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(a)

(c)

A seven-bit cell.

      Some possible values in a 
seven-bit cell.

0 1 1 0 1 0 1

1 1 0 1 1 0 0

0 0 0 0 0 0 0

      Some impossible values in a 
seven-bit cell.

6 8 0 7 2 5 1

J A N U A R Y

1 1 0 1 0

(b)

Figure 3.1
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(continued)
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0 7 14 21 28 35
1 8 15 22 29 36
2 9 16 23 30 37
3 10 17 24 31 38
4 11 18 25 32 .
5 12 19 26 33 .
6 13 20 27 34 .

Counting in decimal



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 7 16 25 34 43
1 10 17 26 35 44
2 11 20 27 36 45
3 12 21 30 37 46
4 13 22 31 40 .
5 14 23 32 41 .
6 15 24 33 42 .

Counting in octal
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0 21 112 210 1001 1022
1 22 120 211 1002 1100
2 100 121 212 1010 1101

10 101 122 220 1011 1102
11 102 200 221 1012 .
12 110 201 222 1020 .
20 111 202 1000 1021 .

Counting in base 3
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0 111 1110 10101 11100 100011
1 1000 1111 10110 11101 100100

10 1001 10000 10111 11110 100101
11 1010 10001 11000 11111 100110

100 1011 10010 11001 100000 .
101 1100 10011 11010 100001 .
110 1101 10100 11011 100010 .

Counting in binary
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(b)(a)      The place values for
10110 (bin).

1ʼs place

2ʼs place

4ʼs place

8ʼs place

16ʼs place

1 0 1 1 0

0
2
4
0

16

0 
1
1
0 
1

1ʼs place
2ʼs place
4ʼs place
8ʼs place

16ʼs place

=
=
=
=
=

22 (dec)

      Converting 10110 (bin) to
decimal.

Figure 3.2



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

1ʼs place

10ʼs place

100ʼs place

1,000ʼs place

10,000ʼs place

5 8 0 63

Figure 3.3
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(a) The binary number 10110.

1 2 0 1s 4 s 2� s 21 0 s 201 s 22

5 10 8 0s 4 s 103 s 102 3 s 101 6 s 100

(b) The decimal number 58,036.

� � � �

� � � �

Figure 3.4
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Remainders

Dividends

22
11
5
2
1
0

0
1
1
0
1

Figure 3.5
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0 0 1 0 1 1 0

Figure 3.6
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Binary addition rules

0 + 0 =  0

0 + 1 =  1

1 + 0 =  1

1 + 1 =  10
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– 0 0 1 0 1

Figure 3.7
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Magnitude
Sign bit

Figure 3.8
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• The NEG operation

‣ Taking the two’s complement

• The NOT operation

‣ Change the 1’s to 0’s and the 0’s to 1’s
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• The two’s complement of a number is 1 plus 
its one’s complement

• NEG x = 1 + NOT x

The two’s complement 
rule
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 ! e general rule for negating a number regardless of how many bits the 
number contains is 

 ! ! e two’s complement of a number is 1 plus its ones’ complement.

 Or, in terms of the NEG and NOT operations, 

 ! NEG  x  = 1 + NOT  x  

 In our familiar decimal system, if you take the negative of a value that is 
already negative, you get a positive value. Algebraically, 

–(– x ) =  x   

 where  x  is some positive value. If the rule for taking the two’s complement 
is to be useful, the two’s complement of a negative value should be the 
corresponding positive value. 

  Example 3.11  What happens if you take the two’s complement of –5 (dec)? 

 NOT 11 1011 = 00 0100 

  00 0100 
ADD   00 0001  
  00 0101 

 Voilà! You get +5 (dec) back again, as you would expect. ❚ 

  Two’s Complement Range  
 Suppose you have a four-bit cell to store integers in two’s complement 
representation. What is the range of integers for this cell? 

 ! e positive integer with the greatest magnitude is 0111 (bin), which 
is +7 (dec). It cannot be 1111 as in unsigned binary because the " rst bit 
is reserved for the sign and must be 0. In unsigned binary, you can store 
numbers as high as +15 (dec) with four bits. All four bits are used for the 
magnitude. In two’s complement representation, you can store numbers only 
as high as +7 (dec), because only three bits are reserved for the magnitude. 

 What is the negative number with the greatest magnitude? ! e answer 
to this question might not be obvious. FIGURE 3.9  shows the result of taking 
the two’s complement of each positive number up to +7. What pattern do 
you see in the " gure?        

 Notice that the two’s complement operation automatically produces a 1 
in the sign bit of the negative numbers, as it should. Even numbers still end 
in 0, and odd numbers end in 1. 

 Also, –5 is obtained from –6 by adding 1 to –6 in binary, as you would 
expect. Similarly, –6 is obtained from –7 by adding 1 to –7 in binary. We 
can squeeze one more negative integer out of our four bits by including –8. 

! e two’s complement rule

  FIGURE   3 . 9 
  The result of taking the 
two’s complement in a 
four-bit cell. 

Decimal Binary

−7 1001

−6 1010

−5 1011

−4 1100

−3 1101

−2 1110

−1 1111

−7 1001

128 CHAPTER 3 Information Representation
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Figure 3.10

When you add 1 to –8 in binary, you get –7. ! e number –8 should therefore 
be represented as 1000. FIGURE 3.10  shows the complete table for signed 
integers assuming a four-bit memory cell.        

 ! e number –8 (dec) has a peculiar property not shared by any of the 
other negative integers. If you take the two’s complement of –7, you get +7, 
as follows: 

 NOT 1001 = 0110 

  0110 
  ADD   0001  
  0111 

 But if you take the two’s complement of –8, you get –8 back again: 

 NOT 1000 = 0111 

  0111 
  ADD   0001  
  1000 

 ! is property exists because there is no way to represent +8 with only 
four bits. 

 We have determined the range of numbers for a four-bit cell with two’s 
complement binary representation. It is 

 1000 to 0111 

 as written in binary, or 

 –8 to +7 

 as written in decimal. 
 ! e same patterns hold regardless of how many bits are contained 

in the cell. ! e largest positive integer is a single 0 followed by all 1’s. ! e 
negative integer with the largest magnitude is a single 1 followed by all 0’s. 
Its magnitude is 1 greater than the magnitude of the largest positive integer. 
! e number –1 (dec) is represented as all 1’s. 

  Example 3.12  ! e range for six-bit two’s complement representation is 

 10 0000 to 01 1111 

 as written in binary, or 

 –32 to 31 

 as written in decimal. Unlike all the other negative integers, the two’s 
complement of 10 0000 is itself, 10 0000. Also notice that –1 (dec) = 
11 1111 (bin). ❚ 

  FIGURE   3 . 10 
  The signed integers 
for a four-bit cell. 

Decimal Binary

−8 1000

−7 1001

−6 1010

−5 1011

−4 1100

−3 1101

−2 1110

−1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

1293.2 Two’s Complement Binary Representation
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1 1 1 1 0 1 1 0 1 0

1ʼs place
4ʼs place

32ʼs place

Figure 3.11
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0 1 2 3 4 5 6 7

111110101100011010001000

Figure 3.12
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–4 –3 –2 –1 0 1 2 3

011010001000111110101100

(b)       Shifting the right part to the left side.

0 1 2 3 4 5 6 7

111110101100011010001000

(a)       Breaking the number line in the middle.

Figure 3.13
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–4 –3 –2 –1 0 1 2 3

32107654

Figure 3.14
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#include <stdio.h>
#include <limits.h>

int main() {
   int n = INT_MAX - 2;
   for (int i = 0; i < 6; i++) {
      printf("n == %d\n", n);
      n++;
   }
   return 0;
}

Output
n == 2147483645
n == 2147483646
n == 2147483647
n == -2147483648
n == -2147483647
n == -2147483646

Figure 3.15
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The status bits
• N = 1 if the result is negative

N = 0 otherwise

• Z = 1 if the result is all zeros

Z = 0 otherwise

• V = 1 if a signed integer overflow occurred

V = 0 otherwise

• C = 1 if an unsigned integer overflow occurred

C = 0 otherwise
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Addition with a 6-bit cell

hardware makes no distinction between the two types. It stores only the bit 
pattern. 

 When the CPU adds the contents of two memory cells, it uses the 
rules for binary addition on the bit sequences, regardless of their types. In 
unsigned binary, if the sum is out of range, the hardware simply stores the 
(incorrect) result, sets the C bit accordingly, and goes on. It is up to the 
so! ware to examine the C bit a! er the addition to see if a carry out occurred 
from the most signi" cant column and to take appropriate action if necessary. 

 We noted above that in two’s complement binary representation, the 
carry bit no longer indicates whether a sum is in range or out of range. An 
over! ow condition  occurs when the result of an operation is out of range. 
To # ag this condition for signed numbers, the CPU contains another 
special bit called the  over! ow bit,  denoted by the letter V. When the CPU 
adds two binary integers, if their sum is out of range when interpreted in 
the two’s complement representation, then V is set to 1. Otherwise V is 
cleared to 0. 

 $ e CPU performs the same addition operation regardless of the 
interpretation of the bit pattern. As with the C bit, the CPU does not stop 
if a two’s complement over# ow occurs. It sets the V bit and continues with 
its next task. It is up to the so! ware to examine the V bit a! er the addition. 

  Example 3.17  Here are some examples with a six-bit cell, showing the 
e% ects on the carry bit and on the over# ow bit: 

 Adding two  00 0011  01 0110 
 positives:  ADD   01 0101    ADD   00 1100  
  V = 0 01 1000 V = 1 10 0010 
  C = 0  C = 0 

 Adding a positive  00 0101  00 1000 
 and a negative:  ADD   11 0111   ADD   11 1010  
  V = 0 11 1100 V = 0 00 0010 
  C = 0  C = 1 

 Adding two  11 1010  10 0110 
 negatives:  ADD   11 0111   ADD   10 0010  
  V = 0 11 0001 V = 1 00 1000 
  C = 1  C = 1 

 Notice that all combinations of values are possible for V and C. ❚ 

 How can you tell if an over# ow condition will occur? One way would 
be to convert the two numbers to decimal, add them, and see if their sum 
is outside the range as written in decimal. If so, an over# ow has occurred. 

 " e C bit detects over! ow 
for unsigned integers. 

 " e V bit detects over! ow 
for signed integers. 

134 CHAPTER 3 Information Representation
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  Logical Operators  
 You are familiar with the logical operations AND and OR. Another logical 
operator is the exclusive or, denoted XOR. ! e exclusive or of logical values 
 p  and  q  is true if  p  is true, or if  q  is true, but not both. ! at is,  p  must be true 
exclusive of  q , or  q  must be true exclusive of  p . 

 One interesting property of binary digits is that you can interpret them 
as logical quantities. At Level ISA3, a 1 bit can represent true, and a 0 bit can 
represent false. FIGURE 3.16  shows the truth tables for the AND, OR, and 
XOR operators at Level ISA3.     

 At Level HOL6, AND and OR operate on Boolean expressions whose 
values are either true or false. ! ey are used in if statements and loops to 
test conditions that control the execution of statements. An example of the 
AND operator is the C phrase 

 if ((ch >= 'a') && (ch <= 'z')) 

 FIGURE 3.17  shows the truth tables for AND, OR, and XOR at Level HOL6. 
! ey are identical to Figure 3.16, with 1 at Level ISA3 corresponding to true 
at Level HOL6, and 0 at Level ISA3 corresponding to false at Level HOL6.     

 Logical operations are easier to perform than addition because no 
carries are involved. ! e operation is applied bitwise to the corresponding 
bits in the sequence. Neither the carry bit nor the over" ow bit is a# ected by 
logical operations. 

  Example 3.19  Some examples for a six-bit cell are 

  01 1010  01 1010  01 1010 
  AND   01 0001    OR       01 0001    XOR   01 0001  
 N = 0 01 0000 N = 0 01 1011 N = 0 00 1011 
 Z = 0  Z = 0  Z = 0 

 Note that when you take the AND of 1 and 1, the result is 1 with no carry. ❚ 

p q p AND q

0 0 0

0 1 0

1 0 0

1 1 1

(a) ISA3 table for AND.

p q p OR q

0 0 0

0 1 1

1 0 1

1 1 1

(b) ISA3 table for OR.

p q p XOR q

0 0 0

0 1 1

1 0 1

1 1 0

(c) ISA3 table for XOR.

FIGURE 3.16 
The truth tables for the AND, OR, and XOR operators at Level ISA3.

0 0 0 0 0 0 0 0 0

1373.3 Operations in Binary

9781284079630_CH03_115_182.indd   137 29/01/16   8:30 am

Figure 3.16



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Each of the operations AND, OR, and XOR combines two groups of bits 
to produce its result. But NOT and NEG operate on only a single group of 
bits. ! ey are, therefore, called  unary operations . 

  Register Transfer Language  
 ! e purpose of register transfer language (RTL) is to specify precisely the 
e" ect of a hardware operation. ! e RTL symbols might be familiar to you 
from your study of logic. FIGURE 3.18  shows the symbols.     

 ! e AND and OR operations are known as conjunction and disjunction 
in logic. ! e NOT operator is negation. ! e implies operator can be 

p q p AND q

true true true

true false false

false true false

false false false

(a) HOL6 table for AND.

p q p OR q

true true true

true false true

false true true

false false false

(b) HOL6 table for OR.

p q p XOR q

true true false

true false true

false true true

false false false

(c) HOL6 table for XOR.

FIGURE 3.17 
The truth tables for the AND, OR, and XOR operators at Level HOL6.

Operation RTL Symbol

AND ∧

OR ∨

XOR ⊕

NOT ¬

Implies ⇒

Transfer ←

Bit index 〈 〉

Informal description { }

Sequential separator ;

Concurrent separator ,

FIGURE 3.18
The register transfer 
language operations 
and their symbols.

NOT ¬

138 CHAPTER 3 Information Representation
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RTL specification of OR 
operation

c a_b ; N c< 0 , Z c= 0
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C
0

C rh0i , rh0..4i  rh1..5i , rh5i  0 ;

N r < 0 , Z r = 0 , V {overflow}

Arithmetic shift left (ASL)

Figure 3.19
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RTL specification is a problem for the 
student

C

Arithmetic shift right (ASR)

Figure 3.20
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Rotate left (ROL)

ASR halves the number.

Figure 3.20
The action of the rotate operators.

3.3 Operations in Binary 111

Example 3.22 Four examples of the arithmetic shift right operation are

ASR 01 0100 = 00 1010, N = 0, Z = 0, C = 0

ASR 01 0111 = 00 1011, N = 0, Z = 0, C = 1

ASR 11 0010 = 11 1001, N = 1, Z = 0, C = 0

ASR 11 0101 = 11 1010, N = 1, Z = 0, C = 1 !

The ASR operation is designed specifically for the two’s complement representa-
tion. Because the sign bit does not change, negative numbers remain negative and
positive numbers remain positive.

Shifting to the left multiplies an integer by 2, whereas shifting to the right
divides it by 2. Before the shift, the four integers in the previous example are

20  23  !14  !11 (dec, signed)

After the shift they are

10  11  !7    !6 (dec, signed)

The even integers can be divided by 2 exactly, so there is no question about the
effect of ASR on them. When odd integers are divided by 2, the result is always
rounded down. For example, 23 ÷ 2 = 11.5, and 11.5 rounded down is 11. Simi-
larly, !11 ÷ 2 = !5.5, and !5.5 rounded down is !6. Note that !6 is less than
!5.5 because it lies to the left of !5.5 on the number line.

Rotate Operators

In contrast to the arithmetic operators, the rotate operators do not interpret a
binary sequence as an integer. Consequently, the rotate operations do not affect
the N, Z, or V bits, but only the C bit. There are two rotate operators—rotate left,
denoted ROL, and rotate right, denoted ROR. Figure 3.20 shows the actions of
the rotate operators for a six-bit cell. Rotate left is similar to arithmetic shift left,
except that the C bit is rotated into the rightmost bit of the cell instead of 0 shift-
ing into the rightmost bit. Rotate right does the same thing but in the opposite
direction.

The RTL specification for a rotate left on a six-bit cell is

C ← r!0", r!0..4" ← r!1..5", r!5" ← c

C

(  )b The rotate right operation.

C

(  )a The rotate left operation.

71447_CH03_Chapter03.qxd  1/27/09  10:55 PM  Page 111

Figure 3.21
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Rotate right (ROR)

ASR halves the number.

Figure 3.20
The action of the rotate operators.
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the N, Z, or V bits, but only the C bit. There are two rotate operators—rotate left,
denoted ROL, and rotate right, denoted ROR. Figure 3.20 shows the actions of
the rotate operators for a six-bit cell. Rotate left is similar to arithmetic shift left,
except that the C bit is rotated into the rightmost bit of the cell instead of 0 shift-
ing into the rightmost bit. Rotate right does the same thing but in the opposite
direction.

The RTL specification for a rotate left on a six-bit cell is

C ← r!0", r!0..4" ← r!1..5", r!5" ← c

C

(  )b The rotate right operation.

C

(  )a The rotate left operation.
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0 7 E 15 1C 23
1 8 F 16 1D 24
2 9 10 17 1E 25
3 A 11 18 1F 26
4 B 12 19 20 .
5 C 13 1A 21 .
6 D 14 1B 22 .

Counting in hexadecimal
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(b)(a)

1ʼs place

16ʼs place

256ʼs place

4096ʼs place

8 B E 7
7

14
11
8

35,815

The place values for 8BE7. Converting 8BE7 to decimal.

s
s
s
s

1
16

256
4096

�
�
�
� 32,768

2,816
224

7

Figure 3.22
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0 1 2 3 4 5 6 7 8 9 A B C D E F

0_ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1_ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2_ 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

3_ 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4_ 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

5_ 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

6_ 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

7_ 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

8_ 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

9_ 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

A_ 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

B_ 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

C_ 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

D_ 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E_ 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

F_ 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

  FIGURE   3 . 23 
  The hexadecimal conversion chart. 

 For numbers up to 255 (dec) or FF (hex), converting either way is easily 
done with the table in FIGURE 3.23 . ! e body of the table contains decimal 
numbers. ! e le"  column and top row contain hexadecimal digits.        

  Example 3.25  To convert 9C (hex) to decimal, look up row 9 and column 
C to # nd 156 (dec). To convert 125 (dec), look it up in the body of the table 
and read o$  7D (hex) from the le"  column and top row. ❚ 

 If computers store information in binary format, why learn the 
hexadecimal system? ! e answer lies in the special relationship between 
hexadecimal and binary, as FIGURE 3.24  shows. ! ere are 16 possible 
combinations of four bits, and there are exactly 16 hexadecimal digits. Each 
hexadecimal digit, therefore, represents four bits.        

 Bit patterns are o" en written in hexadecimal notation to save space on 
the printed page. A computer manual for a 16-bit machine might state that 
a memory location contains 01D3. ! at is shorter than saying it contains 
0000 0001 1101 0011. 

 Hexadecimal as a short-
hand for binary 

144 CHAPTER 3 Information Representation
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Figure 3.24

  FIGURE   3 . 24 
  The relationship 
between hexadecimal 
and binary. 

Hexadecimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

 To convert from unsigned binary to hexadecimal, partition the bits into 
groups of four starting from the rightmost end, and use the hexadecimal 
from Figure 3.23 for each group. To convert from hexadecimal to unsigned 
binary, simply reverse the procedure. 

  Example 3.26  To write the 10-bit unsigned binary number 10 1001 1100 in 
hexadecimal, start with the rightmost four bits, 1100: 

 10 1001 1100 (bin) = 29C (hex) 

 Because 10 bits cannot be partitioned into groups of four exactly, you must 
assume two additional leading 0’s when looking up the le! most digit in 
Figure 3.23. " e le! most hexadecimal digit comes from 

 10 (bin) = 0010 (bin) = 2 (hex) 

 in this example. ❚

  Example 3.27  For a 14-bit cell, 

 0D60 (hex) = 00 1101 0110 0000 (bin) 

 Note that the last hexadecimal 0 represents four binary 0’s, but the # rst 
hexadecimal 0 represents only two binary 0’s. ❚

 To convert from decimal to unsigned binary, you may prefer to use the 
hexadecimal table as an intermediate step. You can avoid any computation 
by looking up the hexadecimal value in Figure 3.22 and then converting 
each digit to binary according to Figure 3.23. 

  Example 3.28  For a six-bit cell, 

 29 (dec) = 1D (hex) = 01 1101 (bin) 

 where each step in the conversion is a simple table lookup. ❚

 In machine language program listings or program traces, numbers 
are rarely written in hexadecimal notation with negative signs. Instead, the 
sign bit is implicit in the bit pattern represented by the hexadecimal digits. 
You must remember that hexadecimal is only a convenient shorthand for a 
binary sequence. " e hardware stores only binary values. 

  Example 3.29  If a 10-bit memory location contains 37A (hex), then the 
number in decimal is found by considering the following bit pattern: 

 37A (hex) = 11 0111 1010 (bin) 

1453.4 Hexadecimal and Character Representations
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  FIGURE   3 . 25 
  The American Standard Code for Information Interchange (ASCII). 

Char Bin Hex
NUL 000 0000 00
SOH 000 0001 01
STX 000 0010 02
ETX 000 0011 03
EOT 000 0100 04
ENQ 000 0101 05
ACK 000 0110 06
BEL 000 0111 07
BS 000 1000 08
HT 000 1001 09
LF 000 1010 0A
VT 000 1011 0B
FF 000 1100 0C
CR 000 1101 0D
SO 000 1110 0E
SI 000 1111 0F
DLE 001 0000 10
DC1 001 0001 11
DC2 001 0010 12
DC3 001 0011 13
DC4 001 0100 14
NAK 001 0101 15
SYN 001 0110 16
ETB 001 0111 17
CAN 001 1000 18
EM 001 1001 19
SUB 001 1010 1A
ESC 001 1011 1B
FS 001 1100 1C
GS 001 1101 1D
RS 001 1110 1E
US 001 1111 1F

Char Bin Hex
SP 010 0000 20
! 010 0001 21
" 010 0010 22
# 010 0011 23
$ 010 0100 24
% 010 0101 25
& 010 0110 26
' 010 0111 27
( 010 1000 28
) 010 1001 29
* 010 1010 2A
+ 010 1011 2B
, 010 1100 2C
− 010 1101 2D
. 010 1110 2E
/ 010 1111 2F
0 011 0000 30
1 011 0001 31
2 011 0010 32
3 011 0011 33
4 011 0100 34
5 011 0101 35
6 011 0110 36
7 011 0111 37
8 011 1000 38
9 011 1001 39
: 011 1010 3A
; 011 1011 3B
< 011 1100 3C
= 011 1101 3D
> 011 1110 3E
? 011 1111 3F

Char Bin Hex
@ 100 0000 40
A 100 0001 41
B 100 0010 42
C 100 0011 43
D 100 0100 44
E 100 0101 45
F 100 0110 46
G 100 0111 47
H 100 1000 48
I 100 1001 49
J 100 1010 4A
K 100 1011 4B
L 100 1100 4C
M 100 1101 4D
N 100 1110 4E
O 100 1111 4F
P 101 0000 50
Q 101 0001 51
R 101 0010 52
S 101 0011 53
T 101 0100 54
U 101 0101 55
V 101 0110 56
W 101 0111 57
X 101 1000 58
Y 101 1001 59
Z 101 1010 5A
[ 101 1011 5B
\ 101 1100 5C
] 101 1101 5D
ˆ 101 1110 5E
_ 101 1111 5F

Char Bin Hex
‛ 110 0000 60
a 110 0001 61
b 110 0010 62
c 110 0011 63
d 110 0100 64
e 110 0101 65
f 110 0110 66
g 110 0111 67
h 110 1000 68
i 110 1001 69
j 110 1010 6A
k 110 1011 6B
l 110 1100 6C
m 110 1101 6D
n 110 1110 6E
o 110 1111 6F
p 111 0000 70
q 111 0001 71
r 111 0010 72
s 111 0011 73
t 111 0100 74
u 111 0101 75
v 111 0110 76
w 111 0111 77
x 111 1000 78
y 111 1001 79
z 111 1010 7A
{ 111 1011 7B
| 111 1100 7C
} 111 1101 7D
~ 111 1110 7E
DEL 111 1111 7F

Abbreviations for Control Characters

NUL null, or all zeros
SOH start of heading
STX start of text
ETX end of text
EOT end of transmission
ENQ enquiry
ACK acknowledge
BEL bell
BS backspace
HT horizontal tabulation
LF line feed
VT vertical tabulation

FF form feed
CR carriage return
SO shift out
SI shift in
DLE data link escape
DC1 device control 1
DC2 device control 2
DC3 device control 3
DC4 device control 4
NAK negative acknowledge
SYN synchronous idle
ETB end of transmission block

CAN cancel
EM end of medium
SUB substitute
ESC escape
FS ! le separator
GS group separator
RS record separator
US unit separator
SP space
DEL delete
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  FIGURE   3 . 25 
  The American Standard Code for Information Interchange (ASCII). 

Char Bin Hex
NUL 000 0000 00
SOH 000 0001 01
STX 000 0010 02
ETX 000 0011 03
EOT 000 0100 04
ENQ 000 0101 05
ACK 000 0110 06
BEL 000 0111 07
BS 000 1000 08
HT 000 1001 09
LF 000 1010 0A
VT 000 1011 0B
FF 000 1100 0C
CR 000 1101 0D
SO 000 1110 0E
SI 000 1111 0F
DLE 001 0000 10
DC1 001 0001 11
DC2 001 0010 12
DC3 001 0011 13
DC4 001 0100 14
NAK 001 0101 15
SYN 001 0110 16
ETB 001 0111 17
CAN 001 1000 18
EM 001 1001 19
SUB 001 1010 1A
ESC 001 1011 1B
FS 001 1100 1C
GS 001 1101 1D
RS 001 1110 1E
US 001 1111 1F

Char Bin Hex
SP 010 0000 20
! 010 0001 21
" 010 0010 22
# 010 0011 23
$ 010 0100 24
% 010 0101 25
& 010 0110 26
' 010 0111 27
( 010 1000 28
) 010 1001 29
* 010 1010 2A
+ 010 1011 2B
, 010 1100 2C
− 010 1101 2D
. 010 1110 2E
/ 010 1111 2F
0 011 0000 30
1 011 0001 31
2 011 0010 32
3 011 0011 33
4 011 0100 34
5 011 0101 35
6 011 0110 36
7 011 0111 37
8 011 1000 38
9 011 1001 39
: 011 1010 3A
; 011 1011 3B
< 011 1100 3C
= 011 1101 3D
> 011 1110 3E
? 011 1111 3F

Char Bin Hex
@ 100 0000 40
A 100 0001 41
B 100 0010 42
C 100 0011 43
D 100 0100 44
E 100 0101 45
F 100 0110 46
G 100 0111 47
H 100 1000 48
I 100 1001 49
J 100 1010 4A
K 100 1011 4B
L 100 1100 4C
M 100 1101 4D
N 100 1110 4E
O 100 1111 4F
P 101 0000 50
Q 101 0001 51
R 101 0010 52
S 101 0011 53
T 101 0100 54
U 101 0101 55
V 101 0110 56
W 101 0111 57
X 101 1000 58
Y 101 1001 59
Z 101 1010 5A
[ 101 1011 5B
\ 101 1100 5C
] 101 1101 5D
ˆ 101 1110 5E
_ 101 1111 5F

Char Bin Hex
‛ 110 0000 60
a 110 0001 61
b 110 0010 62
c 110 0011 63
d 110 0100 64
e 110 0101 65
f 110 0110 66
g 110 0111 67
h 110 1000 68
i 110 1001 69
j 110 1010 6A
k 110 1011 6B
l 110 1100 6C
m 110 1101 6D
n 110 1110 6E
o 110 1111 6F
p 111 0000 70
q 111 0001 71
r 111 0010 72
s 111 0011 73
t 111 0100 74
u 111 0101 75
v 111 0110 76
w 111 0111 77
x 111 1000 78
y 111 1001 79
z 111 1010 7A
{ 111 1011 7B
| 111 1100 7C
} 111 1101 7D
~ 111 1110 7E
DEL 111 1111 7F

Abbreviations for Control Characters

NUL null, or all zeros
SOH start of heading
STX start of text
ETX end of text
EOT end of transmission
ENQ enquiry
ACK acknowledge
BEL bell
BS backspace
HT horizontal tabulation
LF line feed
VT vertical tabulation

FF form feed
CR carriage return
SO shift out
SI shift in
DLE data link escape
DC1 device control 1
DC2 device control 2
DC3 device control 3
DC4 device control 4
NAK negative acknowledge
SYN synchronous idle
ETB end of transmission block

CAN cancel
EM end of medium
SUB substitute
ESC escape
FS ! le separator
GS group separator
RS record separator
US unit separator
SP space
DEL delete
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  Unicode Characters  
 ! e " rst electronic computers were developed to perform mathematical 
calculations with numbers. Eventually, they processed textual data as well, 
and the ASCII code became a widespread standard for processing text with 
the Latin alphabet. As computer technology spread around the world, text 
processing in languages with di# erent alphabets produced many incompatible 
systems. ! e Unicode Consortium was established to collect and catalog all the 
alphabets of all the spoken languages in the world, both current and ancient, as 
a " rst step toward a standard system for the worldwide interchange, processing, 
and display of texts in these natural languages. 

 Strictly speaking, the standard organizes characters into scripts, not 
languages. It is possible for one script to be used in multiple languages. For 
example, the extended Latin script can be used for many European and 
American languages. Version 7.0 of the Unicode standard has 123 scripts 
for natural language and 15 scripts for other symbols. Examples of natural 
language scripts are Balinese, Cherokee, Egyptian Hieroglyphs, Greek, 
Phoenician, and ! ai. Examples of scripts for other symbols are Braille 
Patterns, Emoticons, Mathematical Symbols, and Musical Symbols. 

 Each character in every script has a unique identifying number, 
usually written in hexadecimal, and is called a  code point . ! e hexadecimal 
number is preceded by “U+” to indicate that it is a Unicode code point. 
Corresponding to a code point is a  glyph , which is the graphic representation 
of the symbol on the page or screen. For example, in the Hebrew script, the 
code point U+05D1 has the glyph .        

 FIGURE 3.26  shows some example code points and glyphs in the Unicode 
standard. ! e CJK Uni" ed script is for the written languages of China, Japan, 

  FIGURE   3 . 26 
  A few code points and 
glyphs from the Unicode 
character set. 

Code
Point

Glyphs
Unicode Script 0 1 2 3 4 5 6 7
Arabic
Armenian
Braille Patterns

CJK Unified
Cyrillic

Emoticons

Hebrew

Egyptian Hieroglyphs

Basic Latin (ASCII)
Latin-1 Supplement

U+063_
U+054_
U+287_

U+4EB_
U+041_

U+1F61_

U+05D_

U+1300_

U+004_
U+00E_

Cyrillic U+041_
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  Example 3.34  To determine the UTF-32 encoding of the emoticon 
with code point U+1F617, simply pre! x the correct number of zeros. " e 
encoding is 0001 F617 (UTF-32). ❚

 Although UTF-32 is e# ective for processing textual information, it is 
ine$  cient for storing and transmitting textual information. If you have a 
! le that stores mostly ASCII characters, three-fourths of the ! le space will 
be occupied by zeros. UTF-8 is a popular encoding standard that is able to 
represent every Unicode character. It uses one to four bytes to store a single 
character and therefore takes less storage space than UTF-32. " e 64 Ki code 
points in the range U+0000 to U+FFFF, known as the Basic Multilingual 
Plane, contain characters for almost all modern languages. UTF-8 can 
represent each of these code points with one to three bytes and uses only a 
single byte for an ASCII character.        

 FIGURE 3.27  shows the UTF-8 encoding scheme. " e ! rst column, 
labeled Bits, represents the upper limit of the number of bits in the code 
point, excluding all leading zeros. " e x’s in the code represent the rightmost 
bits from the code point, which are spread out over one to four bytes. 

 " e ! rst row in the table corresponds to the ASCII characters, which 
have an upper limit of seven bits. An ASCII character is stored as a single 
byte whose ! rst bit is 0 and whose last seven bits are identical to seven-bit 
ASCII. " e ! rst step in decoding a UTF-8 string is to inspect the ! rst bit of 
the ! rst byte. If it is zero, the ! rst character is an ASCII character, which can 
be determined from the ASCII table, and the following byte is the ! rst byte 
of the next character. 

 If the ! rst bit of the ! rst byte is 1, the ! rst character is outside the range 
U+0000 to U+007F—that is, it is not an ASCII character, and it occupies 
more than one byte. In this case, the number of leading 1’s in the ! rst byte 

  FIGURE   3 . 27 
  The UTF-8 encoding scheme. 

Bits First Code Point Last Code Point Byte 1 Byte 2 Byte 3 Byte 4

7 U+0000 U+007F 0xxxxxxx

11 U+0080 U+07FF 110xxxxx 10xxxxxx

16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+10000 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

7 U+0000 U+007F 0xxxxxxx

1513.4 Hexadecimal and Character Representations
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(b)(a)      The place values for
101.011 (bin).

1c8ʼs place
1c4ʼs place
1c2ʼs place

1ʼs place

2ʼs place

0 1 0 1 1

0.125
0.25
0.0
1.0
0.0

1 
1
0
1 
0

1c8ʼs place
1c4ʼs place
1c2ʼs place
1ʼs place
2ʼs place

=
=
=
=
=

5.375 (dec)

      Converting 101.011 (bin) to
decimal.

4ʼs place

1 .

4.01 4ʼs place =

Figure 3.28
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(a) The binary number 101.011.

1 2 0 0s 2 s 21 s 2�11 s 20

5 10 0 6s 2 s 101 s 100 7 s 10�1���2 s 10�2���1 s 10�3

(b) The decimal number 506.721.

� � �

� � � ��1 s 2�2���1 s 2�3�

Figure 3.29
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.5859375

1 .171875
0 .34375
0 .6875
1 .375
0 .75
1 .5
1 .0
(b) Convert the fractional part

6.5859375

6 (dec) = 110 (bin)
(a) Convert the whole part

.5859375

1 .171875
0 .34375
0 .6875
1 .375
0 .75
1 .5
1 .0
(b) Convert the fractional part

6.5859375

6 (dec) = 110 (bin)
(a) Convert the whole part

Figure 3.30
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Normalized
• Leading 1 on the left of the binary point

• 6.5859375 (dec) = 110.1001011 (bin)

• Normalized scientific notation:

1.101001011 x 22
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.2

0 .4
0 .8
1 .6
1 .2
0 .4
0 .8
1 .6
� �

Figure 3.31
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Significand

Exponent

Sign

Figure 3.32
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The hidden bit
• Normalized scientific notation always has 1 to the 

left of the binary point

• So, do not store it

• Increases precision in the significand

• Floating point unit inserts hidden bit before doing 
computation

• Floating point unit removes leading 1 from 
significand before storing result
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 An example of a biased representation for a ! ve-bit cell is excess 15. 
" e range of numbers for the cell is –15 to 16 as written in decimal and 
00000 to 11111 as written in binary. To convert from decimal to excess 15, 
you add 15 to the decimal value and then convert to binary as you would 
an unsigned number. To convert from excess 15 to decimal, you write the 
decimal value as if it were an unsigned number and subtract 15 from it. In 
excess 15, the ! rst bit denotes whether a value is positive or negative. But 
unlike two’s complement representation, 1 signi! es a positive value, and 0 
signi! es a negative value. 

  Example 3.42  For a ! ve-bit cell, to convert 5 from decimal to excess 15, 
add 5 + 15 = 20. " en convert 20 to binary as if it were unsigned, 20 (dec) = 
10100 (bin). " erefore, 5 (dec) = 10100 (excess 15). " e ! rst bit is 1, 
indicating a positive value. ❚

  Example 3.43  To convert 00011 from excess 15 to decimal, convert 00011 
as an unsigned value, 00011 (bin) = 3 (dec). " en subtract decimal values 
3 – 15 = –12. So, 00011 (excess 15) = –12 (dec). ❚

 FIGURE 3.33  shows the bit patterns for a three-bit cell that stores integers 
with excess 3 representation compared to two’s complement representation. 
Each representation stores eight values. " e excess 3 representation has 
a range of –3 to 4 (dec), while the two’s complement representation has a 
range of –4 to 3 (dec).        

  FIGURE   3 . 33 
  The signed integers for 
a three-bit cell. 

Decimal Excess 3 Two’s Complement

−4 100

−3 000 101

−2 001 110

−1 010 111

0 011 000

1 100 001

2 101 010

3 110 011

4 111

1573.5 Floating-Point Representation
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is even. Similarly, the binary number 1011.1 is just as close to 1011 as it is to 
1100, which is a tie. It rounds to 1100 because 1100 is even. 

  Example 3.45  Assuming a three-bit exponent using excess 3 and a four-
bit signi! cand, how is the number –13.75 stored? Converting the whole 
number part gives 13 (dec) = 1101 (bin). Converting the fractional part 
gives 0.75 (dec) = 0.11. " e complete binary number is 13.75 (dec) =
1101.11 (bin), which is 1.10111 × 2 3  in normalized binary scienti! c notation. 
" e number is negative, so the sign bit is 1. " e exponent is 3 (dec) = 110 
(excess 3). Dropping the leading 1, the ! ve bits to the right of the binary 
point are .10111. However, only four bits can be stored in the signi! cand. 
Furthermore, .10111 is just as close to .1011 as it is to .1100, and the tie rule 
is in e$ ect. Because 1011 is odd and 1100 is even, round to .1100. So, –13.75 
is stored as 1110 1100. ❚

  Special Values  
 Some real values require special treatment. " e most obvious is zero, which 
cannot be normalized because there is no 1 bit in its binary representation. 
You must set aside a special bit pattern for zero. Standard practice is to put 
all 0’s in the exponent ! eld and all 0’s in the signi! cand as well. What do you 
put for the sign? Most common is to have two representations for zero, one 
positive and one negative. For a three-bit exponent and four-bit signi! cand, 
the bit patterns are 

 1 000 0000 (bin) = – 0.0 (dec) 
 0 000 0000 (bin) = +0.0 (dec) 

Decimal
Decimal 
Rounded Binary

Binary 
Rounded

23.499 23 1011.011 1011

23.5 24 1011.1 1100

23.501 24 1011.101 1100

24.499 24 1100.011 1100

24.5 24 1100.1 1100

24.501 25 1100.101 1101

  FIGURE   3 . 34 
  Round to nearest, ties to even. 
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Special value
• Zero

‣ Exponent field all 0’s

‣ Significand all 0’s

‣ There is a +0 and a –0
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 ! is solution for storing zero has rami" cations for some other bit patterns. If 
the bit pattern for +0.0 were not special, then 0 000 0000 would be interpreted 
with the hidden bit as 1.0000 × 2 –3  (bin) = 0.125, the smallest positive value 
that could be stored had the value not been reserved for zero. If this pattern is 
reserved for zero, then the smallest positive value that can be stored is 

 0 000 0001 = 1.0001 × 2 –3  (bin) = 0.1328125 

 which is slightly larger. ! e negative number with the smallest possible 
magnitude is identical but with a 1 in the sign bit. ! e largest positive 
number that can be stored is the bit pattern with the largest exponent and 
the largest signi" cand. ! e bit pattern for the largest value is 

 0 111 1111 (bin) = +31.0 (dec) 

 FIGURE 3.35  shows the number line for the representation where zero 
is the only special value. As with integer representations, there is a limit to 
how large a value you can store. If you try to multiply 9.5 times 12.0, both of 
which are in range, the true value is 114.0, which is in the positive over$ ow 
region.        

 Unlike integer values, however, the real number line has an under$ ow 
region. If you try to multiply 0.145 times 0.145, which are both in range, 
the true value is 0.021025, which is in the positive under$ ow region. ! e 
smallest positive value that can be stored is 0.132815. 

 Numeric calculations with approximate floating point values need 
to have results that are consistent with what would be expected when 
calculations are done with exact precision. For example, suppose you 
multiply 9.5 and 12.0. What should be stored for the result? Suppose you 
store the largest possible value, 31.0, as an approximation. Suppose further 
that this is an intermediate value in a longer computation. If you later need 
to compute half of the result, you will get 15.5, which is far from what the 
correct value would have been. 

  FIGURE   3 . 35 
  The real number line 
with zero as the only 
special value. 

–31.0 –0.1328125 0.1328125 31.00.0
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 ! e same problem occurs in the under" ow region. If you store 0.0 as an 
approximation of 0.021025, and you later want to multiply the value by 12.0, 
you will get 0.0. You risk being misled by what appears to be a reasonable value.        

 ! e problems encountered with over" ow and under" ow are alleviated 
somewhat by introducing more special values for the bit patterns. As is the 
case with zero, you must use some bit patterns that would otherwise be used 
to represent other values on the number line. In addition to zero, three special 
values are common—in# nity, not a number (NaN), and denormalized 
numbers. FIGURE 3.36  lists the four special values for " oating-point 
representation and their bit patterns. 

 In# nity is used for values that are in the over" ow regions. If the result of an 
operation over" ows, the bit pattern for in# nity is stored. If further operations 
are done on this bit pattern, the result is what you would expect for an in# nite 
value. For example, 3/∞ = 0, 5 + ∞ = ∞, and the square root of in# nity is 
in# nity. You can produce in# nity by dividing by 0. For example, 3/0 = ∞, and 
–4/0 = –∞. If you ever do a computation with real numbers and get in# nity, 
you know that an over" ow occurred somewhere in your intermediate results. 

 A bit pattern for a value that is not a number is called a NaN (rhymes 
with plan). NaNs are used to indicate " oating point operations that are illegal. 
For example, taking the square root of a negative number produces NaN, 
and so does dividing 0/0. Any " oating point operation with at least one NaN 
operand produces NaN. For example, 7 + NaN = NaN, and 7/NaN = NaN. 

 Both in# nity and NaN use the largest possible value of the exponent for 
their bit patterns. ! at is, the exponent # eld is all 1’s. ! e signi# cand is all 
0’s for in# nity and can be any nonzero pattern for NaN. Reserving these bit 
patterns for in# nity and NaN has the e$ ect of reducing the range of values 
that can be stored. For a three-bit exponent and four-bit signi# cand, the bit 
patterns for the largest magnitudes and their decimal values are 

 1 111 0000 (bin) = – ∞ 
 1 110 1111 (bin) = –15.5 (dec) 
 0 110 1111 (bin) = +15.5 (dec) 
 0 111 0000 (bin) = +∞        

 In! nity 

 Not a number 

  FIGURE   3 . 36 
  The special values 
in fl oating-point 
representation. 

Special Value Exponent Signi! cand

Zero All zeros All zeros

Denormalized All zeros Nonzero

In! nity All ones All zeros

Not a number All ones Nonzero

In! nity All ones All zeros

1613.5 Floating-Point Representation
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Special value
• Infinity

‣ Exponent field all 1’s

‣ Significand all 0’s

‣ There is a +∞ and a –∞
‣ Produced by operation that gives result in 

overflow region
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Special value
• Not a Number (NaN)

‣ Exponent field all 1’s

‣ Significand nonzero

‣ Produced by illegal math operations
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Special value
• Denormalized number

‣ Exponent field all 0’s

‣ Significand nonzero

‣ Hidden bit is assumed to be 0 instead of 1 

‣ If the exponent is stored in excess n for 
normalized numbers, it is stored in excess n – 1 
for denormalized numbers
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 ! ere is no single in" nitesimal value for the under# ow region in Figure 
3.35 that corresponds to the in" nite value in the over# ow region. Instead, 
there is a set of values called denormalized values that alleviate the problem 
of under# ow. FIGURE 3.37  is a drawing to scale of the # oating point values 
for a binary representation without denormalized special values (top) and 
with denormalized values (bottom) for a system with a three-bit exponent 
and four-bit signi" cand. ! e " gure shows three complete sequences of 
values for exponent " elds of 000, 001, and 010 (excess 3), which represent 
–3, –2, and –1 (dec), respectively. 

 For normalized numbers in general, the gap between successive values 
doubles with each unit increase of the exponent. For example, in the number 
line on the top, the group of 16 values between 0.125 and 0.25 corresponds to 
numbers written in binary scienti" c notation with a multiplier of 2 –3 . ! e 16 
numbers between 0.25 and 0.5 are spaced twice as far apart and correspond 
to numbers written in binary scienti" c notation with a multiplier of 2 –2 . 

 Without denormalized special values, the gap between +0.0 and the 
smallest positive value is excessive compared to the gaps in the smallest 
sequence. Denormalized special values make the gap between successive 
values for the " rst sequence equal to the gap between successive values for the 
second sequence. It spreads these values out evenly as they approach +0.0 
from the right. On the le$  half of the number line, not shown in the " gure, 
the negative values are spread out evenly as they approach –0.0 from the le$ . 

 ! is behavior of denormalized values is called  gradual under! ow . With 
gradual under# ow, the gap between the smallest positive value and zero 
is reduced considerably. ! e idea is to take the nonzero values that would 
be stored with an exponent " eld of all 0’s (in excess representation) and 
distribute them evenly in the under# ow gap. 

 Because the exponent " eld of all 0’s is reserved for denormalized 
numbers, the smallest positive normalized number becomes 

 0 001 0000 = 1.000 × 2 –2  (bin) = 0.25 (dec) 

 It might appear that we have made matters worse because the smallest 
positive normalized number with 000 in the exponent " eld is 0.1328125. 

 Denormalized numbers 

Gradual under! ow

  FIGURE   3 . 37 
  The real number line with and without denormalized numbers. 

+0.0 1.00.5
Denormalized

Normalized
. . .

. . .

0.250.125
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gradual under# ow, the gap between the smallest positive value and zero 
is reduced considerably. ! e idea is to take the nonzero values that would 
be stored with an exponent " eld of all 0’s (in excess representation) and 
distribute them evenly in the under# ow gap. 

 Because the exponent " eld of all 0’s is reserved for denormalized 
numbers, the smallest positive normalized number becomes 
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 It might appear that we have made matters worse because the smallest 
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Binary Scienti! c Notation Decimal

Not a number 1 111 nonzero

Negative in! nity 1 111 0000 −∞

Negative 
normalized

1 110 1111
1 110 1110
. . .
1 011 0001
1 011 0000
1 010 1111
. . .
1 001 0001
1 001 0000

−1.1111 × 23

−1.1110 × 23

. . .
−1.0001 × 20

−1.0000 × 20

−1.1111 × 2−1

. . .
−1.0001 × 2−2

−1.0000 × 2−2

−15.5
−15.0
. . .
−1.0625
−1.0
−0.96875
. . .
−0.265625
−0.25

Negative 
denormalized

1 000 1111
1 000 1110
. . .
1 000 0010
1 000 0001

−0.1111 × 2−2

−0.1110 × 2−2

. . .
−0.0010 × 2−2

−0.0001 × 2−2

−0.234375
−0.21875
. . .
−0.03125
−0.015625

Negative zero 1 000 0000 −0.0

Positive zero 0 000 0000 +0.0

Positive 
denormalized

0 000 0001
0 000 0010
. . .
0 000 1110
0 000 1111

0.0001 × 2−2

0.0010 × 2−2

. . .
0.1110 × 2−2

0.1111 × 2−2

0.015625
0.03125
. . .
0.21875
0.234375

Positive 
normalized

0 001 0000
0 001 0001
. . .
0 010 1111
0 011 0000
0 011 0001
. . .
0 110 1110
0 110 1111

1.0000 × 2−2

1.0001 × 2−2

. . .
1.1111 × 2−1

1.0000 × 20

1.0001 × 20

. . .
1.1110 × 23

1.1111 × 23

0.25
0.265625
. . .
0.96875
1.0
1.0625
. . .
15.0
15.5

Positive in! nity 0 111 0000 +∞

Not a number 0 111 nonzero

  FIGURE   3 . 38 
  Floating-point values for a three-bit exponent and four-bit signifi cand. 
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Binary Scienti! c Notation Decimal

Not a number 1 111 nonzero

Negative in! nity 1 111 0000 −∞

Negative 
normalized

1 110 1111
1 110 1110
. . .
1 011 0001
1 011 0000
1 010 1111
. . .
1 001 0001
1 001 0000

−1.1111 × 23

−1.1110 × 23

. . .
−1.0001 × 20

−1.0000 × 20

−1.1111 × 2−1

. . .
−1.0001 × 2−2

−1.0000 × 2−2

−15.5
−15.0
. . .
−1.0625
−1.0
−0.96875
. . .
−0.265625
−0.25

Negative 
denormalized

1 000 1111
1 000 1110
. . .
1 000 0010
1 000 0001

−0.1111 × 2−2

−0.1110 × 2−2

. . .
−0.0010 × 2−2

−0.0001 × 2−2

−0.234375
−0.21875
. . .
−0.03125
−0.015625

Negative zero 1 000 0000 −0.0

Positive zero 0 000 0000 +0.0

Positive 
denormalized

0 000 0001
0 000 0010
. . .
0 000 1110
0 000 1111

0.0001 × 2−2

0.0010 × 2−2

. . .
0.1110 × 2−2

0.1111 × 2−2

0.015625
0.03125
. . .
0.21875
0.234375

Positive 
normalized

0 001 0000
0 001 0001
. . .
0 010 1111
0 011 0000
0 011 0001
. . .
0 110 1110
0 110 1111

1.0000 × 2−2

1.0001 × 2−2

. . .
1.1111 × 2−1

1.0000 × 20

1.0001 × 20

. . .
1.1110 × 23

1.1111 × 23

0.25
0.265625
. . .
0.96875
1.0
1.0625
. . .
15.0
15.5

Positive in! nity 0 111 0000 +∞

Not a number 0 111 nonzero

  FIGURE   3 . 38 
  Floating-point values for a three-bit exponent and four-bit signifi cand. 
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Bits 1 8 23

Bits 1 11 52

(a) Single precision

(b) Double precision

Figure 3.39

IEEE 754 floating point
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Single precision
• C type: float

• Exponent: 8-bit cell

‣ Excess 127 representation

‣ Excess 126 for denormalized numbers

• Exponent: 8-bit cell

‣ Significand: 23-bit cell
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Double precision
• C type: double

• Exponent: 11-bit cell

‣ Excess 1023 representation

‣ Excess 1022 for denormalized numbers

• Exponent: 8-bit cell

‣ Significand: 52-bit cell


