
Chapter 4

Computer
Architecture

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Pep/9 virtual machine

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Central Processing Unit (CPU)
 Th e CPU contains six specialized memory locations called registers. As
shown in FIGURE 4.2 , they are

 ❯ Th e 4-bit status register (NZVC)
 ❯ Th e 16-bit accumulator (A)
 ❯ Th e 16-bit index register (X)
 ❯ Th e 16-bit program counter (PC)
 ❯ Th e 16-bit stack pointer (SP)
 ❯ Th e 24-bit instruction register (IR)

System bus

Disk

Central
processing
unit

Main memory

Input

Output

Data flow

Control

 FIGURE 4 . 1
 Block diagram of the
Pep/9 computer.

 FIGURE 4 . 2
 The CPU of the Pep/9
computer.

Central processing unit (CPU)

Status bits (NZVC)

Accumulator (A)

Index register (X)

Program counter (PC)

Stack pointer (SP)

Instruction register (IR)

N Z V C

1854.1 Hardware

9781284079630_CH04_Pass03.indd 185 19/01/16 5:56 pm

Figure 4.1

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Central processing unit (CPU)

Status bits ()

Accumulator ()

Index register ()

Program counter ()

Stack pointer ()

Instruction register ()

Figure 4.2

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Main memory

0000 0001 0002

0003

0004 0005

FFFE FFFF

0006
...

Figure 4.3

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Main memory

0000

0003

0004

0007

000A

000B

000D
...

...

Figure 4.4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

000B

000C

0

1

0

1

0

0

0

1

0

0

0

0

1

0

0

1

000B 000C

02 D1

000B 02D1

The content in binary.

(b) The content in hexadecimal.

 The content in a machine
language listing.

(a)

(c)

000B

000C

0

1

0

1

0

0

0

1

0

0

0

0

1

0

0

1

000B 000C

02 D1

000B 02D1

The content in binary.

(b) The content in hexadecimal.

 The content in a machine
language listing.

(a)

(c)

000B

000C

0

1

0

1

0

0

0

1

0

0

0

0

1

0

0

1

000B 000C

02 D1

000B 02D1

The content in binary.

(b) The content in hexadecimal.

 The content in a machine
language listing.

(a)

(c)

Figure 4.5

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Instruction Specifi er Instruction
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101

Stop execution
Return from CALL
Return from trap
Move SP to A
Move NZVC fl ags to A〈12..15〉
Move A〈12..15〉 to NZVC fl ags

0000 011r
0000 100r
0000 101r
0000 110r
0000 111r
0001 000r

Bitwise invert r
Negate r
Arithmetic shift left r
Arithmetic shift right r
Rotate left r
Rotate right r

0001 001a
0001 010a
0001 011a
0001 100a
0001 101a
0001 110a
0001 111a
0010 000a
0010 001a
0010 010a

Branch unconditional
Branch if less than or equal to
Branch if less than
Branch if equal to
Branch if not equal to
Branch if greater than or equal to
Branch if greater than
Branch if V
Branch if C
Call subroutine

0010 011n Unimplemented opcode, unary trap

0010 1aaa
0011 0aaa
0011 1aaa
0100 0aaa
0100 1aaa

Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap

0101 0aaa
0101 1aaa

Add to stack pointer (SP)
Subtract from stack pointer (SP)

0110 raaa
0111 raaa
1000 raaa
1001 raaa

Add to r
Subtract from r
Bitwise AND to r
Bitwise OR to r

1010 raaa
1011 raaa
1100 raaa
1101 raaa
1110 raaa
1111 raaa

Compare word to r
Compare byte to r〈8..15〉
Load word r from memory
Load byte r〈8..15〉 from memory
Store word r to memory
Store byte r〈8..15〉 to memory

FIGURE 4 . 6
 The Pep/9 instruction set at Level ISA3.

0000 0001 Return from CALL

190

9781284079630_CH04_183_230.indd 190 29/01/16 8:05 pm

Figure 4.6

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Instruction Specifi er Instruction
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101

Stop execution
Return from CALL
Return from trap
Move SP to A
Move NZVC fl ags to A〈12..15〉
Move A〈12..15〉 to NZVC fl ags

0000 011r
0000 100r
0000 101r
0000 110r
0000 111r
0001 000r

Bitwise invert r
Negate r
Arithmetic shift left r
Arithmetic shift right r
Rotate left r
Rotate right r

0001 001a
0001 010a
0001 011a
0001 100a
0001 101a
0001 110a
0001 111a
0010 000a
0010 001a
0010 010a

Branch unconditional
Branch if less than or equal to
Branch if less than
Branch if equal to
Branch if not equal to
Branch if greater than or equal to
Branch if greater than
Branch if V
Branch if C
Call subroutine

0010 011n Unimplemented opcode, unary trap

0010 1aaa
0011 0aaa
0011 1aaa
0100 0aaa
0100 1aaa

Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap

0101 0aaa
0101 1aaa

Add to stack pointer (SP)
Subtract from stack pointer (SP)

0110 raaa
0111 raaa
1000 raaa
1001 raaa

Add to r
Subtract from r
Bitwise AND to r
Bitwise OR to r

1010 raaa
1011 raaa
1100 raaa
1101 raaa
1110 raaa
1111 raaa

Compare word to r
Compare byte to r〈8..15〉
Load word r from memory
Load byte r〈8..15〉 from memory
Store word r to memory
Store byte r〈8..15〉 to memory

FIGURE 4 . 6
 The Pep/9 instruction set at Level ISA3.

0000 0001 Return from CALL

190

9781284079630_CH04_183_230.indd 190 29/01/16 8:05 pm

Figure 4.6
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Instruction Specifi er Instruction
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101

Stop execution
Return from CALL
Return from trap
Move SP to A
Move NZVC fl ags to A〈12..15〉
Move A〈12..15〉 to NZVC fl ags

0000 011r
0000 100r
0000 101r
0000 110r
0000 111r
0001 000r

Bitwise invert r
Negate r
Arithmetic shift left r
Arithmetic shift right r
Rotate left r
Rotate right r

0001 001a
0001 010a
0001 011a
0001 100a
0001 101a
0001 110a
0001 111a
0010 000a
0010 001a
0010 010a

Branch unconditional
Branch if less than or equal to
Branch if less than
Branch if equal to
Branch if not equal to
Branch if greater than or equal to
Branch if greater than
Branch if V
Branch if C
Call subroutine

0010 011n Unimplemented opcode, unary trap

0010 1aaa
0011 0aaa
0011 1aaa
0100 0aaa
0100 1aaa

Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap

0101 0aaa
0101 1aaa

Add to stack pointer (SP)
Subtract from stack pointer (SP)

0110 raaa
0111 raaa
1000 raaa
1001 raaa

Add to r
Subtract from r
Bitwise AND to r
Bitwise OR to r

1010 raaa
1011 raaa
1100 raaa
1101 raaa
1110 raaa
1111 raaa

Compare word to r
Compare byte to r〈8..15〉
Load word r from memory
Load byte r〈8..15〉 from memory
Store word r to memory
Store byte r〈8..15〉 to memory

FIGURE 4 . 6
 The Pep/9 instruction set at Level ISA3.

0000 0001 Return from CALL

190

9781284079630_CH04_183_230.indd 190 29/01/16 8:05 pm

Figure 4.6
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 4.7

Instruction

specifier

Operand

specifier

(a) The two parts of a nonunary instruction

(b) A unary instruction

Instruction

specifier

Figure 4.7

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Instruction
specifier

Operand
specifier

(a) The two parts of a nonunary instruction.

(b) A unary instruction.

Instruction
specifier

FIGURE 4 . 7
 The Pep/9 instruction
format.

(a) The two parts of a nonunary instruction.

 Example 4.1 Figure 4.6 shows that the “branch if equal to” instruction has an
instruction specifi er of 0001 100a. Because the letter a can be zero or one, there
are really two versions of the instruction—0001 1000 and 0001 1001. Similarly,
there are eight versions of the decimal output trap instruction. Its instruction
specifi er is 0011 1aaa, where aaa can be any combination from 000 to 111. ❚

 FIGURE 4.8 summarizes the meaning of the possible fi elds in the
instruction specifi er for the letters a and r. Generally, the letter a stands
for addressing mode, and the letter r stands for register. When r is 0, the
instruction operates on the accumulator. When r is 1, the instruction operates
on the index register. Pep/9 executes each nonunary instruction in one of eight
addressing modes—immediate, direct, indirect, stack-relative, stack-relative

aaa Addressing Mode

000 Immediate

001 Direct

010 Indirect

011 Stack-relative

100 Stack-relative deferred

101 Indexed

110 Stack-indexed

111 Stack-deferred indexed

(a) The addressing-aaa fi eld.

a Addressing Mode

0 Immediate

1 Indexed

(b) The addressing-a fi eld.

r Register

0 Accumulator, A

1 Index register, X

(c) The register-r fi eld.

 FIGURE 4 . 8
 The Pep/9 instruction specifi er fi elds.

000 Immediate 0 Immediate 0 Accumulator, A

1914.1 Hardware

9781284079630_CH04_183_230.indd 191 29/01/16 8:05 pm

Figure 4.8

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Instruction
specifier

Operand
specifier

(a) The two parts of a nonunary instruction.

(b) A unary instruction.

Instruction
specifier

FIGURE 4 . 7
 The Pep/9 instruction
format.

(a) The two parts of a nonunary instruction.

 Example 4.1 Figure 4.6 shows that the “branch if equal to” instruction has an
instruction specifi er of 0001 100a. Because the letter a can be zero or one, there
are really two versions of the instruction—0001 1000 and 0001 1001. Similarly,
there are eight versions of the decimal output trap instruction. Its instruction
specifi er is 0011 1aaa, where aaa can be any combination from 000 to 111. ❚

 FIGURE 4.8 summarizes the meaning of the possible fi elds in the
instruction specifi er for the letters a and r. Generally, the letter a stands
for addressing mode, and the letter r stands for register. When r is 0, the
instruction operates on the accumulator. When r is 1, the instruction operates
on the index register. Pep/9 executes each nonunary instruction in one of eight
addressing modes—immediate, direct, indirect, stack-relative, stack-relative

aaa Addressing Mode

000 Immediate

001 Direct

010 Indirect

011 Stack-relative

100 Stack-relative deferred

101 Indexed

110 Stack-indexed

111 Stack-deferred indexed

(a) The addressing-aaa fi eld.

a Addressing Mode

0 Immediate

1 Indexed

(b) The addressing-a fi eld.

r Register

0 Accumulator, A

1 Index register, X

(c) The register-r fi eld.

 FIGURE 4 . 8
 The Pep/9 instruction specifi er fi elds.

000 Immediate 0 Immediate 0 Accumulator, A

1914.1 Hardware

9781284079630_CH04_183_230.indd 191 29/01/16 8:05 pm

Figure 4.8
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

deferred, indexed, stack-indexed, or stack-deferred indexed. Later chapters
describe the meaning of the addressing modes. For now, it is important only
that you know how to use the tables of Figures 4.7 and 4.8 to determine which
register and addressing mode a given instruction uses. Th e meaning of the
letter n in the unary trap instruction is described in a later chapter.

Example 4.2 Determine the opcode, register, and addressing mode of the
1100 1011 instruction. Starting from the left , determine with the help of
Figure 4.6 that the opcode is 1100. Th e next bit aft er the opcode is the r bit,
which is 1, indicating the index register. Th e three bits aft er the r bit are the
aaa bits, which are 011, indicating stack-relative addressing. Th erefore, the
instruction loads a word from memory into the index register using stack-
relative addressing. ❚

 Th e operand specifi er, for those instructions that are not unary, indicates
the operand to be processed by the instruction. Th e CPU can interpret
the operand specifi er several diff erent ways, depending on the bits in the
instruction specifi er. For example, it may interpret the operand specifi er as
an ASCII character, as an integer in two’s complement representation, or as
an address in main memory where the operand is stored.

 Instructions are stored in main memory. Th e address of an instruction
in main memory is the address of the fi rst byte of the instruction.

 Example 4.3 FIGURE 4.9 shows two adjacent instructions stored in main
memory at locations 01A3 and 01A6. Th e instruction at 01A6 is unary; the
instruction at 01A3 is not.

 In this example, the instruction at 01A3 has

 Opcode: 0111
 Register-r fi eld: 1
 Addressing-aaa fi eld: 101
 Operand specifi er: 0000 0011 0100 1110

Main memory

01A3 01A4

0 0 0 0 0 0 1 10 1 1 1 1 1 0 1

0 0 0 0 1 1 0 0

01A5

0 1 0 0 1 1 1 0

01A6

 FIGURE 4 . 9
 Two instructions in main memory.

192 CHAPTER 4 Computer Architecture

9781284079630_CH04_Pass03.indd 192 19/01/16 5:56 pm

Figure 4.9

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Direct addressing
• Oprnd = Mem[OprndSpec]

• The operand specifier is the memory
address of the operand.

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The stop instruction
• Instruction specifier: 0000 0000

• Causes the computer to stop

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The load word instruction
• Instruction specifier: 1100 raaa

• Loads one word (two bytes) from memory
to register r

r Oprnd ; N r< 0 , Z r= 0

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Example 4.4 Suppose the instruction to be executed is C1004A in
hexadecimal, which FIGURE 4.10 shows in binary. Th e register-r fi eld in
this example is 0, which indicates a load word to the accumulator instead
of the index register. Th e addressing-aaa fi eld is 001, which indicates direct
addressing.

 FIGURE 4.11 shows the eff ect of executing the load word instruction,
assuming Mem[004A] has an initial content of 92EF. Th e load word
instruction does not change the content of the memory location. It sends a
copy of the two memory cells (at addresses 004A and 004B) to the register.
Whatever was in the register before the instruction was executed, in this
case 036D, is destroyed. Th e N bit is set to 1 because the bit pattern loaded
has 1 in the sign bit. Th e Z bit is set to 0 because the bit pattern is not all 0’s.
Th e V and C bits are unaff ected by the load word instruction.

 Figure 4.11 shows the data fl ow lines and control lines that the load
word instruction activates. As indicated by the solid lines, data fl ows from
the main memory on the bus to the CPU, and then into the register. For
this data transfer to take place, the CPU must send a control signal (as
indicated by the dashed lines) to main memory, telling it to put the data on
the bus. Th e CPU also tells main memory the address from which to fetch
the data. ❚

Opcode r aaa
Instruction specifier

1 1 0 0 0 0 0 1
C 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

 FIGURE 4 . 10
 The load word instruction.

C1004A
Load accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92EF 10
004A

CPU

NZ

A 92EF

Mem

92EF
004A

FIGURE 4 . 11
 Execution of the load word instruction.

Load accumulator004A 004A

1954.2 Direct Addressing

9781284079630_CH04_Pass03.indd 195 19/01/16 5:56 pm

Figure 4.10, 4.11

 Example 4.4 Suppose the instruction to be executed is C1004A in
hexadecimal, which FIGURE 4.10 shows in binary. Th e register-r fi eld in
this example is 0, which indicates a load word to the accumulator instead
of the index register. Th e addressing-aaa fi eld is 001, which indicates direct
addressing.

 FIGURE 4.11 shows the eff ect of executing the load word instruction,
assuming Mem[004A] has an initial content of 92EF. Th e load word
instruction does not change the content of the memory location. It sends a
copy of the two memory cells (at addresses 004A and 004B) to the register.
Whatever was in the register before the instruction was executed, in this
case 036D, is destroyed. Th e N bit is set to 1 because the bit pattern loaded
has 1 in the sign bit. Th e Z bit is set to 0 because the bit pattern is not all 0’s.
Th e V and C bits are unaff ected by the load word instruction.

 Figure 4.11 shows the data fl ow lines and control lines that the load
word instruction activates. As indicated by the solid lines, data fl ows from
the main memory on the bus to the CPU, and then into the register. For
this data transfer to take place, the CPU must send a control signal (as
indicated by the dashed lines) to main memory, telling it to put the data on
the bus. Th e CPU also tells main memory the address from which to fetch
the data. ❚

Opcode r aaa
Instruction specifier

1 1 0 0 0 0 0 1
C 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

 FIGURE 4 . 10
 The load word instruction.

C1004A
Load accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92EF 10
004A

CPU

NZ

A 92EF

Mem

92EF
004A

FIGURE 4 . 11
 Execution of the load word instruction.

Load accumulator004A 004A

1954.2 Direct Addressing

9781284079630_CH04_183_230.indd 195 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Instruction specifier: 1110 raaa

• Stores one word (two bytes) from register r
to memory

Oprnd r

The store word instruction

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 The Store Word Instruction
 Th e store word instruction has instruction specifi er 1110 raaa. Th is
instruction stores one word (two bytes) from either the accumulator or the
index register to a memory location. With direct addressing, the operand
specifi es the memory location in which the information is stored. Th e RTL
specifi cation for the store instruction is

Oprnd ← r

 Example 4.5 Suppose the instruction to be executed is E9004A in
hexadecimal, which FIGURE 4.12 shows in binary. Th is time, the register-r
fi eld indicates that the instruction will aff ect the index register. Th e
addressing-aaa fi eld, 001, indicates direct addressing.

FIGURE 4.13 shows the eff ect of executing the store instruction,
assuming the index register has an initial content of 16BC. Th e store
instruction does not change the content of the register. It sends a copy of the
register to two memory cells (at addresses 004A and 004B). Whatever was
in the memory cells before the instruction was executed, in this case F082, is
destroyed. Th e store instruction aff ects none of the status bits. ❚

Opcode r aaa
Instruction specifier

1 1 1 0 1 0 0 1
E 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE 4 . 12
 The store word instruction.

E9004A
Store index register

(a) Before. (b) After.

CPU

X 16BC X 16BC

Mem

F082
004A

CPU Mem

16BC
004A

FIGURE 4 . 13
 Execution of the store word instruction.

Store index register004A 004A

196 CHAPTER 4 Computer Architecture

9781284079630_CH04_Pass03.indd 196 19/01/16 5:56 pm

Figure 4.12, 4.13

 The Store Word Instruction
 Th e store word instruction has instruction specifi er 1110 raaa. Th is
instruction stores one word (two bytes) from either the accumulator or the
index register to a memory location. With direct addressing, the operand
specifi es the memory location in which the information is stored. Th e RTL
specifi cation for the store instruction is

Oprnd ← r

 Example 4.5 Suppose the instruction to be executed is E9004A in
hexadecimal, which FIGURE 4.12 shows in binary. Th is time, the register-r
fi eld indicates that the instruction will aff ect the index register. Th e
addressing-aaa fi eld, 001, indicates direct addressing.

 FIGURE 4.13 shows the eff ect of executing the store instruction,
assuming the index register has an initial content of 16BC. Th e store
instruction does not change the content of the register. It sends a copy of the
register to two memory cells (at addresses 004A and 004B). Whatever was
in the memory cells before the instruction was executed, in this case F082, is
destroyed. Th e store instruction aff ects none of the status bits. ❚

Opcode r aaa
Instruction specifier

1 1 1 0 1 0 0 1
E 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE 4 . 12
 The store word instruction.

E9004A
Store index register

(a) Before. (b) After.

CPU

X 16BC X 16BC

Mem

F082
004A

CPU Mem

16BC
004A

FIGURE 4 . 13
 Execution of the store word instruction.

Store index register004A 004A

196 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 196 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The add instruction
• Instruction specifier: 0110 raaa

• Adds one word (two bytes) from memory
to register r

r r+Oprnd ; N r< 0 , Z r= 0 ,

V {overflow} , C {carry}

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 The Add Instruction
 Th e add instruction has instruction specifi er 0110 raaa. It is similar to the
load word instruction in that data is transferred from main memory to
register r in the CPU. But with the add instruction, the original content of
the register is not just written over by the content of the word from main
memory. Instead, the content of the word from main memory is added to
the content of the register. Th e sum is placed in the register, and all four
status bits are set accordingly. As with the load word instruction, a copy of
the memory word is sent to the CPU. Th e original content of the memory
word is unchanged. Th e RTL specifi cation of the add instruction is

r ← r + Oprnd; N ← r < 0, Z ← r = 0, V ← { overfl ow }, C ← { carry }

 Example 4.6 Suppose the instruction to be executed is 69004A in
hexadecimal, which FIGURE 4.14 shows in binary. Th e register-r fi eld
indicates that the instruction will aff ect the index register. Th e addressing-
aaa fi eld, 001, indicates direct addressing.

 FIGURE 4.15 shows the eff ect of executing the add instruction,
assuming the index register has an initial content of 0005 and Mem[004A]

Opcode r aaa
Instruction specifier

0 1 1 0 1 0 0 1
6 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

 FIGURE 4 . 14
 The add instruction.

Add index register

69004A

(a) Before. (b) After.

CPU

NZVC

X 0005

Mem

FFF9
004A

CPU

1000NZVC

X FFFE

Mem

FFF9
004A

 FIGURE 4 . 15
 Execution of the add instruction.

Add index register004A 004A

1974.2 Direct Addressing

9781284079630_CH04_Pass03.indd 197 19/01/16 5:56 pm

Figure 4.14, 4.15

 The Add Instruction
 Th e add instruction has instruction specifi er 0110 raaa. It is similar to the
load word instruction in that data is transferred from main memory to
register r in the CPU. But with the add instruction, the original content of
the register is not just written over by the content of the word from main
memory. Instead, the content of the word from main memory is added to
the content of the register. Th e sum is placed in the register, and all four
status bits are set accordingly. As with the load word instruction, a copy of
the memory word is sent to the CPU. Th e original content of the memory
word is unchanged. Th e RTL specifi cation of the add instruction is

r ← r + Oprnd ; N ← r < 0 , Z ← r = 0 , V ← { overfl ow } , C ← { carry }

 Example 4.6 Suppose the instruction to be executed is 69004A in
hexadecimal, which FIGURE 4.14 shows in binary. Th e register-r fi eld
indicates that the instruction will aff ect the index register. Th e addressing-
aaa fi eld, 001, indicates direct addressing.

 FIGURE 4.15 shows the eff ect of executing the add instruction,
assuming the index register has an initial content of 0005 and Mem[004A]

Opcode r aaa
Instruction specifier

0 1 1 0 1 0 0 1
6 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

 FIGURE 4 . 14
 The add instruction.

Add index register

69004A

(a) Before. (b) After.

CPU

NZVC

X 0005

Mem

FFF9
004A

CPU

1000NZVC

X FFFE

Mem

FFF9
004A

 FIGURE 4 . 15
 Execution of the add instruction.

Add index register004A 004A

1974.2 Direct Addressing

9781284079630_CH04_183_230.indd 197 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The subtract instruction
• Instruction specifier: 0111 raaa

• Subtracts one word (two bytes) from
memory from register r

V {overflow} , C {carry}

r r�Oprnd ; N r< 0 , Z r= 0 ,

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

has –7 (dec) = FFF9 (hex). In decimal, the sum 5 + (–7) is –2, which is
shown as FFFE (hex) in Figure 4.15 (b). Th e fi gure shows the NZVC bits in
binary. Th e N bit is 1 because the sum is negative. Th e Z bit is 0 because the
sum is not all 0’s. Th e V bit is 0 because an overfl ow did not occur, and the
C bit is 0 because a carry did not occur out of the most signifi cant bit. ❚

 The Subtract Instruction
 Th e subtract instruction has instruction specifi er 0111 raaa. It is similar to
the add instruction, except that the operand is subtracted from the register.
Th e result is placed in the register, and the operand is unchanged. With
subtraction, the C bit represents a carry from adding the negation of the
operand. Th e RTL specifi cation of the subtract instruction is

r ← r − Oprnd; N ← r < 0, Z ← r = 0, V ← { overfl ow }, C ← { carry }

 Example 4.7 Suppose the instruction to be executed is 71004A in
hexadecimal, which FIGURE 4.16 shows in binary. Th e register-r fi eld
indicates that the instruction will aff ect the accumulator.

 FIGURE 4.17 shows the eff ect of executing the subtract instruction,
assuming the accumulator has an initial content of 0003 and Mem[004A]
has 0009. In decimal, the diff erence 3 – 9 is –6, which is shown as FFFA
(hex) in Figure 4.17(b). Th e fi gure shows the NZVC bits in binary. Th e N bit

Opcode r aaa
Instruction specifier

0 1 1 1 0 0 0 1
7 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE 4 . 16
 The subtract instruction.

71004A
Subtract accumulator

(a) Before. (b) After.

CPU

NZVC

A 0003

Mem

0009
004A

CPU

1000NZVC

A FFFA

Mem

0009
004A

FIGURE 4 . 17
 Execution of the subtract instruction.

Subtract accumulator004A 004A

198 CHAPTER 4 Computer Architecture

9781284079630_CH04_Pass03.indd 198 19/01/16 5:56 pm

Figure 4.16, 4.17

has –7 (dec) = FFF9 (hex). In decimal, the sum 5 + (–7) is –2, which is
shown as FFFE (hex) in Figure 4.15 (b). Th e fi gure shows the NZVC bits in
binary. Th e N bit is 1 because the sum is negative. Th e Z bit is 0 because the
sum is not all 0’s. Th e V bit is 0 because an overfl ow did not occur, and the
C bit is 0 because a carry did not occur out of the most signifi cant bit. ❚

 The Subtract Instruction
 Th e subtract instruction has instruction specifi er 0111 raaa. It is similar to
the add instruction, except that the operand is subtracted from the register.
Th e result is placed in the register, and the operand is unchanged. With
subtraction, the C bit represents a carry from adding the negation of the
operand. Th e RTL specifi cation of the subtract instruction is

r ← r − Oprnd ; N ← r < 0 , Z ← r = 0 , V ← { overfl ow } , C ← { carry }

 Example 4.7 Suppose the instruction to be executed is 71004A in
hexadecimal, which FIGURE 4.16 shows in binary. Th e register-r fi eld
indicates that the instruction will aff ect the accumulator.

 FIGURE 4.17 shows the eff ect of executing the subtract instruction,
assuming the accumulator has an initial content of 0003 and Mem[004A]
has 0009. In decimal, the diff erence 3 – 9 is –6, which is shown as FFFA
(hex) in Figure 4.17(b). Th e fi gure shows the NZVC bits in binary. Th e N bit

Opcode r aaa
Instruction specifier

0 1 1 1 0 0 0 1
7 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE 4 . 16
 The subtract instruction.

71004A
Subtract accumulator

(a) Before. (b) After.

CPU

NZVC

A 0003

Mem

0009
004A

CPU

1000NZVC

A FFFA

Mem

0009
004A

FIGURE 4 . 17
 Execution of the subtract instruction.

Subtract accumulator004A 004A

198 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 198 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The and instruction
• Instruction specifier: 1000 raaa

• ANDs one word (two bytes) from memory
to register r

r r^Oprnd ; N r< 0 , Z r= 0

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

is 1 because the sum is negative. Th e Z bit is 0 because the sum is not all 0’s.
Th e V bit is 0 because an overfl ow did not occur, and the C bit is 0 because
a carry did not occur when –9 was added to 3. ❚

 The And and Or Instructions
 Th e and instruction has instruction specifi er 1000 raaa, and the or instruction
has instruction specifi er 1001 raaa. Both instructions are similar to the add
instruction. Rather than add the operand to the register, each instruction
performs a logical operation on the register. Th e and operation is useful for
masking out undesired 1 bits from a bit pattern. Th e or operation is useful
for inserting 1 bits into a bit pattern. Both instructions aff ect the N and Z
bits and leave the V and C bits unchanged. Th e RTL specifi cations for the
and and or instructions are

r ← r ⋀ Oprnd; N ← r < 0, Z ← r = 0
r ← r ⋁ Oprnd; N ← r < 0, Z ← r = 0

 Example 4.8 Suppose the instruction to be executed is 89004A in
hexadecimal, which FIGURE 4.18 shows in binary. Th e opcode indicates
that the and instruction will execute and the register-r fi eld indicates that
the instruction will aff ect the index register.

 FIGURE 4.19 shows the eff ect of executing the and instruction, assuming
the index register has an initial content of 5DC3 and Mem[004A] has 00FF.
In binary, 00FF is 0000 0000 1111 1111. At every position where there is a 1
in Mem[004A], the corresponding bit in the index register is unchanged. At
every position where there is a 0, the corresponding bit is cleared to 0. Th e
fi gure shows the NZ bits in binary. Th e N bit is 0 because the quantity in the
index register is not negative when interpreted as a signed integer. Th e Z bit
is 0 because the index register is not all 0’s. ❚

 Example 4.9 FIGURE 4.20 shows the operation of the or instruction. Th e
initial state is identical to that of Example 4.8, except that the opcode of
the instruction specifi er 99 is 1001, which indicates the or instruction. Th is
time, at every position where there is a 0 in Mem[004A], the corresponding

Opcode r aaa
Instruction specifier

1 0 0 0 1 0 0 1
8 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

 FIGURE 4 . 18
 The and instruction.

1994.2 Direct Addressing

9781284079630_CH04_Pass03.indd 199 19/01/16 5:56 pm

Figure 4.18, 4.19

89004A
And index register

(a) Before. (b) After.

CPU

NZ

X 5DC3

Mem

00FF
004A

CPU

NZ 00

X 00C3

Mem

00FF
004A

FIGURE 4 . 19
 Execution of the and instruction.

And index register004A 004A

99004A
Or index register

(a) Before. (b) After.

CPU

NZ

X 5DC3

Mem

00FF
004A

CPU

00NZ

X 5DFF

Mem

00FF
004A

FIGURE 4 . 20
 Execution of the or instruction.

Or index register004A 004A

bit in the index register is unchanged. At every position where there is a 1,
the corresponding bit is set to 1. Th e N bit is 0 because the index register
would not be negative if it were interpreted as a signed integer. ❚

 The Invert and Negate Instructions
 Th e invert instruction has instruction specifi er 0000 011r, and the negate
instruction has instruction specifi er 0000 100r. Both instructions are unary.
Th ey have no operand specifi er. Th e invert instruction performs the NOT
operation on the register. Th at is, each 1 is changed to 0, and each 0 is
changed to 1. It aff ects the N and Z bits. Th e RTL specifi cation of the invert
instruction is

r ← ¬r ; N ← r < 0 , Z ← r = 0

200 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 200 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The or instruction
• Instruction specifier: 1001 raaa

• ORs one word (two bytes) from memory to
register r

r r_Oprnd ; N r< 0 , Z r= 0

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

89004A
And index register

(a) Before. (b) After.

CPU

NZ

X 5DC3

Mem

00FF
004A

CPU

NZ 00

X 00C3

Mem

00FF
004A

FIGURE 4 . 19
 Execution of the and instruction.

And index register004A 004A

99004A
Or index register

(a) Before. (b) After.

CPU

NZ

X 5DC3

Mem

00FF
004A

CPU

00NZ

X 5DFF

Mem

00FF
004A

FIGURE 4 . 20
 Execution of the or instruction.

Or index register004A 004A

bit in the index register is unchanged. At every position where there is a 1,
the corresponding bit is set to 1. Th e N bit is 0 because the index register
would not be negative if it were interpreted as a signed integer. ❚

 The Invert and Negate Instructions
 Th e invert instruction has instruction specifi er 0000 011r, and the negate
instruction has instruction specifi er 0000 100r. Both instructions are unary.
Th ey have no operand specifi er. Th e invert instruction performs the NOT
operation on the register. Th at is, each 1 is changed to 0, and each 0 is
changed to 1. It aff ects the N and Z bits. Th e RTL specifi cation of the invert
instruction is

r ← ¬r ; N ← r < 0 , Z ← r = 0

200 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 200 29/01/16 8:05 pm

Figure 4.20

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The invert instruction
• Instruction specifier: 0000 011r

• Bit-wise NOT operation on register r

• Each 0 changed to 1, each 1 changed to 0

r ¬r ; N r< 0 , Z r= 0

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e negate instruction interprets the register as a signed integer and
negates it. Th e 16-bit register stores signed integers in the range –32768
to 32767. Th e negate instruction aff ects the N, Z, and V bits. Th e V bit is
set only if the original value in the register is –32768, because there is no
corresponding positive value of 32768. Th e RTL specifi cation of the negate
instruction is

r ← −r; N ← r < 0, Z ← r = 0, V ← { overfl ow }

 Example 4.10 Suppose the instruction to be executed is 06 in hexadecimal,
which FIGURE 4.21 shows in binary. Th e opcode indicates that the invert
instruction will execute, and the register-r fi eld indicates that the instruction
will aff ect the accumulator.

 FIGURE 4.22 shows the eff ect of executing the invert instruction,
assuming the accumulator has an initial content of 0003 (hex), which is 0000
0000 0000 0011 (bin). Th e not instruction changes the bit pattern to 1111
1111 1111 1100. Th e N bit is 1 because the quantity in the accumulator is
negative when interpreted as a signed integer. Th e Z bit is 0 because the
accumulator is not all 0’s. ❚

 Example 4.11 FIGURE 4.23 shows the operation of the negate instruction.
Th e initial state is identical to that of Example 4.10, except that the opcode
of the instruction specifi er 1A is 0000 100, which indicates the negate
instruction. Th e negation of 3 is –3, which is 1111 1111 1111 1101 (bin) =
FFFD (hex). ❚

Opcode r
Instruction specifier

0 0 0 0 0 1 1 0

0 6

 FIGURE 4 . 21
 The invert instruction.

06
 Invert accumulator

(a) Before. (b) After.

CPU

NZ

A 0003

CPU

10NZ

A FFFC

 FIGURE 4 . 22
 Execution of the invert
instruction.

(a) Before. (b) After.

08
Negate accumulator

(a) Before. (b) After.

CPU

NZ

A 0003

CPU

NZ 10

A FFFD

 FIGURE 4 . 23
 Execution of the negate
instruction.

(a) Before. (b) After.

2014.2 Direct Addressing

9781284079630_CH04_Pass03.indd 201 19/01/16 5:56 pm

Figure 4.21, 4.22

 Th e negate instruction interprets the register as a signed integer and
negates it. Th e 16-bit register stores signed integers in the range –32768
to 32767. Th e negate instruction aff ects the N, Z, and V bits. Th e V bit is
set only if the original value in the register is –32768, because there is no
corresponding positive value of 32768. Th e RTL specifi cation of the negate
instruction is

r ← −r ; N ← r < 0 , Z ← r = 0 , V ← { overfl ow }

 Example 4.10 Suppose the instruction to be executed is 06 in hexadecimal,
which FIGURE 4.21 shows in binary. Th e opcode indicates that the invert
instruction will execute, and the register-r fi eld indicates that the instruction
will aff ect the accumulator.

 FIGURE 4.22 shows the eff ect of executing the invert instruction,
assuming the accumulator has an initial content of 0003 (hex), which is 0000
0000 0000 0011 (bin). Th e not instruction changes the bit pattern to 1111
1111 1111 1100. Th e N bit is 1 because the quantity in the accumulator is
negative when interpreted as a signed integer. Th e Z bit is 0 because the
accumulator is not all 0’s. ❚

 Example 4.11 FIGURE 4.23 shows the operation of the negate instruction.
Th e initial state is identical to that of Example 4.10, except that the opcode
of the instruction specifi er 1A is 0000 100, which indicates the negate
instruction. Th e negation of 3 is –3, which is 1111 1111 1111 1101 (bin) =
FFFD (hex). ❚

Opcode r
Instruction specifier

0 0 0 0 0 1 1 0

0 6

 FIGURE 4 . 21
 The invert instruction.

06
 Invert accumulator

(a) Before. (b) After.

CPU

NZ

A 0003

CPU

10NZ

A FFFC

 FIGURE 4 . 22
 Execution of the invert
instruction.

(a) Before. (b) After.

08
Negate accumulator

(a) Before. (b) After.

CPU

NZ

A 0003

CPU

NZ 10

A FFFD

 FIGURE 4 . 23
 Execution of the negate
instruction.

(a) Before. (b) After.

2014.2 Direct Addressing

9781284079630_CH04_183_230.indd 201 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The negate instruction
• Instruction specifier: 0000 100r

• Negate (take two’s complement of) register r

r �r ; N r< 0 , Z r= 0

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e negate instruction interprets the register as a signed integer and
negates it. Th e 16-bit register stores signed integers in the range –32768
to 32767. Th e negate instruction aff ects the N, Z, and V bits. Th e V bit is
set only if the original value in the register is –32768, because there is no
corresponding positive value of 32768. Th e RTL specifi cation of the negate
instruction is

r ← −r ; N ← r < 0 , Z ← r = 0 , V ← { overfl ow }

 Example 4.10 Suppose the instruction to be executed is 06 in hexadecimal,
which FIGURE 4.21 shows in binary. Th e opcode indicates that the invert
instruction will execute, and the register-r fi eld indicates that the instruction
will aff ect the accumulator.

 FIGURE 4.22 shows the eff ect of executing the invert instruction,
assuming the accumulator has an initial content of 0003 (hex), which is 0000
0000 0000 0011 (bin). Th e not instruction changes the bit pattern to 1111
1111 1111 1100. Th e N bit is 1 because the quantity in the accumulator is
negative when interpreted as a signed integer. Th e Z bit is 0 because the
accumulator is not all 0’s. ❚

 Example 4.11 FIGURE 4.23 shows the operation of the negate instruction.
Th e initial state is identical to that of Example 4.10, except that the opcode
of the instruction specifi er 1A is 0000 100, which indicates the negate
instruction. Th e negation of 3 is –3, which is 1111 1111 1111 1101 (bin) =
FFFD (hex). ❚

Opcode r
Instruction specifier

0 0 0 0 0 1 1 0

0 6

 FIGURE 4 . 21
 The invert instruction.

06
 Invert accumulator

(a) Before. (b) After.

CPU

NZ

A 0003

CPU

10NZ

A FFFC

 FIGURE 4 . 22
 Execution of the invert
instruction.

(a) Before. (b) After.

08
Negate accumulator

(a) Before. (b) After.

CPU

NZ

A 0003

CPU

NZ 10

A FFFD

 FIGURE 4 . 23
 Execution of the negate
instruction.

(a) Before. (b) After.

2014.2 Direct Addressing

9781284079630_CH04_183_230.indd 201 29/01/16 8:05 pm

Figure 4.23

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The load byte
instruction

• Instruction specifier: 1101 raaa

• Loads one byte from memory to the right
half of register r

Pep/9 RTL specification of the instruction set

Instruction Register transfer language specification

STOP Stop execution
RET PC←Mem[SP] ; SP← SP+2
RETTR NZVC←Mem[SP]⟨4..7⟩ ; A←Mem[SP+1] ; X←Mem[SP+3] ; PC←Mem[SP+5] ; SP←Mem[SP+7]
MOVSPA A← SP
MOVFLGA A⟨8..11⟩ ← 0 , A⟨12..15⟩ ← NZVC
MOVAFLG NZVC← A⟨12..15⟩

NOTr r← ¬r ; N← r < 0 , Z← r = 0
NEGr r←−r ; N← r < 0 , Z← r = 0 , V← {overflow}
ASLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← 0 ; N← r < 0 , Z← r = 0 , V← {overflow}
ASRr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ ; N← r < 0 , Z← r = 0
ROLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← C
RORr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ , r⟨0⟩ ← C

BR PC← Oprnd
BRLE N = 1∨Z = 1⇒ PC← Oprnd
BRLT N = 1⇒ PC← Oprnd
BREQ Z = 1⇒ PC← Oprnd
BRNE Z = 0⇒ PC← Oprnd
BRGE N = 0⇒ PC← Oprnd
BRGT N = 0∧Z = 0⇒ PC← Oprnd
BRV V = 1⇒ PC← Oprnd
BRC C = 1⇒ PC← Oprnd
CALL SP← SP−2 ; Mem[SP]← PC ; PC← Oprnd

NOPn Trap: Unary no operation
NOP Trap: Nonunary no operation

DECI Trap: Oprnd← {decimal input}
DECO Trap: {decimal output}← Oprnd
HEXO Trap: {hexadecimal output}← Oprnd
STRO Trap: {string output}← Oprnd

ADDSP SP← SP+Oprnd
SUBSP SP← SP−Oprnd

ADDr r← r+Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
SUBr r← r−Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
ANDr r← r∧Oprnd ; N← r < 0 , Z← r = 0
ORr r← r∨Oprnd ; N← r < 0 , Z← r = 0

CPWr T← r−Oprnd ; N← T < 0 , Z← T = 0 , V← {overflow} , C← {carry} ; N← N⊕V
CPBr T← r⟨8..15⟩−byte Oprnd ; N← T < 0 , Z← T = 0 , V← 0 , C← 0
LDWr r← Oprnd ; N← r < 0 , Z← r = 0
LDBr r⟨8..15⟩ ← byte Oprnd ; N← 0 , Z← r⟨8..15⟩= 0
STWr Oprnd← r
STBr byte Oprnd← r⟨8..15⟩
Trap T←Mem[FFF6] ; Mem[T−1]← IR⟨0..7⟩ ; Mem[T−3]← SP ; Mem[T−5]← PC ; Mem[T−7]← X ;

Mem[T−9]← A ; Mem[T−10]⟨4..7⟩ ← NZVC ; SP← T−10 ; PC←Mem[FFFE]

2

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 The Load Byte and Store Byte Instructions
 Th ese instructions, along with the two that follow, are byte instructions. Byte
instructions operate on a single byte of information instead of a word. Th e
load byte instruction has instruction specifi er 1101 raaa, and the store byte
instruction has instruction specifi er 1111 raaa. Th e load byte instruction
loads the operand into the right half of either the accumulator or the index
register, and aff ects the N and Z bits. It leaves the left half of the register
unchanged. Th e store byte instruction stores the right half of either the
accumulator or the index register into a one-byte memory location and does
not aff ect any status bits. Th e RTL specifi cation of the load byte instruction is

 r〈8..15〉 ← byte Oprnd; N ← 0, Z ← r〈8..15〉 = 0

 and the RTL specifi cation of the store byte instruction is

byte Operand ← r〈8..15〉

 Example 4.12 Suppose the instruction to be executed is D1004A in
hexadecimal, which FIGURE 4.24 shows in binary. Th e register-r fi eld in this
example is 0, which indicates a load to the accumulator instead of the index
register. Th e addressing-aaa fi eld is 001, which indicates direct addressing.

 FIGURE 4.25 shows the eff ect of executing the load byte instruction,
assuming Mem[004A] has an initial content of 92. Th e N bit is always set to

Opcode r aaa
Instruction specifier

1 1 0 1 0 0 0 1
D 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE 4 . 24
 The load byte instruction.

D1004A
Load byte

accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92
004A

CPU

00NZ

A 0392

Mem

92
004A

FIGURE 4 . 25
 Execution of the load byte instruction.

Load byt004A 004A

202 CHAPTER 4 Computer Architecture

9781284079630_CH04_Pass03.indd 202 19/01/16 5:56 pm

Figure 4.24, 4.25

 The Load Byte and Store Byte Instructions
 Th ese instructions, along with the two that follow, are byte instructions. Byte
instructions operate on a single byte of information instead of a word. Th e
load byte instruction has instruction specifi er 1101 raaa, and the store byte
instruction has instruction specifi er 1111 raaa. Th e load byte instruction
loads the operand into the right half of either the accumulator or the index
register, and aff ects the N and Z bits. It leaves the left half of the register
unchanged. Th e store byte instruction stores the right half of either the
accumulator or the index register into a one-byte memory location and does
not aff ect any status bits. Th e RTL specifi cation of the load byte instruction is

 r〈8..15〉 ← byte Oprnd ; N ← 0 , Z ← r〈8..15〉 = 0

 and the RTL specifi cation of the store byte instruction is

byte Operand ← r〈8..15〉

 Example 4.12 Suppose the instruction to be executed is D1004A in
hexadecimal, which FIGURE 4.24 shows in binary. Th e register-r fi eld in this
example is 0, which indicates a load to the accumulator instead of the index
register. Th e addressing-aaa fi eld is 001, which indicates direct addressing.

 FIGURE 4.25 shows the eff ect of executing the load byte instruction,
assuming Mem[004A] has an initial content of 92. Th e N bit is always set to

Opcode r aaa
Instruction specifier

1 1 0 1 0 0 0 1
D 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE 4 . 24
 The load byte instruction.

D1004A
Load byte

accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92
004A

CPU

00NZ

A 0392

Mem

92
004A

FIGURE 4 . 25
 Execution of the load byte instruction.

Load byt004A 004A

202 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 202 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The store byte
instruction

• Instruction specifier: 1111 raaa

• Stores one byte from the right half of
register r to memory

byte Oprnd rh8..15i

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0 with this instruction. Th e Z bit is set to 0 because the eight bits loaded into
the right half of the accumulator are not all 0’s. ❚

 Example 4.13 FIGURE 4.26 shows the eff ect of executing the store byte
instruction. Th e initial state is the same as in Example 4.12, except that the
instruction is store byte instead of load byte. Th e right half of the accumulator
is 6D, which is sent to the memory cell at address 004A. ❚

 The Input and Output Devices
 Th e input device is at address FC15, and is attached to an ASCII character
input device like a keyboard. You get a character from the input device by
executing the load byte instruction from address FC15. Th e output device is
at address FC16 and is attached to an ASCII output device like a screen. You
send a character to the output device by executing the store byte instruction
to address FC16.

 Example 4.14 Suppose the instruction to be executed is D1FC15 in
hexadecimal, which is the load byte instruction from the input device with
direct addressing. FIGURE 4.27 shows the eff ect of executing the instruction,
assuming that the next character in the input stream is W. Th e character
from the input stream can come from the keyboard or from a fi le. Th e fi gure
shows the keyboard wired into the memory location at address FC15. Th e
user has pressed the W key. Th e ASCII value of the letter W is 57 (hex),
which is sent to the accumulator.

 Th e dashed lines from the CPU to main memory represent control
signals that instruct the memory subsystem to put the byte from address
FC15 onto the system bus. Th e memory subsystem has a special input circuit
that detects when a memory load request is made from address FC15. It then
performs all the necessary steps to put the next character from the input
stream into Mem[FC15], which is then put on the system bus. Th is is an
example of levels of abstraction in a computer system. Th e details of how the

F1004A
Store byte

accumulator

(a) Before. (b) After.

CPU

A 036D A 036D

Mem

92
004A

CPU Mem

6D
004A

 FIGURE 4 . 26
 Execution of the store byte instruction.

accumulator004A 004A

2034.2 Direct Addressing

9781284079630_CH04_183_230.indd 203 29/01/16 8:05 pm

Figure 4.26

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Load byte from input device
Figure 4.27

character is transferred from the keyboard to Mem[FC15] are hidden from
the Level ISA3 programmer, who only needs to know that to get the next
ASCII character from the input stream you load a byte from that address. ❚

 Example 4.15 Suppose the instruction to be executed is F1FC16 in
hexadecimal, which is the store byte instruction to the output device with
direct addressing. FIGURE 4.28 shows the eff ect of executing the instruction,
assuming that 69 (hex), which is the ASCII value for the letter i, is in the
right half of the accumulator. Th e fi gure shows the screen wired into the
memory location at address FC16. Th e ASCII value of the letter i is sent to
Mem[FC16]. As with the input device, the memory subsystem has a special
circuit that detects when a byte is stored to Mem[FC16] and routes it to the
output stream to be displayed on the screen. ❚

 Big Endian Versus Little Endian
 Th ere are two CPU design philosophies regarding the transfer of information
between the registers of the CPU and the bytes in main memory. Th e
problem arises because main memory is always byte-addressable and a

FIGURE 4 . 27
 The load byte instruction from the input device.

CPU
Mem

FC15
A

57 Q W E
0057

CPU
Mem

FC15
A

Q W E57D1FC15
Load byte

accumulator

0000

(b) After.(a) Before.

KeyboardKeyboard

CPU
Mem

FC16
A

48
0069

CPU
Mem

FC16
A

69F1FC16
Store byte

accumulator
0069

HiH

(b) After.(a) Before.

ScreenScreen

FIGURE 4 . 28
 The store byte instruction to the output device.

A 0069A 0069

204 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 204 29/01/16 8:05 pm

character is transferred from the keyboard to Mem[FC15] are hidden from
the Level ISA3 programmer, who only needs to know that to get the next
ASCII character from the input stream you load a byte from that address. ❚

 Example 4.15 Suppose the instruction to be executed is F1FC16 in
hexadecimal, which is the store byte instruction to the output device with
direct addressing. FIGURE 4.28 shows the eff ect of executing the instruction,
assuming that 69 (hex), which is the ASCII value for the letter i, is in the
right half of the accumulator. Th e fi gure shows the screen wired into the
memory location at address FC16. Th e ASCII value of the letter i is sent to
Mem[FC16]. As with the input device, the memory subsystem has a special
circuit that detects when a byte is stored to Mem[FC16] and routes it to the
output stream to be displayed on the screen. ❚

 Big Endian Versus Little Endian
 Th ere are two CPU design philosophies regarding the transfer of information
between the registers of the CPU and the bytes in main memory. Th e
problem arises because main memory is always byte-addressable and a

FIGURE 4 . 27
 The load byte instruction from the input device.

CPU
Mem

FC15
A

57 Q W E
0057

CPU
Mem

FC15
A

Q W E57D1FC15
Load byte

accumulator

0000

(b) After.(a) Before.

KeyboardKeyboard

CPU
Mem

FC16
A

48
0069

CPU
Mem

FC16
A

69F1FC16
Store byte

accumulator
0069

HiH

(b) After.(a) Before.

ScreenScreen

FIGURE 4 . 28
 The store byte instruction to the output device.

A 0069A 0069

204 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 204 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Store byte to output device
Figure 4.28

character is transferred from the keyboard to Mem[FC15] are hidden from
the Level ISA3 programmer, who only needs to know that to get the next
ASCII character from the input stream you load a byte from that address. ❚

 Example 4.15 Suppose the instruction to be executed is F1FC16 in
hexadecimal, which is the store byte instruction to the output device with
direct addressing. FIGURE 4.28 shows the eff ect of executing the instruction,
assuming that 69 (hex), which is the ASCII value for the letter i, is in the
right half of the accumulator. Th e fi gure shows the screen wired into the
memory location at address FC16. Th e ASCII value of the letter i is sent to
Mem[FC16]. As with the input device, the memory subsystem has a special
circuit that detects when a byte is stored to Mem[FC16] and routes it to the
output stream to be displayed on the screen. ❚

 Big Endian Versus Little Endian
 Th ere are two CPU design philosophies regarding the transfer of information
between the registers of the CPU and the bytes in main memory. Th e
problem arises because main memory is always byte-addressable and a

FIGURE 4 . 27
 The load byte instruction from the input device.

CPU
Mem

FC15
A

57 Q W E
0057

CPU
Mem

FC15
A

Q W E57D1FC15
Load byte

accumulator

0000

(b) After.(a) Before.

KeyboardKeyboard

CPU
Mem

FC16
A

48
0069

CPU
Mem

FC16
A

69F1FC16
Store byte

accumulator
0069

HiH

(b) After.(a) Before.

ScreenScreen

FIGURE 4 . 28
 The store byte instruction to the output device.

A 0069A 0069

204 CHAPTER 4 Computer Architecture

9781284079630_CH04_Pass03.indd 204 19/01/16 5:56 pm

character is transferred from the keyboard to Mem[FC15] are hidden from
the Level ISA3 programmer, who only needs to know that to get the next
ASCII character from the input stream you load a byte from that address. ❚

 Example 4.15 Suppose the instruction to be executed is F1FC16 in
hexadecimal, which is the store byte instruction to the output device with
direct addressing. FIGURE 4.28 shows the eff ect of executing the instruction,
assuming that 69 (hex), which is the ASCII value for the letter i, is in the
right half of the accumulator. Th e fi gure shows the screen wired into the
memory location at address FC16. Th e ASCII value of the letter i is sent to
Mem[FC16]. As with the input device, the memory subsystem has a special
circuit that detects when a byte is stored to Mem[FC16] and routes it to the
output stream to be displayed on the screen. ❚

 Big Endian Versus Little Endian
 Th ere are two CPU design philosophies regarding the transfer of information
between the registers of the CPU and the bytes in main memory. Th e
problem arises because main memory is always byte-addressable and a

FIGURE 4 . 27
 The load byte instruction from the input device.

CPU
Mem

FC15
A

57 Q W E
0057

CPU
Mem

FC15
A

Q W E57D1FC15
Load byte

accumulator

0000

(b) After.(a) Before.

KeyboardKeyboard

CPU
Mem

FC16
A

48
0069

CPU
Mem

FC16
A

69F1FC16
Store byte

accumulator
0069

HiH

(b) After.(a) Before.

ScreenScreen

FIGURE 4 . 28
 The store byte instruction to the output device.

A 0069A 0069

204 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 204 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

A little-endian CPU
Figure 4.29

register in a CPU typically contains more than one byte. Th e design question
is, in what order should the sequence of bytes be stored in main memory?
Th ere are two choices. Th e CPU can store the most signifi cant byte at the
lowest address, called big-endian order, or it can store the least signifi cant
byte at the lowest address, called little-endian order. Th e choice of which
order to use is arbitrary as long as the same order is used consistently for all
instructions in the instruction set.

 Th ere is no dominant standard in the computing industry. Some
processors use big-endian order, some use little-endian order, and some can
use either order depending on a switch that is set by low-level soft ware. Pep/9
is a big-endian CPU. Figure 4.13 shows the eff ect of the store instruction.
Th e most signifi cant byte in the register is 16, which is stored at the lowest
address, 004A. Th e next byte in the register is BC and is stored at the next
higher address, 004B. Figure 4.11 shows the load instruction, which is
consistent. Th e most signifi cant byte of the register gets 92, which is the byte
from the lowest address at 004A. Th e next byte gets EF from the next higher
address at 004B.

 In contrast, FIGURE 4.29 shows what happens when a load instruction
executes in a little-endian CPU. Th e byte at the lowest address, 004A, is 92
and is put in the least signifi cant byte of the register. Th e byte from the next
higher address, 004B, is put to the left of the low-order byte in the register.

FIGURE 4.30 shows the eff ect of a load instruction in a CPU with 32-bit
registers for both big-endian and little-endian ordering. A 32-bit register holds
four bytes, which are loaded into the accumulator from most signifi cant to least
signifi cant byte, or from least signifi cant to most signifi cant byte, depending
on whether the CPU uses big-endian or little-endian ordering, respectively.

 Th e word endian comes from Jonathan Swift ’s 1726 novel Gulliver’s
Travels, in which two competing kingdoms, Lilliput and Blefuscu, have
diff erent customs for breaking eggs. Th e inhabitants of Lilliput break their eggs
at the little end, and hence are known as little endians, while the inhabitants of

Little-endian CPU
Load accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92EF 10
004A

CPU

NZ

A EF92

Mem

92EF
004A

 FIGURE 4 . 29
 The load instruction in a little-endian CPU.

Load accumulator004A 004A

2054.2 Direct Addressing

9781284079630_CH04_183_230.indd 205 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

A 32-bit register load
Figure 4.30

Blefuscu break their eggs at the big end, and hence are known as big endians.
Th e novel is a parody refl ecting the absurdity of war over meaningless issues.
Th e terminology is fi tting, as whether a CPU is big-endian or little-endian is
of little fundamental importance.

4.3 von Neumann Machines
 In the earliest electronic computers, each program was hand-wired. To
change the program, the wires had to be manually reconnected, a tedious
and time-consuming process. Th e Electronic Numerical Integrator and
Calculator (ENIAC) computer described in Section 3.1 was an example of
this kind of machine. Its memory was used only to store data.

 In 1945, John von Neumann had proposed in a report published by the
University of Pennsylvania that the United States Ordnance Department
build a computer that would store in main memory not only the data, but the
program as well. Th e stored-program concept was a radical idea at the time.
Maurice V. Wilkes built the Electronic Delay Storage Automatic Calculator
(EDSAC) at Cambridge University in England in 1949. It was the fi rst
computer to be built that used von Neumann’s stored-program idea. Practically
all commercial computers today are based on the stored-program concept,
with programs and data sharing the same main memory. Such computers are
called von Neumann machines, although some believe that J. Presper Eckert,
Jr., originated the idea several years before von Neumann’s paper.

 The von Neumann Execution Cycle
 Th e Pep/9 computer is a classic von Neumann machine. FIGURE 4.31 is a
pseudocode description of the steps required to execute a program:

Initial State
Big Endian
Final State

Little Endian
Final State

Mem[019E] 89 89 89

Mem[019F] AB AB AB

Mem[01A0] CD CD CD

Mem[01A1] EF EF EF

Accumulator 89 AB CD EF EF CD AB 89

 FIGURE 4 . 30
 The load instruction with a 32-bit register.

206 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 206 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The von Neumann
execution cycle

• Fetch instruction at Mem[PC].

• Decode instruction fetched.

• Increment PC.

• Execute the instruction fetched.

• Repeat.

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Load the machine language program
Initialize PC and SP
do {
 Fetch the next instruction
 Decode the instruction specifier
 Increment PC
 Execute the instruction fetched
}
while (the stop instruction does not execute)

Figure 4.31

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Load the machine language program into memory starting at address 0000
PC ← 0000
SP ← Mem[FFF4]
do {
 Fetch the instruction specifier at address in PC
 PC ← PC + 1
 Decode the instruction specifier
 if (the instruction is not unary) {
 Fetch the operand specifier at address in PC
 PC ← PC + 2
 }
 Execute the instruction fetched
}
while ((the stop instruction does not execute) &&
 (the instruction is legal))

Figure 4.32

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Address! Machine Language (bin)
0000 1101 0001 0000 0000 0000 1101
0003 1111 0001 1111 1100 0001 0110
0006 1101 0001 0000 0000 0000 1110
0009 1111 0001 1111 1100 0001 0110
000C 0000 0000
000D 0100 1000 0110 1001
000F

Address! Machine Language (hex)
0000 D1000D ;Load byte accumulator 'H'
0003 F1FC16 ;Store byte accumulator output device
0006 D1000E ;Load byte accumulator 'i'
0009 F1FC16 ;Store byte accumulator output device
000C 00 ;Stop
000D 4869 ;ASCII "Hi" characters

Output
Hi

Figure 4.33

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 4 . 34
 The von Neumann execution cycle for the program of Figure 4.33.

CPU

IR

Mem

PC

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

(b) Program loaded into main memory.

CPU

IR

Mem

PC

A

000D

000C

0009

0006

0003

0000

FC16

...
Screen

(a) Initial state before loading.

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0000

D1000D

(d) Fetch instruction at Mem[PC].

CPU

IR

Mem

PC 0000

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

(c) PC ← 0000 (hex).

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

0048

D1000D

(f) Execute. Load byte for H to accumulator.

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

D1000D

(e) Increment PC.

(continues)

2114.3 von Neumann Machines

9781284079630_CH04_183_230.indd 211 29/01/16 8:05 pm

Figure 4.34

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 4 . 34
 The von Neumann execution cycle for the program of Figure 4.33.

CPU

IR

Mem

PC

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

(b) Program loaded into main memory.

CPU

IR

Mem

PC

A

000D

000C

0009

0006

0003

0000

FC16

...
Screen

(a) Initial state before loading.

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0000

D1000D

(d) Fetch instruction at Mem[PC].

CPU

IR

Mem

PC 0000

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

(c) PC ← 0000 (hex).

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

0048

D1000D

(f) Execute. Load byte for H to accumulator.

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

D1000D

(e) Increment PC.

(continues)

2114.3 von Neumann Machines

9781284079630_CH04_183_230.indd 211 29/01/16 8:05 pm

Figure 4.34
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 4 . 34
 The von Neumann execution cycle for the program of Figure 4.33.

CPU

IR

Mem

PC

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

(b) Program loaded into main memory.

CPU

IR

Mem

PC

A

000D

000C

0009

0006

0003

0000

FC16

...
Screen

(a) Initial state before loading.

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0000

D1000D

(d) Fetch instruction at Mem[PC].

CPU

IR

Mem

PC 0000

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

(c) PC ← 0000 (hex).

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

0048

D1000D

(f) Execute. Load byte for H to accumulator.

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

D1000D

(e) Increment PC.

(continues)

2114.3 von Neumann Machines

9781284079630_CH04_183_230.indd 211 29/01/16 8:05 pm

Figure 4.34
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

0048

F1FC16

CPU

IR

Mem

PC 0006

F1FC16

0048A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0006

0048

F1FC16
48 H

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0006

0048

D1000E

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0009

0048

D1000E

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0009

0069

D1000E

(g) Fetch instruction at Mem[PC]. (h) Increment PC.

(i) Execute. Store byte from accumulator to output device. (j) Fetch instruction at Mem[PC].

(k) Increment PC. (l) Execute. Load byte for i to accumulator.

FIGURE 4.34
The von Neumann execution cycle for the program of Figure 4.33. (continued)

0003 F1FC16 0003 F1FC16

212 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 212 29/01/16 8:05 pm

Figure 4.34
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

0048

F1FC16

CPU

IR

Mem

PC 0006

F1FC16

0048A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0006

0048

F1FC16
48 H

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0006

0048

D1000E

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0009

0048

D1000E

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0009

0069

D1000E

(g) Fetch instruction at Mem[PC]. (h) Increment PC.

(i) Execute. Store byte from accumulator to output device. (j) Fetch instruction at Mem[PC].

(k) Increment PC. (l) Execute. Load byte for i to accumulator.

FIGURE 4.34
The von Neumann execution cycle for the program of Figure 4.33. (continued)

0003 F1FC16 0003 F1FC16

212 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 212 29/01/16 8:05 pm

Figure 4.34
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

0048

F1FC16

CPU

IR

Mem

PC 0006

F1FC16

0048A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0006

0048

F1FC16
48 H

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0006

0048

D1000E

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0009

0048

D1000E

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

48 H

PC 0009

0069

D1000E

(g) Fetch instruction at Mem[PC]. (h) Increment PC.

(i) Execute. Store byte from accumulator to output device. (j) Fetch instruction at Mem[PC].

(k) Increment PC. (l) Execute. Load byte for i to accumulator.

FIGURE 4.34
The von Neumann execution cycle for the program of Figure 4.33. (continued)

0003 F1FC16 0003 F1FC16

212 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 212 29/01/16 8:05 pm

Figure 4.34
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Address! Machine Language (bin)
0000 1101 0001 1111 1100 0001 0101
0003 1111 0001 0000 0000 0001 0011
0006 1101 0001 1111 1100 0001 0101
0009 1111 0001 1111 1100 0001 0110
000C 1101 0001 0000 0000 0001 0011
000F 1111 0001 1111 1100 0001 0110
0012 0000 0000

Address! Machine Language (hex)
0000 D1FC15 ;Input first character
0003 F10013 ;Store first character
0006 D1FC15 ;Input second character
0009 F1FC16 ;Output second character
000C D10013 ;Load first character
000F F1FC16 ;Output first character
0012 00 ;Stop

Input
up

Output
pu

Figure 4.35

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Address! Machine Language (bin)
0000 1100 0001 0000 0000 0000 1101
0003 0110 0001 0000 0000 0000 1111
0006 1001 0001 0000 0000 0001 0001
0009 1111 0001 1111 1100 0001 0110
000C 0000 0000
000D 0000 0000 0000 0101
000F 0000 0000 0000 0011
0011 0000 0000 0011 0000

Address! Machine Language (hex)
0000 C1000D ;A <- first number
0003 61000F ;Add the two numbers
0006 910011 ;Convert sum to character
0009 F1FC16 ;Output the character
000C 00 ;Stop
000D 0005 ;Decimal 5
000F 0003 ;Decimal 3
0011 0030 ;Mask for ASCII char

Output
8

Figure 4.36

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Address! Machine Language (bin)
0000 1101 0001 0000 0000 0001 1001
0003 1111 0001 0000 0000 0000 1001
0006 1100 0001 0000 0000 0001 0011
0009 0110 0001 0000 0000 0001 0101
000C 1001 0001 0000 0000 0001 0111
000F 1111 0001 1111 1100 0001 0110
0012 0000 0000
0013 0000 0000 0000 0101
0015 0000 0000 0000 0011
0017 0000 0000 0011 0000
0019 0111 0001

Figure 4.37

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Address! Machine Language (hex)
0000 D10019 ;Load byte accumulator
0003 F10009 ;Store byte accumulator
0006 C10013 ;A <- first number
0009 610015 ;Add the two numbers
000C 910017 ;Convert sum to character
000F F1FC16 ;Output the character
0012 00 ;Stop
0013 0005 ;Decimal 5
0015 0003 ;Decimal 3
0017 0030 ;Mask for ASCII char
0019 71 ;Byte to modify instruction

Output
2

Figure 4.37
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Intel x-86 computer
architecture

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Of course, this is not a very practical program. If you wanted to subtract
the two numbers, you would simply write the program of Figure 4.36 with the
subtract instruction in place of the add instruction. But it does show that in a
von Neumann machine, main memory places no signifi cance on the bits it is
storing. It simply remembers 1’s and 0’s and has no idea which are program
bits, which are data bits, which are ASCII characters, and so on. Furthermore,
the CPU cranks out the von Neumann execution cycle and interprets the
bits accordingly, with no idea of their history. When it fetches the bits at
Mem[0009], it does not know, or care, how they got there in the fi rst place. It
simply repeats the fetch, decode, increment, execute cycle over and over.

 The x86 Architecture

 Th e designation x86 refers to a family of processors
beginning with the 8086 introduced by Intel in 1978
and continuing with the 80186, 80286, 80386, 80486
series; the Pentium series; and the Core series. Th e CPU
registers vary in size from 16 bits in the 8086, to 32 bits
in the 80386, to 64 bits beginning with the Pentium 4.
Th e processors are generally backward compatible. For

example, the 64-bit processors have a 32-bit execution
mode so that older soft ware can run unchanged on the
newer CPUs.

FIGURE 4.38 shows the registers in a typical
32-bit model. Th e x86 processors are little-endian and
number the bits in a register starting from 0 for the
least signifi cant bit. Th e EFLAGS register has a number

 FIGURE 4 . 38
 The registers in a typical 32-bit x86 CPU.

EAX

31 012

EFLAGS

...

EBX

ECX

EDX

ESI

EDI

ESP

EBP

EIP

AH AL

AX

2194.3 von Neumann Machines

9781284079630_CH04_183_230.indd 219 29/01/16 8:05 pm

Figure 4.38

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

of status bits besides the four NZVC bits in Pep/9.
 FIGURE 4.39 shows the location of the four bits that
correspond to the Pep/9 status bits. SF stands for sign
fl ag, and OF stands for overfl ow fl ag.

 Th e x86 architecture has four general-purpose
accumulators named EAX, EBX, ECX, and EDX that
correspond to the single Pep/9 accumulator. Figure 4.38
shows that the rightmost two bytes of the EAX register
are named AX, the left byte of AX is named AH for
A-high, and the right byte of AX is named AL for
A-low. Th e other accumulators are named accordingly.
For example, the rightmost byte of the ECX register is
named CL.

 Th e x86 architecture has two index registers
corresponding to the single X register of Pep/9. ESI is the
source index register, and EDI is the destination index
register. ESP is the stack pointer, which corresponds to

the stack pointer SP of Pep/9. EBP is the base pointer,
which points to the bottom of the current stack frame.
Pep/9 has no corresponding register. EIP is called the
instruction pointer in Intel terminology and corresponds
to the program counter PC in Pep/9.

 FIGURE 4.40 shows a machine language
instruction that adds the content of the ECX register
to the content of the EAX register and puts the sum in
the ECX register. As with all von Neumann machines,
a machine language instruction begins with an opcode
fi eld, 000000 in this example, which is the opcode for
the add instruction. Th e following fi elds correspond to
the register-r fi eld and the addressing-aaa fi eld of Pep/9
but with meaning specifi c to the x86 instruction set. Th e 1
in the s fi eld indicates that the sum is on 32-bit quantities.
If s were 0, only a single byte would be added. Th e 11
in the mod fi eld indicates that the r/m fi eld is a register.
Th e 000 in the reg fi eld, along with the 0 in the d fi eld,
indicates the EAX register, and the 001 in the r/m fi eld,
along with the 0 in the d fi eld, indicates the ECX register.
Th e hexadecimal abbreviation of the instruction is 01C1.

 Th is is only one format from the x86 instruction
set. Th ere are multiple formats with some instruction
specifi ers preceded by special prefi x bytes that change
the format of the instruction specifi er, and some
followed by operand specifi ers that might include a
so-called scaled indexed byte. Th e instruction format
scheme is complicated because it evolved from a small
CPU with the requirement of backward compatibility.
Pep/9 illustrates the concepts underlying machine
languages in all von Neumann machines without the
above complexities.

 FIGURE 4 . 40
 The x86 instruction format for the add register instruction.

 FIGURE 4 . 39
 The x86 status bits corresponding to the
Pep/9 status bits.

Status Bit Intel Name EFLAGS Position

N SF 7

Z ZF 6

V OF 11

C CF 0

0 00 0 1000

Opcode d s mod reg r/m

1 1 0 00 0 10

0 1 C 1

220 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 220 29/01/16 8:05 pm

Figure 4.39

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

of status bits besides the four NZVC bits in Pep/9.
 FIGURE 4.39 shows the location of the four bits that
correspond to the Pep/9 status bits. SF stands for sign
fl ag, and OF stands for overfl ow fl ag.

 Th e x86 architecture has four general-purpose
accumulators named EAX, EBX, ECX, and EDX that
correspond to the single Pep/9 accumulator. Figure 4.38
shows that the rightmost two bytes of the EAX register
are named AX, the left byte of AX is named AH for
A-high, and the right byte of AX is named AL for
A-low. Th e other accumulators are named accordingly.
For example, the rightmost byte of the ECX register is
named CL.

 Th e x86 architecture has two index registers
corresponding to the single X register of Pep/9. ESI is the
source index register, and EDI is the destination index
register. ESP is the stack pointer, which corresponds to

the stack pointer SP of Pep/9. EBP is the base pointer,
which points to the bottom of the current stack frame.
Pep/9 has no corresponding register. EIP is called the
instruction pointer in Intel terminology and corresponds
to the program counter PC in Pep/9.

 FIGURE 4.40 shows a machine language
instruction that adds the content of the ECX register
to the content of the EAX register and puts the sum in
the ECX register. As with all von Neumann machines,
a machine language instruction begins with an opcode
fi eld, 000000 in this example, which is the opcode for
the add instruction. Th e following fi elds correspond to
the register-r fi eld and the addressing-aaa fi eld of Pep/9
but with meaning specifi c to the x86 instruction set. Th e 1
in the s fi eld indicates that the sum is on 32-bit quantities.
If s were 0, only a single byte would be added. Th e 11
in the mod fi eld indicates that the r/m fi eld is a register.
Th e 000 in the reg fi eld, along with the 0 in the d fi eld,
indicates the EAX register, and the 001 in the r/m fi eld,
along with the 0 in the d fi eld, indicates the ECX register.
Th e hexadecimal abbreviation of the instruction is 01C1.

 Th is is only one format from the x86 instruction
set. Th ere are multiple formats with some instruction
specifi ers preceded by special prefi x bytes that change
the format of the instruction specifi er, and some
followed by operand specifi ers that might include a
so-called scaled indexed byte. Th e instruction format
scheme is complicated because it evolved from a small
CPU with the requirement of backward compatibility.
Pep/9 illustrates the concepts underlying machine
languages in all von Neumann machines without the
above complexities.

 FIGURE 4 . 40
 The x86 instruction format for the add register instruction.

 FIGURE 4 . 39
 The x86 status bits corresponding to the
Pep/9 status bits.

Status Bit Intel Name EFLAGS Position

N SF 7

Z ZF 6

V OF 11

C CF 0

0 00 0 1000

Opcode d s mod reg r/m

1 1 0 00 0 10

0 1 C 1

220 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 220 29/01/16 8:05 pm

Figure 4.40

x86 add register instruction

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Memory devices
• Read/Write memory

‣ Also called Random-Access Memory
(RAM)

‣ Can load from RAM and store to RAM

• Read-Only memory (ROM)

‣ Can load from ROM

‣ Cannot store to ROM

• RAM and ROM are both random

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 4.4 Programming at Level ISA3
 To program at Level ISA3 is to write a set of instructions in binary. To execute
the binary sequence, fi rst you must load it into main memory. Th e operating
system is responsible for loading the binary sequence into main memory.

 An operating system is a program. Like any other program, a soft ware
engineer must design, write, test, and debug it. Most operating systems are
so large and complex that teams of engineers must write them. Th e primary
function of an operating system is to control the execution of application
programs on the computer. Because the operating system is itself a program,
it must reside in main memory in order to be executed. So main memory
must store not only the application programs, but also the operating system.

 In the Pep/9 computer, the bottom part of main memory—that is, the
part with high memory addresses—is reserved for the operating system. Th e
top part is reserved for the application program. FIGURE 4.41 is a memory
map of the Pep/9 computer system. It shows that the operating system starts
at memory location FB8F and occupies the rest of main memory. Th at leaves
memory locations 0000 to FB8E for the application program.

 Th e loader is that part of the operating system that loads the application
program into main memory so it can be executed. What loads the loader?
Th e Pep/9 loader, along with several other parts of the operating system, is
permanently stored in main memory.

 Read-Only Memory
 Th ere are two types of electronic-circuit elements from which memory
devices are manufactured—read/write circuit elements and read-only
circuit elements.

 In the program of Figure 4.35 , when the store byte instruction, F10013,
executed, the CPU transferred the content of the right half of the accumulator
to Mem[0013]. Th e original content of Mem[0013] was destroyed, and
the memory location then contained 0111 0101 (bin), the binary code for
the letter u. When the load byte instruction, D10013, executed, the bits at
location 0013 were sent back to the accumulator so they could be sent to the
output device.

 Th e circuit element at memory location 0013 is a read/write circuit. Th e
store byte instruction did a write operation on it, which changed its content.
Th e read byte instruction did a read operation on it, which sent a copy of
its content to the accumulator. If the circuit element at location 0013 were
a read-only circuit, the store byte instruction would not have changed its
content.

FC52FFFE

FC17FFFC

FC16FFFA

FC15FFF8

FC0FFFF6

FB8FFFF4

Trap
handler

FC52

Loader

FC17

System
globals

FC0F

Output deviceFC16

Input deviceFC15

System
stack

FB8F

Run-time
stack

Heap

Application
program

Globals0000

O
pe

ra
tin

g
sy

st
em

A
pp

lic
at

io
n

Mem

FIGURE 4 . 41
 A memory map of the
Pep/9 memory. The
shaded part is read-only
memory.

2214.4 Programming at Level ISA3

9781284079630_CH04_183_230.indd 221 29/01/16 8:05 pm

Figure 4.41

 4.4 Programming at Level ISA3
 To program at Level ISA3 is to write a set of instructions in binary. To execute
the binary sequence, fi rst you must load it into main memory. Th e operating
system is responsible for loading the binary sequence into main memory.

 An operating system is a program. Like any other program, a soft ware
engineer must design, write, test, and debug it. Most operating systems are
so large and complex that teams of engineers must write them. Th e primary
function of an operating system is to control the execution of application
programs on the computer. Because the operating system is itself a program,
it must reside in main memory in order to be executed. So main memory
must store not only the application programs, but also the operating system.

 In the Pep/9 computer, the bottom part of main memory—that is, the
part with high memory addresses—is reserved for the operating system. Th e
top part is reserved for the application program. FIGURE 4.41 is a memory
map of the Pep/9 computer system. It shows that the operating system starts
at memory location FB8F and occupies the rest of main memory. Th at leaves
memory locations 0000 to FB8E for the application program.

 Th e loader is that part of the operating system that loads the application
program into main memory so it can be executed. What loads the loader?
Th e Pep/9 loader, along with several other parts of the operating system, is
permanently stored in main memory.

 Read-Only Memory
 Th ere are two types of electronic-circuit elements from which memory
devices are manufactured—read/write circuit elements and read-only
circuit elements.

 In the program of Figure 4.35 , when the store byte instruction, F10013,
executed, the CPU transferred the content of the right half of the accumulator
to Mem[0013]. Th e original content of Mem[0013] was destroyed, and
the memory location then contained 0111 0101 (bin), the binary code for
the letter u. When the load byte instruction, D10013, executed, the bits at
location 0013 were sent back to the accumulator so they could be sent to the
output device.

 Th e circuit element at memory location 0013 is a read/write circuit. Th e
store byte instruction did a write operation on it, which changed its content.
Th e read byte instruction did a read operation on it, which sent a copy of
its content to the accumulator. If the circuit element at location 0013 were
a read-only circuit, the store byte instruction would not have changed its
content.

FC52FFFE

FC17FFFC

FC16FFFA

FC15FFF8

FC0FFFF6

FB8FFFF4

Trap
handler

FC52

Loader

FC17

System
globals

FC0F

Output deviceFC16

Input deviceFC15

System
stack

FB8F

Run-time
stack

Heap

Application
program

Globals0000

O
pe

ra
tin

g
sy

st
em

A
pp

lic
at

io
n

Mem

FIGURE 4 . 41
 A memory map of the
Pep/9 memory. The
shaded part is read-only
memory.

2214.4 Programming at Level ISA3

9781284079630_CH04_183_230.indd 221 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The load option
• SP ← Mem[FFF6]

• PC ← Mem[FFFC]

• Start the von Neumann cycle

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Selecting the load option initializes the stack pointer and program
counter to the predetermined values stored at FFF6 and FFFC. It just so
happens that the value at address FFF6 is FC0F, the bottom of the system
stack. FC0F is the value the stack pointer should have when the system stack
is empty. It also happens that the value at address FFFC is FC17. In fact,
FC17 is the address of the fi rst instruction to be executed in the loader.

 Th e system programmer who wrote the operating system decided where
the system stack and the loader should be located. Realizing that the Pep/9
computer would fetch the vectors from locations FFFA and FFFC when the load
option is selected, she placed the appropriate values in those locations. Because
the fi rst step in the execution cycle is fetch, the fi rst instruction to be executed
aft er selecting the load option is the fi rst instruction of the loader program.

FC0F

FC0F

FC17

SP

PC

CPU

(a) Initial state.

SP

PC

CPU

(b) SP Mem[FFF6]

SP

PC

CPU

(c) PC Mem[FFFC]

Mem

FFFC

FFF6 FC0F
...

FC17

Mem

FFFC

FFF6 FC0F
...

FC17

Mem

FFFC

FFF6 FC0F
...

FC17

 FIGURE 4 . 42
 The Pep/9 load option.

224 CHAPTER 4 Computer Architecture

9781284079630_CH04_Pass03.indd 224 19/01/16 5:57 pm

Figure 4.42

 Selecting the load option initializes the stack pointer and program
counter to the predetermined values stored at FFF6 and FFFC. It just so
happens that the value at address FFF6 is FC0F, the bottom of the system
stack. FC0F is the value the stack pointer should have when the system stack
is empty. It also happens that the value at address FFFC is FC17. In fact,
FC17 is the address of the fi rst instruction to be executed in the loader.

 Th e system programmer who wrote the operating system decided where
the system stack and the loader should be located. Realizing that the Pep/9
computer would fetch the vectors from locations FFFA and FFFC when the load
option is selected, she placed the appropriate values in those locations. Because
the fi rst step in the execution cycle is fetch, the fi rst instruction to be executed
aft er selecting the load option is the fi rst instruction of the loader program.

FC0F

FC0F

FC17

SP

PC

CPU

(a) Initial state.

SP

PC

CPU

(b) SP Mem[FFF6]

SP

PC

CPU

(c) PC Mem[FFFC]

Mem

FFFC

FFF6 FC0F
...

FC17

Mem

FFFC

FFF6 FC0F
...

FC17

Mem

FFFC

FFF6 FC0F
...

FC17

 FIGURE 4 . 42
 The Pep/9 load option.

224 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 224 29/01/16 8:05 pm

 Selecting the load option initializes the stack pointer and program
counter to the predetermined values stored at FFF6 and FFFC. It just so
happens that the value at address FFF6 is FC0F, the bottom of the system
stack. FC0F is the value the stack pointer should have when the system stack
is empty. It also happens that the value at address FFFC is FC17. In fact,
FC17 is the address of the fi rst instruction to be executed in the loader.

 Th e system programmer who wrote the operating system decided where
the system stack and the loader should be located. Realizing that the Pep/9
computer would fetch the vectors from locations FFFA and FFFC when the load
option is selected, she placed the appropriate values in those locations. Because
the fi rst step in the execution cycle is fetch, the fi rst instruction to be executed
aft er selecting the load option is the fi rst instruction of the loader program.

FC0F

FC0F

FC17

SP

PC

CPU

(a) Initial state.

SP

PC

CPU

(b) SP Mem[FFF6]

SP

PC

CPU

(c) PC Mem[FFFC]

Mem

FFFC

FFF6 FC0F
...

FC17

Mem

FFFC

FFF6 FC0F
...

FC17

Mem

FFFC

FFF6 FC0F
...

FC17

 FIGURE 4 . 42
 The Pep/9 load option.

224 CHAPTER 4 Computer Architecture

9781284079630_CH04_183_230.indd 224 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The execute option
• SP ← Mem[FFF4]

• PC ← 0000

• Start the von Neumann cycle

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Address! Machine Language (hex)
0000 D1000D ;Load byte accumulator 'H'
0003 F1FC16 ;Store byte accumulator output device
0006 D1000E ;Load byte accumulator 'i'
0009 F1FC16 ;Store byte accumulator output device
000C 00 ;Stop
000D 4869 ;ASCII "Hi" characters

Hex Version for the Loader
D1 00 0D F1 FC 16 D1 00 0E F1 FC 16 00 48 69 zz

Output
Hi

Figure 4.43

