, and a 0 bit can
represent false. FIGURE 3.16 shows the truth tables for the AND, OR, and
XOR operators at Level ISA3.

 At Level HOL6, AND and OR operate on Boolean expressions whose
values are either true or false. ! ey are used in if statements and loops to
test conditions that control the execution of statements. An example of the
AND operator is the C phrase

 if ((ch >= 'a') && (ch <= 'z'))

 FIGURE 3.17 shows the truth tables for AND, OR, and XOR at Level HOL6.
! ey are identical to Figure 3.16, with 1 at Level ISA3 corresponding to true
at Level HOL6, and 0 at Level ISA3 corresponding to false at Level HOL6.

 Logical operations are easier to perform than addition because no
carries are involved. ! e operation is applied bitwise to the corresponding
bits in the sequence. Neither the carry bit nor the over" ow bit is a# ected by
logical operations.

 Example 3.19 Some examples for a six-bit cell are

 01 1010 01 1010 01 1010
 AND 01 0001 OR 01 0001 XOR 01 0001
 N = 0 01 0000 N = 0 01 1011 N = 0 00 1011
 Z = 0 Z = 0 Z = 0

 Note that when you take the AND of 1 and 1, the result is 1 with no carry. ❚

p q p AND q

0 0 0

0 1 0

1 0 0

1 1 1

(a) ISA3 table for AND.

p q p OR q

0 0 0

0 1 1

1 0 1

1 1 1

(b) ISA3 table for OR.

p q p XOR q

0 0 0

0 1 1

1 0 1

1 1 0

(c) ISA3 table for XOR.

FIGURE 3.16
The truth tables for the AND, OR, and XOR operators at Level ISA3.

0 0 0 0 0 0 0 0 0

1373.3 Operations in Binary

9781284079630_CH03_115_182.indd 137 29/01/16 8:30 am

Figure 3.16

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Each of the operations AND, OR, and XOR combines two groups of bits
to produce its result. But NOT and NEG operate on only a single group of
bits. ! ey are, therefore, called unary operations .

 Register Transfer Language
 ! e purpose of register transfer language (RTL) is to specify precisely the
e" ect of a hardware operation. ! e RTL symbols might be familiar to you
from your study of logic. FIGURE 3.18 shows the symbols.

 ! e AND and OR operations are known as conjunction and disjunction
in logic. ! e NOT operator is negation. ! e implies operator can be

p q p AND q

true true true

true false false

false true false

false false false

(a) HOL6 table for AND.

p q p OR q

true true true

true false true

false true true

false false false

(b) HOL6 table for OR.

p q p XOR q

true true false

true false true

false true true

false false false

(c) HOL6 table for XOR.

FIGURE 3.17
The truth tables for the AND, OR, and XOR operators at Level HOL6.

Operation RTL Symbol

AND ∧

OR ∨

XOR ⊕

NOT ¬

Implies ⇒

Transfer ←

Bit index 〈 〉

Informal description { }

Sequential separator ;

Concurrent separator ,

FIGURE 3.18
The register transfer
language operations
and their symbols.

NOT ¬

138 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 138 29/01/16 8:30 am

Figure 3.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Each of the operations AND, OR, and XOR combines two groups of bits
to produce its result. But NOT and NEG operate on only a single group of
bits. ! ey are, therefore, called unary operations .

 Register Transfer Language
 ! e purpose of register transfer language (RTL) is to specify precisely the
e" ect of a hardware operation. ! e RTL symbols might be familiar to you
from your study of logic. FIGURE 3.18 shows the symbols.

 ! e AND and OR operations are known as conjunction and disjunction
in logic. ! e NOT operator is negation. ! e implies operator can be

p q p AND q

true true true

true false false

false true false

false false false

(a) HOL6 table for AND.

p q p OR q

true true true

true false true

false true true

false false false

(b) HOL6 table for OR.

p q p XOR q

true true false

true false true

false true true

false false false

(c) HOL6 table for XOR.

FIGURE 3.17
The truth tables for the AND, OR, and XOR operators at Level HOL6.

Operation RTL Symbol

AND ∧

OR ∨

XOR ⊕

NOT ¬

Implies ⇒

Transfer ←

Bit index 〈 〉

Informal description { }

Sequential separator ;

Concurrent separator ,

FIGURE 3.18
The register transfer
language operations
and their symbols.

NOT ¬

138 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 138 29/01/16 8:30 am

Figure 3.18

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

RTL specification of OR
operation

c a_b ; N c< 0 , Z c= 0

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

C
0

C rh0i , rh0..4i rh1..5i , rh5i 0 ;

N r < 0 , Z r = 0 , V {overflow}

Arithmetic shift left (ASL)

Figure 3.19

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

RTL specification is a problem for the
student

C

Arithmetic shift right (ASR)

Figure 3.20

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Rotate left (ROL)

ASR halves the number.

Figure 3.20
The action of the rotate operators.

3.3 Operations in Binary 111

Example 3.22 Four examples of the arithmetic shift right operation are

ASR 01 0100 = 00 1010, N = 0, Z = 0, C = 0

ASR 01 0111 = 00 1011, N = 0, Z = 0, C = 1

ASR 11 0010 = 11 1001, N = 1, Z = 0, C = 0

ASR 11 0101 = 11 1010, N = 1, Z = 0, C = 1 !

The ASR operation is designed specifically for the two’s complement representa-
tion. Because the sign bit does not change, negative numbers remain negative and
positive numbers remain positive.

Shifting to the left multiplies an integer by 2, whereas shifting to the right
divides it by 2. Before the shift, the four integers in the previous example are

20 23 !14 !11 (dec, signed)

After the shift they are

10 11 !7 !6 (dec, signed)

The even integers can be divided by 2 exactly, so there is no question about the
effect of ASR on them. When odd integers are divided by 2, the result is always
rounded down. For example, 23 ÷ 2 = 11.5, and 11.5 rounded down is 11. Simi-
larly, !11 ÷ 2 = !5.5, and !5.5 rounded down is !6. Note that !6 is less than
!5.5 because it lies to the left of !5.5 on the number line.

Rotate Operators

In contrast to the arithmetic operators, the rotate operators do not interpret a
binary sequence as an integer. Consequently, the rotate operations do not affect
the N, Z, or V bits, but only the C bit. There are two rotate operators—rotate left,
denoted ROL, and rotate right, denoted ROR. Figure 3.20 shows the actions of
the rotate operators for a six-bit cell. Rotate left is similar to arithmetic shift left,
except that the C bit is rotated into the rightmost bit of the cell instead of 0 shift-
ing into the rightmost bit. Rotate right does the same thing but in the opposite
direction.

The RTL specification for a rotate left on a six-bit cell is

C ← r!0", r!0..4" ← r!1..5", r!5" ← c

C

()b The rotate right operation.

C

()a The rotate left operation.

71447_CH03_Chapter03.qxd 1/27/09 10:55 PM Page 111

Figure 3.21

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Rotate right (ROR)

ASR halves the number.

Figure 3.20
The action of the rotate operators.

3.3 Operations in Binary 111

Example 3.22 Four examples of the arithmetic shift right operation are

ASR 01 0100 = 00 1010, N = 0, Z = 0, C = 0

ASR 01 0111 = 00 1011, N = 0, Z = 0, C = 1

ASR 11 0010 = 11 1001, N = 1, Z = 0, C = 0

ASR 11 0101 = 11 1010, N = 1, Z = 0, C = 1 !

The ASR operation is designed specifically for the two’s complement representa-
tion. Because the sign bit does not change, negative numbers remain negative and
positive numbers remain positive.

Shifting to the left multiplies an integer by 2, whereas shifting to the right
divides it by 2. Before the shift, the four integers in the previous example are

20 23 !14 !11 (dec, signed)

After the shift they are

10 11 !7 !6 (dec, signed)

The even integers can be divided by 2 exactly, so there is no question about the
effect of ASR on them. When odd integers are divided by 2, the result is always
rounded down. For example, 23 ÷ 2 = 11.5, and 11.5 rounded down is 11. Simi-
larly, !11 ÷ 2 = !5.5, and !5.5 rounded down is !6. Note that !6 is less than
!5.5 because it lies to the left of !5.5 on the number line.

Rotate Operators

In contrast to the arithmetic operators, the rotate operators do not interpret a
binary sequence as an integer. Consequently, the rotate operations do not affect
the N, Z, or V bits, but only the C bit. There are two rotate operators—rotate left,
denoted ROL, and rotate right, denoted ROR. Figure 3.20 shows the actions of
the rotate operators for a six-bit cell. Rotate left is similar to arithmetic shift left,
except that the C bit is rotated into the rightmost bit of the cell instead of 0 shift-
ing into the rightmost bit. Rotate right does the same thing but in the opposite
direction.

The RTL specification for a rotate left on a six-bit cell is

C ← r!0", r!0..4" ← r!1..5", r!5" ← c

C

()b The rotate right operation.

C

()a The rotate left operation.

71447_CH03_Chapter03.qxd 1/27/09 10:55 PM Page 111

Figure 3.21
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 7 E 15 1C 23
1 8 F 16 1D 24
2 9 10 17 1E 25
3 A 11 18 1F 26
4 B 12 19 20 .
5 C 13 1A 21 .
6 D 14 1B 22 .

Counting in hexadecimal

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(b)(a)

1ʼs place

16ʼs place

256ʼs place

4096ʼs place

8 B E 7
7

14
11
8

35,815

The place values for 8BE7. Converting 8BE7 to decimal.

s
s
s
s

1
16

256
4096

�
�
�
� 32,768

2,816
224

7

Figure 3.22

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 1 2 3 4 5 6 7 8 9 A B C D E F

0_ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1_ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2_ 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

3_ 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4_ 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

5_ 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

6_ 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

7_ 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

8_ 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

9_ 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

A_ 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

B_ 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

C_ 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

D_ 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E_ 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

F_ 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

 FIGURE 3 . 23
 The hexadecimal conversion chart.

 For numbers up to 255 (dec) or FF (hex), converting either way is easily
done with the table in FIGURE 3.23 . ! e body of the table contains decimal
numbers. ! e le" column and top row contain hexadecimal digits.

 Example 3.25 To convert 9C (hex) to decimal, look up row 9 and column
C to # nd 156 (dec). To convert 125 (dec), look it up in the body of the table
and read o$ 7D (hex) from the le" column and top row. ❚

 If computers store information in binary format, why learn the
hexadecimal system? ! e answer lies in the special relationship between
hexadecimal and binary, as FIGURE 3.24 shows. ! ere are 16 possible
combinations of four bits, and there are exactly 16 hexadecimal digits. Each
hexadecimal digit, therefore, represents four bits.

 Bit patterns are o" en written in hexadecimal notation to save space on
the printed page. A computer manual for a 16-bit machine might state that
a memory location contains 01D3. ! at is shorter than saying it contains
0000 0001 1101 0011.

 Hexadecimal as a short-
hand for binary

144 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 144 29/01/16 8:30 am

Figure 3.23

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 3.24

 FIGURE 3 . 24
 The relationship
between hexadecimal
and binary.

Hexadecimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

 To convert from unsigned binary to hexadecimal, partition the bits into
groups of four starting from the rightmost end, and use the hexadecimal
from Figure 3.23 for each group. To convert from hexadecimal to unsigned
binary, simply reverse the procedure.

 Example 3.26 To write the 10-bit unsigned binary number 10 1001 1100 in
hexadecimal, start with the rightmost four bits, 1100:

 10 1001 1100 (bin) = 29C (hex)

 Because 10 bits cannot be partitioned into groups of four exactly, you must
assume two additional leading 0’s when looking up the le! most digit in
Figure 3.23. " e le! most hexadecimal digit comes from

 10 (bin) = 0010 (bin) = 2 (hex)

 in this example. ❚

 Example 3.27 For a 14-bit cell,

 0D60 (hex) = 00 1101 0110 0000 (bin)

 Note that the last hexadecimal 0 represents four binary 0’s, but the # rst
hexadecimal 0 represents only two binary 0’s. ❚

 To convert from decimal to unsigned binary, you may prefer to use the
hexadecimal table as an intermediate step. You can avoid any computation
by looking up the hexadecimal value in Figure 3.22 and then converting
each digit to binary according to Figure 3.23.

 Example 3.28 For a six-bit cell,

 29 (dec) = 1D (hex) = 01 1101 (bin)

 where each step in the conversion is a simple table lookup. ❚

 In machine language program listings or program traces, numbers
are rarely written in hexadecimal notation with negative signs. Instead, the
sign bit is implicit in the bit pattern represented by the hexadecimal digits.
You must remember that hexadecimal is only a convenient shorthand for a
binary sequence. " e hardware stores only binary values.

 Example 3.29 If a 10-bit memory location contains 37A (hex), then the
number in decimal is found by considering the following bit pattern:

 37A (hex) = 11 0111 1010 (bin)

1453.4 Hexadecimal and Character Representations

9781284079630_CH03_115_182.indd 145 29/01/16 8:30 am

 FIGURE 3 . 24
 The relationship
between hexadecimal
and binary.

Hexadecimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

 To convert from unsigned binary to hexadecimal, partition the bits into
groups of four starting from the rightmost end, and use the hexadecimal
from Figure 3.23 for each group. To convert from hexadecimal to unsigned
binary, simply reverse the procedure.

 Example 3.26 To write the 10-bit unsigned binary number 10 1001 1100 in
hexadecimal, start with the rightmost four bits, 1100:

 10 1001 1100 (bin) = 29C (hex)

 Because 10 bits cannot be partitioned into groups of four exactly, you must
assume two additional leading 0’s when looking up the le! most digit in
Figure 3.23. " e le! most hexadecimal digit comes from

 10 (bin) = 0010 (bin) = 2 (hex)

 in this example. ❚

 Example 3.27 For a 14-bit cell,

 0D60 (hex) = 00 1101 0110 0000 (bin)

 Note that the last hexadecimal 0 represents four binary 0’s, but the # rst
hexadecimal 0 represents only two binary 0’s. ❚

 To convert from decimal to unsigned binary, you may prefer to use the
hexadecimal table as an intermediate step. You can avoid any computation
by looking up the hexadecimal value in Figure 3.22 and then converting
each digit to binary according to Figure 3.23.

 Example 3.28 For a six-bit cell,

 29 (dec) = 1D (hex) = 01 1101 (bin)

 where each step in the conversion is a simple table lookup. ❚

 In machine language program listings or program traces, numbers
are rarely written in hexadecimal notation with negative signs. Instead, the
sign bit is implicit in the bit pattern represented by the hexadecimal digits.
You must remember that hexadecimal is only a convenient shorthand for a
binary sequence. " e hardware stores only binary values.

 Example 3.29 If a 10-bit memory location contains 37A (hex), then the
number in decimal is found by considering the following bit pattern:

 37A (hex) = 11 0111 1010 (bin)

1453.4 Hexadecimal and Character Representations

9781284079630_CH03_115_182.indd 145 29/01/16 8:30 am

 FIGURE 3 . 25
 The American Standard Code for Information Interchange (ASCII).

Char Bin Hex
NUL 000 0000 00
SOH 000 0001 01
STX 000 0010 02
ETX 000 0011 03
EOT 000 0100 04
ENQ 000 0101 05
ACK 000 0110 06
BEL 000 0111 07
BS 000 1000 08
HT 000 1001 09
LF 000 1010 0A
VT 000 1011 0B
FF 000 1100 0C
CR 000 1101 0D
SO 000 1110 0E
SI 000 1111 0F
DLE 001 0000 10
DC1 001 0001 11
DC2 001 0010 12
DC3 001 0011 13
DC4 001 0100 14
NAK 001 0101 15
SYN 001 0110 16
ETB 001 0111 17
CAN 001 1000 18
EM 001 1001 19
SUB 001 1010 1A
ESC 001 1011 1B
FS 001 1100 1C
GS 001 1101 1D
RS 001 1110 1E
US 001 1111 1F

Char Bin Hex
SP 010 0000 20
! 010 0001 21
" 010 0010 22
010 0011 23
$ 010 0100 24
% 010 0101 25
& 010 0110 26
' 010 0111 27
(010 1000 28
) 010 1001 29
* 010 1010 2A
+ 010 1011 2B
, 010 1100 2C
− 010 1101 2D
. 010 1110 2E
/ 010 1111 2F
0 011 0000 30
1 011 0001 31
2 011 0010 32
3 011 0011 33
4 011 0100 34
5 011 0101 35
6 011 0110 36
7 011 0111 37
8 011 1000 38
9 011 1001 39
: 011 1010 3A
; 011 1011 3B
< 011 1100 3C
= 011 1101 3D
> 011 1110 3E
? 011 1111 3F

Char Bin Hex
@ 100 0000 40
A 100 0001 41
B 100 0010 42
C 100 0011 43
D 100 0100 44
E 100 0101 45
F 100 0110 46
G 100 0111 47
H 100 1000 48
I 100 1001 49
J 100 1010 4A
K 100 1011 4B
L 100 1100 4C
M 100 1101 4D
N 100 1110 4E
O 100 1111 4F
P 101 0000 50
Q 101 0001 51
R 101 0010 52
S 101 0011 53
T 101 0100 54
U 101 0101 55
V 101 0110 56
W 101 0111 57
X 101 1000 58
Y 101 1001 59
Z 101 1010 5A
[101 1011 5B
\ 101 1100 5C
] 101 1101 5D
ˆ 101 1110 5E
_ 101 1111 5F

Char Bin Hex
‛ 110 0000 60
a 110 0001 61
b 110 0010 62
c 110 0011 63
d 110 0100 64
e 110 0101 65
f 110 0110 66
g 110 0111 67
h 110 1000 68
i 110 1001 69
j 110 1010 6A
k 110 1011 6B
l 110 1100 6C
m 110 1101 6D
n 110 1110 6E
o 110 1111 6F
p 111 0000 70
q 111 0001 71
r 111 0010 72
s 111 0011 73
t 111 0100 74
u 111 0101 75
v 111 0110 76
w 111 0111 77
x 111 1000 78
y 111 1001 79
z 111 1010 7A
{ 111 1011 7B
| 111 1100 7C
} 111 1101 7D
~ 111 1110 7E
DEL 111 1111 7F

Abbreviations for Control Characters

NUL null, or all zeros
SOH start of heading
STX start of text
ETX end of text
EOT end of transmission
ENQ enquiry
ACK acknowledge
BEL bell
BS backspace
HT horizontal tabulation
LF line feed
VT vertical tabulation

FF form feed
CR carriage return
SO shift out
SI shift in
DLE data link escape
DC1 device control 1
DC2 device control 2
DC3 device control 3
DC4 device control 4
NAK negative acknowledge
SYN synchronous idle
ETB end of transmission block

CAN cancel
EM end of medium
SUB substitute
ESC escape
FS ! le separator
GS group separator
RS record separator
US unit separator
SP space
DEL delete

1473.4 Hexadecimal and Character Representations

9781284079630_CH03_115_182.indd 147 29/01/16 8:30 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 3 . 25
 The American Standard Code for Information Interchange (ASCII).

Char Bin Hex
NUL 000 0000 00
SOH 000 0001 01
STX 000 0010 02
ETX 000 0011 03
EOT 000 0100 04
ENQ 000 0101 05
ACK 000 0110 06
BEL 000 0111 07
BS 000 1000 08
HT 000 1001 09
LF 000 1010 0A
VT 000 1011 0B
FF 000 1100 0C
CR 000 1101 0D
SO 000 1110 0E
SI 000 1111 0F
DLE 001 0000 10
DC1 001 0001 11
DC2 001 0010 12
DC3 001 0011 13
DC4 001 0100 14
NAK 001 0101 15
SYN 001 0110 16
ETB 001 0111 17
CAN 001 1000 18
EM 001 1001 19
SUB 001 1010 1A
ESC 001 1011 1B
FS 001 1100 1C
GS 001 1101 1D
RS 001 1110 1E
US 001 1111 1F

Char Bin Hex
SP 010 0000 20
! 010 0001 21
" 010 0010 22
010 0011 23
$ 010 0100 24
% 010 0101 25
& 010 0110 26
' 010 0111 27
(010 1000 28
) 010 1001 29
* 010 1010 2A
+ 010 1011 2B
, 010 1100 2C
− 010 1101 2D
. 010 1110 2E
/ 010 1111 2F
0 011 0000 30
1 011 0001 31
2 011 0010 32
3 011 0011 33
4 011 0100 34
5 011 0101 35
6 011 0110 36
7 011 0111 37
8 011 1000 38
9 011 1001 39
: 011 1010 3A
; 011 1011 3B
< 011 1100 3C
= 011 1101 3D
> 011 1110 3E
? 011 1111 3F

Char Bin Hex
@ 100 0000 40
A 100 0001 41
B 100 0010 42
C 100 0011 43
D 100 0100 44
E 100 0101 45
F 100 0110 46
G 100 0111 47
H 100 1000 48
I 100 1001 49
J 100 1010 4A
K 100 1011 4B
L 100 1100 4C
M 100 1101 4D
N 100 1110 4E
O 100 1111 4F
P 101 0000 50
Q 101 0001 51
R 101 0010 52
S 101 0011 53
T 101 0100 54
U 101 0101 55
V 101 0110 56
W 101 0111 57
X 101 1000 58
Y 101 1001 59
Z 101 1010 5A
[101 1011 5B
\ 101 1100 5C
] 101 1101 5D
ˆ 101 1110 5E
_ 101 1111 5F

Char Bin Hex
‛ 110 0000 60
a 110 0001 61
b 110 0010 62
c 110 0011 63
d 110 0100 64
e 110 0101 65
f 110 0110 66
g 110 0111 67
h 110 1000 68
i 110 1001 69
j 110 1010 6A
k 110 1011 6B
l 110 1100 6C
m 110 1101 6D
n 110 1110 6E
o 110 1111 6F
p 111 0000 70
q 111 0001 71
r 111 0010 72
s 111 0011 73
t 111 0100 74
u 111 0101 75
v 111 0110 76
w 111 0111 77
x 111 1000 78
y 111 1001 79
z 111 1010 7A
{ 111 1011 7B
| 111 1100 7C
} 111 1101 7D
~ 111 1110 7E
DEL 111 1111 7F

Abbreviations for Control Characters

NUL null, or all zeros
SOH start of heading
STX start of text
ETX end of text
EOT end of transmission
ENQ enquiry
ACK acknowledge
BEL bell
BS backspace
HT horizontal tabulation
LF line feed
VT vertical tabulation

FF form feed
CR carriage return
SO shift out
SI shift in
DLE data link escape
DC1 device control 1
DC2 device control 2
DC3 device control 3
DC4 device control 4
NAK negative acknowledge
SYN synchronous idle
ETB end of transmission block

CAN cancel
EM end of medium
SUB substitute
ESC escape
FS ! le separator
GS group separator
RS record separator
US unit separator
SP space
DEL delete

1473.4 Hexadecimal and Character Representations

9781284079630_CH03_Pass03.indd 147 19/01/16 5:05 pm

Figure 3.25
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Unicode Characters
 ! e " rst electronic computers were developed to perform mathematical
calculations with numbers. Eventually, they processed textual data as well,
and the ASCII code became a widespread standard for processing text with
the Latin alphabet. As computer technology spread around the world, text
processing in languages with di# erent alphabets produced many incompatible
systems. ! e Unicode Consortium was established to collect and catalog all the
alphabets of all the spoken languages in the world, both current and ancient, as
a " rst step toward a standard system for the worldwide interchange, processing,
and display of texts in these natural languages.

 Strictly speaking, the standard organizes characters into scripts, not
languages. It is possible for one script to be used in multiple languages. For
example, the extended Latin script can be used for many European and
American languages. Version 7.0 of the Unicode standard has 123 scripts
for natural language and 15 scripts for other symbols. Examples of natural
language scripts are Balinese, Cherokee, Egyptian Hieroglyphs, Greek,
Phoenician, and ! ai. Examples of scripts for other symbols are Braille
Patterns, Emoticons, Mathematical Symbols, and Musical Symbols.

 Each character in every script has a unique identifying number,
usually written in hexadecimal, and is called a code point . ! e hexadecimal
number is preceded by “U+” to indicate that it is a Unicode code point.
Corresponding to a code point is a glyph , which is the graphic representation
of the symbol on the page or screen. For example, in the Hebrew script, the
code point U+05D1 has the glyph .

 FIGURE 3.26 shows some example code points and glyphs in the Unicode
standard. ! e CJK Uni" ed script is for the written languages of China, Japan,

 FIGURE 3 . 26
 A few code points and
glyphs from the Unicode
character set.

Code
Point

Glyphs
Unicode Script 0 1 2 3 4 5 6 7
Arabic
Armenian
Braille Patterns

CJK Unified
Cyrillic

Emoticons

Hebrew

Egyptian Hieroglyphs

Basic Latin (ASCII)
Latin-1 Supplement

U+063_
U+054_
U+287_

U+4EB_
U+041_

U+1F61_

U+05D_

U+1300_

U+004_
U+00E_

Cyrillic U+041_

1493.4 Hexadecimal and Character Representations

9781284079630_CH03_115_182.indd 149 29/01/16 8:30 am

Figure 3.26

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Example 3.34 To determine the UTF-32 encoding of the emoticon
with code point U+1F617, simply pre! x the correct number of zeros. " e
encoding is 0001 F617 (UTF-32). ❚

 Although UTF-32 is e# ective for processing textual information, it is
ine$ cient for storing and transmitting textual information. If you have a
! le that stores mostly ASCII characters, three-fourths of the ! le space will
be occupied by zeros. UTF-8 is a popular encoding standard that is able to
represent every Unicode character. It uses one to four bytes to store a single
character and therefore takes less storage space than UTF-32. " e 64 Ki code
points in the range U+0000 to U+FFFF, known as the Basic Multilingual
Plane, contain characters for almost all modern languages. UTF-8 can
represent each of these code points with one to three bytes and uses only a
single byte for an ASCII character.

 FIGURE 3.27 shows the UTF-8 encoding scheme. " e ! rst column,
labeled Bits, represents the upper limit of the number of bits in the code
point, excluding all leading zeros. " e x’s in the code represent the rightmost
bits from the code point, which are spread out over one to four bytes.

 " e ! rst row in the table corresponds to the ASCII characters, which
have an upper limit of seven bits. An ASCII character is stored as a single
byte whose ! rst bit is 0 and whose last seven bits are identical to seven-bit
ASCII. " e ! rst step in decoding a UTF-8 string is to inspect the ! rst bit of
the ! rst byte. If it is zero, the ! rst character is an ASCII character, which can
be determined from the ASCII table, and the following byte is the ! rst byte
of the next character.

 If the ! rst bit of the ! rst byte is 1, the ! rst character is outside the range
U+0000 to U+007F—that is, it is not an ASCII character, and it occupies
more than one byte. In this case, the number of leading 1’s in the ! rst byte

 FIGURE 3 . 27
 The UTF-8 encoding scheme.

Bits First Code Point Last Code Point Byte 1 Byte 2 Byte 3 Byte 4

7 U+0000 U+007F 0xxxxxxx

11 U+0080 U+07FF 110xxxxx 10xxxxxx

16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+10000 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

7 U+0000 U+007F 0xxxxxxx

1513.4 Hexadecimal and Character Representations

9781284079630_CH03_115_182.indd 151 29/01/16 8:30 am

Figure 3.27

UTF-8 encoding

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Floating point
representation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(b)(a) The place values for
101.011 (bin).

1c8ʼs place
1c4ʼs place
1c2ʼs place

1ʼs place

2ʼs place

0 1 0 1 1

0.125
0.25
0.0
1.0
0.0

1
1
0
1
0

1c8ʼs place
1c4ʼs place
1c2ʼs place
1ʼs place
2ʼs place

=
=
=
=
=

5.375 (dec)

 Converting 101.011 (bin) to
decimal.

4ʼs place

1 .

4.01 4ʼs place =

Figure 3.28

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

(a) The binary number 101.011.

1 2 0 0s 2 s 21 s 2�11 s 20

5 10 0 6s 2 s 101 s 100 7 s 10�1���2 s 10�2���1 s 10�3

(b) The decimal number 506.721.

� � �

� � � ��1 s 2�2���1 s 2�3�

Figure 3.29

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

.5859375

1 .171875
0 .34375
0 .6875
1 .375
0 .75
1 .5
1 .0
(b) Convert the fractional part

6.5859375

6 (dec) = 110 (bin)
(a) Convert the whole part

.5859375

1 .171875
0 .34375
0 .6875
1 .375
0 .75
1 .5
1 .0
(b) Convert the fractional part

6.5859375

6 (dec) = 110 (bin)
(a) Convert the whole part

Figure 3.30

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Normalized
• Leading 1 on the left of the binary point

• 6.5859375 (dec) = 110.1001011 (bin)

• Normalized scientific notation:

1.101001011 x 22

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

.2

0 .4
0 .8
1 .6
1 .2
0 .4
0 .8
1 .6
� �

Figure 3.31

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Significand

Exponent

Sign

Figure 3.32

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The hidden bit
• Normalized scientific notation always has 1 to the

left of the binary point

• So, do not store it

• Increases precision in the significand

• Floating point unit inserts hidden bit before doing
computation

• Floating point unit removes leading 1 from
significand before storing result

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 An example of a biased representation for a ! ve-bit cell is excess 15.
" e range of numbers for the cell is –15 to 16 as written in decimal and
00000 to 11111 as written in binary. To convert from decimal to excess 15,
you add 15 to the decimal value and then convert to binary as you would
an unsigned number. To convert from excess 15 to decimal, you write the
decimal value as if it were an unsigned number and subtract 15 from it. In
excess 15, the ! rst bit denotes whether a value is positive or negative. But
unlike two’s complement representation, 1 signi! es a positive value, and 0
signi! es a negative value.

 Example 3.42 For a ! ve-bit cell, to convert 5 from decimal to excess 15,
add 5 + 15 = 20. " en convert 20 to binary as if it were unsigned, 20 (dec) =
10100 (bin). " erefore, 5 (dec) = 10100 (excess 15). " e ! rst bit is 1,
indicating a positive value. ❚

 Example 3.43 To convert 00011 from excess 15 to decimal, convert 00011
as an unsigned value, 00011 (bin) = 3 (dec). " en subtract decimal values
3 – 15 = –12. So, 00011 (excess 15) = –12 (dec). ❚

 FIGURE 3.33 shows the bit patterns for a three-bit cell that stores integers
with excess 3 representation compared to two’s complement representation.
Each representation stores eight values. " e excess 3 representation has
a range of –3 to 4 (dec), while the two’s complement representation has a
range of –4 to 3 (dec).

 FIGURE 3 . 33
 The signed integers for
a three-bit cell.

Decimal Excess 3 Two’s Complement

−4 100

−3 000 101

−2 001 110

−1 010 111

0 011 000

1 100 001

2 101 010

3 110 011

4 111

1573.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 157 29/01/16 8:30 am

Figure 3.33

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

is even. Similarly, the binary number 1011.1 is just as close to 1011 as it is to
1100, which is a tie. It rounds to 1100 because 1100 is even.

 Example 3.45 Assuming a three-bit exponent using excess 3 and a four-
bit signi! cand, how is the number –13.75 stored? Converting the whole
number part gives 13 (dec) = 1101 (bin). Converting the fractional part
gives 0.75 (dec) = 0.11. " e complete binary number is 13.75 (dec) =
1101.11 (bin), which is 1.10111 × 2 3 in normalized binary scienti! c notation.
" e number is negative, so the sign bit is 1. " e exponent is 3 (dec) = 110
(excess 3). Dropping the leading 1, the ! ve bits to the right of the binary
point are .10111. However, only four bits can be stored in the signi! cand.
Furthermore, .10111 is just as close to .1011 as it is to .1100, and the tie rule
is in e$ ect. Because 1011 is odd and 1100 is even, round to .1100. So, –13.75
is stored as 1110 1100. ❚

 Special Values
 Some real values require special treatment. " e most obvious is zero, which
cannot be normalized because there is no 1 bit in its binary representation.
You must set aside a special bit pattern for zero. Standard practice is to put
all 0’s in the exponent ! eld and all 0’s in the signi! cand as well. What do you
put for the sign? Most common is to have two representations for zero, one
positive and one negative. For a three-bit exponent and four-bit signi! cand,
the bit patterns are

 1 000 0000 (bin) = – 0.0 (dec)
 0 000 0000 (bin) = +0.0 (dec)

Decimal
Decimal
Rounded Binary

Binary
Rounded

23.499 23 1011.011 1011

23.5 24 1011.1 1100

23.501 24 1011.101 1100

24.499 24 1100.011 1100

24.5 24 1100.1 1100

24.501 25 1100.101 1101

 FIGURE 3 . 34
 Round to nearest, ties to even.

1593.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 159 29/01/16 8:30 am

Figure 3.34

Round to nearest
Ties to even

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Special value
• Zero

‣ Exponent field all 0’s

‣ Significand all 0’s

‣ There is a +0 and a –0

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 ! is solution for storing zero has rami" cations for some other bit patterns. If
the bit pattern for +0.0 were not special, then 0 000 0000 would be interpreted
with the hidden bit as 1.0000 × 2 –3 (bin) = 0.125, the smallest positive value
that could be stored had the value not been reserved for zero. If this pattern is
reserved for zero, then the smallest positive value that can be stored is

 0 000 0001 = 1.0001 × 2 –3 (bin) = 0.1328125

 which is slightly larger. ! e negative number with the smallest possible
magnitude is identical but with a 1 in the sign bit. ! e largest positive
number that can be stored is the bit pattern with the largest exponent and
the largest signi" cand. ! e bit pattern for the largest value is

 0 111 1111 (bin) = +31.0 (dec)

 FIGURE 3.35 shows the number line for the representation where zero
is the only special value. As with integer representations, there is a limit to
how large a value you can store. If you try to multiply 9.5 times 12.0, both of
which are in range, the true value is 114.0, which is in the positive over$ ow
region.

 Unlike integer values, however, the real number line has an under$ ow
region. If you try to multiply 0.145 times 0.145, which are both in range,
the true value is 0.021025, which is in the positive under$ ow region. ! e
smallest positive value that can be stored is 0.132815.

 Numeric calculations with approximate floating point values need
to have results that are consistent with what would be expected when
calculations are done with exact precision. For example, suppose you
multiply 9.5 and 12.0. What should be stored for the result? Suppose you
store the largest possible value, 31.0, as an approximation. Suppose further
that this is an intermediate value in a longer computation. If you later need
to compute half of the result, you will get 15.5, which is far from what the
correct value would have been.

 FIGURE 3 . 35
 The real number line
with zero as the only
special value.

–31.0 –0.1328125 0.1328125 31.00.0

N
eg

at
iv

e
ov

er
fl

ow

N
eg

at
iv

e
no

rm
al

iz
ed

N
eg

at
iv

e
un

de
rf

lo
w

Z
er

o

Po
si

tiv
e

un
de

rf
lo

w

Po
si

tiv
e

no
rm

al
iz

ed

Po
si

tiv
e

ov
er

fl
ow

N
eg

at
iv

e
ov

er
fl

ow

N
eg

at
iv

e
no

rm
al

iz
ed

N
eg

at
iv

e
un

de
rf

lo
w

Po
si

tiv
e

un
de

rf
lo

w

Po
si

tiv
e

no
rm

al
iz

ed

Po
si

tiv
e

ov
er

fl
ow

160 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 160 29/01/16 8:30 am

Figure 3.35

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 ! e same problem occurs in the under" ow region. If you store 0.0 as an
approximation of 0.021025, and you later want to multiply the value by 12.0,
you will get 0.0. You risk being misled by what appears to be a reasonable value.

 ! e problems encountered with over" ow and under" ow are alleviated
somewhat by introducing more special values for the bit patterns. As is the
case with zero, you must use some bit patterns that would otherwise be used
to represent other values on the number line. In addition to zero, three special
values are common—in# nity, not a number (NaN), and denormalized
numbers. FIGURE 3.36 lists the four special values for " oating-point
representation and their bit patterns.

 In# nity is used for values that are in the over" ow regions. If the result of an
operation over" ows, the bit pattern for in# nity is stored. If further operations
are done on this bit pattern, the result is what you would expect for an in# nite
value. For example, 3/∞ = 0, 5 + ∞ = ∞, and the square root of in# nity is
in# nity. You can produce in# nity by dividing by 0. For example, 3/0 = ∞, and
–4/0 = –∞. If you ever do a computation with real numbers and get in# nity,
you know that an over" ow occurred somewhere in your intermediate results.

 A bit pattern for a value that is not a number is called a NaN (rhymes
with plan). NaNs are used to indicate " oating point operations that are illegal.
For example, taking the square root of a negative number produces NaN,
and so does dividing 0/0. Any " oating point operation with at least one NaN
operand produces NaN. For example, 7 + NaN = NaN, and 7/NaN = NaN.

 Both in# nity and NaN use the largest possible value of the exponent for
their bit patterns. ! at is, the exponent # eld is all 1’s. ! e signi# cand is all
0’s for in# nity and can be any nonzero pattern for NaN. Reserving these bit
patterns for in# nity and NaN has the e$ ect of reducing the range of values
that can be stored. For a three-bit exponent and four-bit signi# cand, the bit
patterns for the largest magnitudes and their decimal values are

 1 111 0000 (bin) = – ∞
 1 110 1111 (bin) = –15.5 (dec)
 0 110 1111 (bin) = +15.5 (dec)
 0 111 0000 (bin) = +∞

 In! nity

 Not a number

 FIGURE 3 . 36
 The special values
in fl oating-point
representation.

Special Value Exponent Signi! cand

Zero All zeros All zeros

Denormalized All zeros Nonzero

In! nity All ones All zeros

Not a number All ones Nonzero

In! nity All ones All zeros

1613.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 161 29/01/16 8:30 am

Figure 3.36

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Special value
• Infinity

‣ Exponent field all 1’s

‣ Significand all 0’s

‣ There is a +∞ and a –∞
‣ Produced by operation that gives result in

overflow region

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Special value
• Not a Number (NaN)

‣ Exponent field all 1’s

‣ Significand nonzero

‣ Produced by illegal math operations

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Special value
• Denormalized number

‣ Exponent field all 0’s

‣ Significand nonzero

‣ Hidden bit is assumed to be 0 instead of 1

‣ If the exponent is stored in excess n for
normalized numbers, it is stored in excess n – 1
for denormalized numbers

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 ! ere is no single in" nitesimal value for the under# ow region in Figure
3.35 that corresponds to the in" nite value in the over# ow region. Instead,
there is a set of values called denormalized values that alleviate the problem
of under# ow. FIGURE 3.37 is a drawing to scale of the # oating point values
for a binary representation without denormalized special values (top) and
with denormalized values (bottom) for a system with a three-bit exponent
and four-bit signi" cand. ! e " gure shows three complete sequences of
values for exponent " elds of 000, 001, and 010 (excess 3), which represent
–3, –2, and –1 (dec), respectively.

 For normalized numbers in general, the gap between successive values
doubles with each unit increase of the exponent. For example, in the number
line on the top, the group of 16 values between 0.125 and 0.25 corresponds to
numbers written in binary scienti" c notation with a multiplier of 2 –3 . ! e 16
numbers between 0.25 and 0.5 are spaced twice as far apart and correspond
to numbers written in binary scienti" c notation with a multiplier of 2 –2 .

 Without denormalized special values, the gap between +0.0 and the
smallest positive value is excessive compared to the gaps in the smallest
sequence. Denormalized special values make the gap between successive
values for the " rst sequence equal to the gap between successive values for the
second sequence. It spreads these values out evenly as they approach +0.0
from the right. On the le$ half of the number line, not shown in the " gure,
the negative values are spread out evenly as they approach –0.0 from the le$.

 ! is behavior of denormalized values is called gradual under! ow . With
gradual under# ow, the gap between the smallest positive value and zero
is reduced considerably. ! e idea is to take the nonzero values that would
be stored with an exponent " eld of all 0’s (in excess representation) and
distribute them evenly in the under# ow gap.

 Because the exponent " eld of all 0’s is reserved for denormalized
numbers, the smallest positive normalized number becomes

 0 001 0000 = 1.000 × 2 –2 (bin) = 0.25 (dec)

 It might appear that we have made matters worse because the smallest
positive normalized number with 000 in the exponent " eld is 0.1328125.

 Denormalized numbers

Gradual under! ow

 FIGURE 3 . 37
 The real number line with and without denormalized numbers.

+0.0 1.00.5
Denormalized

Normalized
. . .

. . .

0.250.125

162 CHAPTER 3 Information Representation

9781284079630_CH03_Pass03.indd 162 19/01/16 5:05 pm

Figure 3.37

 ! ere is no single in" nitesimal value for the under# ow region in Figure
3.35 that corresponds to the in" nite value in the over# ow region. Instead,
there is a set of values called denormalized values that alleviate the problem
of under# ow. FIGURE 3.37 is a drawing to scale of the # oating point values
for a binary representation without denormalized special values (top) and
with denormalized values (bottom) for a system with a three-bit exponent
and four-bit signi" cand. ! e " gure shows three complete sequences of
values for exponent " elds of 000, 001, and 010 (excess 3), which represent
–3, –2, and –1 (dec), respectively.

 For normalized numbers in general, the gap between successive values
doubles with each unit increase of the exponent. For example, in the number
line on the top, the group of 16 values between 0.125 and 0.25 corresponds to
numbers written in binary scienti" c notation with a multiplier of 2 –3 . ! e 16
numbers between 0.25 and 0.5 are spaced twice as far apart and correspond
to numbers written in binary scienti" c notation with a multiplier of 2 –2 .

 Without denormalized special values, the gap between +0.0 and the
smallest positive value is excessive compared to the gaps in the smallest
sequence. Denormalized special values make the gap between successive
values for the " rst sequence equal to the gap between successive values for the
second sequence. It spreads these values out evenly as they approach +0.0
from the right. On the le$ half of the number line, not shown in the " gure,
the negative values are spread out evenly as they approach –0.0 from the le$.

 ! is behavior of denormalized values is called gradual under! ow . With
gradual under# ow, the gap between the smallest positive value and zero
is reduced considerably. ! e idea is to take the nonzero values that would
be stored with an exponent " eld of all 0’s (in excess representation) and
distribute them evenly in the under# ow gap.

 Because the exponent " eld of all 0’s is reserved for denormalized
numbers, the smallest positive normalized number becomes

 0 001 0000 = 1.000 × 2 –2 (bin) = 0.25 (dec)

 It might appear that we have made matters worse because the smallest
positive normalized number with 000 in the exponent " eld is 0.1328125.

 Denormalized numbers

Gradual under! ow

 FIGURE 3 . 37
 The real number line with and without denormalized numbers.

+0.0 1.00.5
Denormalized

Normalized
. . .

. . .

0.250.125

162 CHAPTER 3 Information Representation

9781284079630_CH03_Pass03.indd 162 19/01/16 5:05 pm

Normalized

Denormalized

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Binary Scienti! c Notation Decimal

Not a number 1 111 nonzero

Negative in! nity 1 111 0000 −∞

Negative
normalized

1 110 1111
1 110 1110
. . .
1 011 0001
1 011 0000
1 010 1111
. . .
1 001 0001
1 001 0000

−1.1111 × 23

−1.1110 × 23

. . .
−1.0001 × 20

−1.0000 × 20

−1.1111 × 2−1

. . .
−1.0001 × 2−2

−1.0000 × 2−2

−15.5
−15.0
. . .
−1.0625
−1.0
−0.96875
. . .
−0.265625
−0.25

Negative
denormalized

1 000 1111
1 000 1110
. . .
1 000 0010
1 000 0001

−0.1111 × 2−2

−0.1110 × 2−2

. . .
−0.0010 × 2−2

−0.0001 × 2−2

−0.234375
−0.21875
. . .
−0.03125
−0.015625

Negative zero 1 000 0000 −0.0

Positive zero 0 000 0000 +0.0

Positive
denormalized

0 000 0001
0 000 0010
. . .
0 000 1110
0 000 1111

0.0001 × 2−2

0.0010 × 2−2

. . .
0.1110 × 2−2

0.1111 × 2−2

0.015625
0.03125
. . .
0.21875
0.234375

Positive
normalized

0 001 0000
0 001 0001
. . .
0 010 1111
0 011 0000
0 011 0001
. . .
0 110 1110
0 110 1111

1.0000 × 2−2

1.0001 × 2−2

. . .
1.1111 × 2−1

1.0000 × 20

1.0001 × 20

. . .
1.1110 × 23

1.1111 × 23

0.25
0.265625
. . .
0.96875
1.0
1.0625
. . .
15.0
15.5

Positive in! nity 0 111 0000 +∞

Not a number 0 111 nonzero

 FIGURE 3 . 38
 Floating-point values for a three-bit exponent and four-bit signifi cand.

Not a number 1 111 nonzero

164 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 164 29/01/16 8:30 am

Figure 3.38

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Binary Scienti! c Notation Decimal

Not a number 1 111 nonzero

Negative in! nity 1 111 0000 −∞

Negative
normalized

1 110 1111
1 110 1110
. . .
1 011 0001
1 011 0000
1 010 1111
. . .
1 001 0001
1 001 0000

−1.1111 × 23

−1.1110 × 23

. . .
−1.0001 × 20

−1.0000 × 20

−1.1111 × 2−1

. . .
−1.0001 × 2−2

−1.0000 × 2−2

−15.5
−15.0
. . .
−1.0625
−1.0
−0.96875
. . .
−0.265625
−0.25

Negative
denormalized

1 000 1111
1 000 1110
. . .
1 000 0010
1 000 0001

−0.1111 × 2−2

−0.1110 × 2−2

. . .
−0.0010 × 2−2

−0.0001 × 2−2

−0.234375
−0.21875
. . .
−0.03125
−0.015625

Negative zero 1 000 0000 −0.0

Positive zero 0 000 0000 +0.0

Positive
denormalized

0 000 0001
0 000 0010
. . .
0 000 1110
0 000 1111

0.0001 × 2−2

0.0010 × 2−2

. . .
0.1110 × 2−2

0.1111 × 2−2

0.015625
0.03125
. . .
0.21875
0.234375

Positive
normalized

0 001 0000
0 001 0001
. . .
0 010 1111
0 011 0000
0 011 0001
. . .
0 110 1110
0 110 1111

1.0000 × 2−2

1.0001 × 2−2

. . .
1.1111 × 2−1

1.0000 × 20

1.0001 × 20

. . .
1.1110 × 23

1.1111 × 23

0.25
0.265625
. . .
0.96875
1.0
1.0625
. . .
15.0
15.5

Positive in! nity 0 111 0000 +∞

Not a number 0 111 nonzero

 FIGURE 3 . 38
 Floating-point values for a three-bit exponent and four-bit signifi cand.

Not a number 1 111 nonzero

164 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 164 29/01/16 8:30 am

Figure 3.38
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Bits 1 8 23

Bits 1 11 52

(a) Single precision

(b) Double precision

Figure 3.39

IEEE 754 floating point

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Single precision
• C type: float

• Exponent: 8-bit cell

‣ Excess 127 representation

‣ Excess 126 for denormalized numbers

• Exponent: 8-bit cell

‣ Significand: 23-bit cell

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Double precision
• C type: double

• Exponent: 11-bit cell

‣ Excess 1023 representation

‣ Excess 1022 for denormalized numbers

• Exponent: 8-bit cell

‣ Significand: 52-bit cell

