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 Central Processing Unit (CPU) 
 Th e CPU contains six specialized memory locations called registers. As 
shown in     FIGURE 4.2         , they are        

 ❯ Th e 4-bit status register (NZVC)
 ❯ Th e 16-bit accumulator (A)
 ❯ Th e 16-bit index register (X)
 ❯ Th e 16-bit program counter (PC)
 ❯ Th e 16-bit stack pointer (SP)
 ❯ Th e 24-bit instruction register (IR)

System bus

Disk

Central
processing
unit

Main memory

Input

Output

Data flow

Control

   FIGURE   4 . 1 
  Block diagram of the 
Pep/9 computer. 

   FIGURE   4 . 2 
  The CPU of the Pep/9 
computer. 
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Instruction Specifi er Instruction
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101

Stop execution
Return from CALL
Return from trap
Move SP to A
Move NZVC fl ags to A〈12..15〉
Move A〈12..15〉 to NZVC fl ags

0000 011r
0000 100r
0000 101r
0000 110r
0000 111r
0001 000r

Bitwise invert r
Negate r
Arithmetic shift left r
Arithmetic shift right r
Rotate left r
Rotate right r

0001 001a
0001 010a
0001 011a
0001 100a
0001 101a
0001 110a
0001 111a
0010 000a
0010 001a
0010 010a

Branch unconditional
Branch if less than or equal to
Branch if less than
Branch if equal to
Branch if not equal to
Branch if greater than or equal to
Branch if greater than
Branch if V
Branch if C
Call subroutine

0010 011n Unimplemented opcode, unary trap

0010 1aaa
0011 0aaa
0011 1aaa
0100 0aaa
0100 1aaa

Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap
Unimplemented opcode, nonunary trap

0101 0aaa
0101 1aaa

Add to stack pointer (SP)
Subtract from stack pointer (SP)

0110 raaa
0111 raaa
1000 raaa
1001 raaa

Add to r
Subtract from r
Bitwise AND to r
Bitwise OR to r

1010 raaa
1011 raaa
1100 raaa
1101 raaa
1110 raaa
1111 raaa

Compare word to r
Compare byte to r〈8..15〉
Load word r from memory
Load byte r〈8..15〉 from memory
Store word r to memory
Store byte r〈8..15〉 to memory

FIGURE   4 . 6 
  The Pep/9 instruction set at Level ISA3. 

0000 0001 Return from CALL
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Instruction
specifier

Operand
specifier

(a) The two parts of a nonunary instruction.

(b) A unary instruction.

Instruction
specifier

  

FIGURE   4 . 7 
  The Pep/9 instruction 
format.  

(a) The two parts of a nonunary instruction.

  Example 4.1             Figure 4.6 shows that the “branch if equal to” instruction has an 
instruction specifi er of 0001 100a. Because the letter a can be zero or one, there 
are really two versions of the instruction—0001 1000 and 0001 1001. Similarly, 
there are eight versions of the decimal output trap instruction. Its instruction 
specifi er is 0011 1aaa, where aaa can be any combination from 000 to 111. ❚        

     FIGURE 4.8          summarizes the meaning of the possible fi elds in the 
instruction specifi er for the letters a and r. Generally, the letter a stands 
for addressing mode, and the letter r stands for register. When r is 0, the 
instruction operates on the accumulator. When r is 1, the instruction operates 
on the index register. Pep/9 executes each nonunary instruction in one of eight 
addressing modes—immediate, direct, indirect, stack-relative, stack-relative 

aaa Addressing Mode

000 Immediate

001 Direct

010 Indirect

011 Stack-relative

100 Stack-relative deferred

101 Indexed

110 Stack-indexed

111 Stack-deferred indexed

(a) The addressing-aaa fi eld.

a Addressing Mode

0 Immediate

1 Indexed

(b) The addressing-a fi eld.

r Register

0 Accumulator, A

1 Index register, X

(c) The register-r fi eld.

  FIGURE   4 . 8 
  The Pep/9 instruction specifi er fi elds. 

000 Immediate 0 Immediate 0 Accumulator, A

1914.1 Hardware
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deferred, indexed, stack-indexed, or stack-deferred indexed. Later chapters 
describe the meaning of the addressing modes. For now, it is important only 
that you know how to use the tables of Figures 4.7 and 4.8 to determine which 
register and addressing mode a given instruction uses. Th e meaning of the 
letter n in the unary trap instruction is described in a later chapter. 

Example 4.2  Determine the opcode, register, and addressing mode of the 
1100 1011 instruction. Starting from the left , determine with the help of  
Figure 4.6 that the opcode is 1100. Th e next bit aft er the opcode is the r bit, 
which is 1, indicating the index register. Th e three bits aft er the r bit are the 
aaa bits, which are 011, indicating stack-relative addressing. Th erefore, the 
instruction loads a word from memory into the index register using stack-
relative addressing. ❚ 

 Th e operand specifi er, for those instructions that are not unary, indicates 
the operand to be processed by the instruction. Th e CPU can interpret 
the operand specifi er several diff erent ways, depending on the bits in the 
instruction specifi er. For example, it may interpret the operand specifi er as 
an ASCII character, as an integer in two’s complement representation, or as 
an address in main memory where the operand is stored. 

 Instructions are stored in main memory. Th e address of an instruction 
in main memory is the address of the fi rst byte of the instruction. 

  Example 4.3  FIGURE 4.9          shows two adjacent instructions stored in main 
memory at locations 01A3 and 01A6. Th e instruction at 01A6 is unary; the 
instruction at 01A3 is not.        

 In this example, the instruction at 01A3 has 

 Opcode: 0111 
 Register-r fi eld: 1 
 Addressing-aaa fi eld: 101 
 Operand specifi er: 0000 0011 0100 1110 

Main memory

01A3 01A4

0 0 0 0 0 0 1 10  1  1  1  1  1  0  1

0  0  0  0  1  1  0  0

01A5

0 1 0 0 1 1 1 0

01A6

  FIGURE   4 . 9 
  Two instructions in main memory. 

192 CHAPTER 4 Computer Architecture
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Direct addressing
• Oprnd = Mem[OprndSpec]

• The operand specifier is the memory 
address of the operand.
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The stop instruction
• Instruction specifier:  0000 0000

• Causes the computer to stop
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The load word instruction
• Instruction specifier:  1100 raaa

• Loads one word (two bytes) from memory 
to register r

r Oprnd ; N r< 0 , Z r= 0
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  Example 4.4  Suppose the instruction to be executed is C1004A in 
hexadecimal, which     FIGURE 4.10          shows in binary. Th e register-r fi eld in 
this example is 0, which indicates a load word to the accumulator instead 
of the index register. Th e addressing-aaa fi eld is 001, which indicates direct 
addressing.        

     FIGURE 4.11          shows the eff ect of executing the load word instruction, 
assuming Mem[004A] has an initial content of 92EF. Th e load word 
instruction does not change the content of the memory location. It sends a 
copy of the two memory cells (at addresses 004A and 004B) to the register. 
Whatever was in the register before the instruction was executed, in this 
case 036D, is destroyed. Th e N bit is set to 1 because the bit pattern loaded 
has 1 in the sign bit. Th e Z bit is set to 0 because the bit pattern is not all 0’s. 
Th e V and C bits are unaff ected by the load word instruction.        

         Figure 4.11 shows the data fl ow lines and control lines that the load 
word instruction activates. As indicated by the solid lines, data fl ows from 
the main memory on the bus to the CPU, and then into the register. For 
this data transfer to take place, the CPU must send a control signal (as 
indicated by the dashed lines) to main memory, telling it to put the data on 
the bus. Th e CPU also tells main memory the address from which to fetch 
the data. ❚

Opcode r aaa
Instruction specifier

1 1 0 0 0 0 0 1
C 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A  

 FIGURE   4 . 10 
  The load word instruction. 

C1004A
Load accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92EF 10
004A

CPU

NZ

A 92EF

Mem

92EF
004A

FIGURE   4 . 11 
  Execution of the load word instruction. 

Load accumulator004A 004A

1954.2 Direct Addressing
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• Instruction specifier:  1110 raaa

• Stores one word (two bytes) from register r 
to memory

Oprnd r

The store word instruction
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 The Store Word Instruction 
 Th e store word instruction has instruction specifi er 1110 raaa. Th is 
instruction stores one word (two bytes) from either the accumulator or the 
index register to a memory location. With direct addressing, the operand 
specifi es the memory location in which the information is stored. Th e RTL 
specifi cation for the store instruction is 

Oprnd ← r       

  Example 4.5  Suppose the instruction to be executed is E9004A in 
hexadecimal, which     FIGURE 4.12          shows in binary. Th is time, the register-r 
fi eld indicates that the instruction will aff ect the index register. Th e 
addressing-aaa fi eld, 001, indicates direct addressing. 

FIGURE 4.13      shows the eff ect of executing the store instruction, 
assuming the index register has an initial content of 16BC. Th e store 
instruction does not change the content of the register. It sends a copy of the 
register to two memory cells (at addresses 004A and 004B). Whatever was 
in the memory cells before the instruction was executed, in this case F082, is 
destroyed. Th e store instruction aff ects none of the status bits. ❚        

Opcode r aaa
Instruction specifier

1 1 1 0 1 0 0 1
E 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE   4 . 12 
  The store word instruction. 

E9004A
Store index register

(a) Before. (b) After.

CPU

X 16BC X 16BC

Mem

F082
004A

CPU Mem

16BC
004A

FIGURE   4 . 13 
  Execution of the store word instruction.  

Store index register004A 004A

196 CHAPTER 4 Computer Architecture
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Figure 4.12, 4.13
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The add instruction
• Instruction specifier:  0110 raaa

• Adds one word (two bytes) from memory 
to register r

r r+Oprnd ; N r< 0 , Z r= 0 ,

V {overflow} , C {carry}
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 The Add Instruction 
 Th e add instruction has instruction specifi er 0110 raaa. It is similar to the 
load word instruction in that data is transferred from main memory to 
register r in the CPU. But with the add instruction, the original content of 
the register is not just written over by the content of the word from main 
memory. Instead, the content of the word from main memory is added to 
the content of the register. Th e sum is placed in the register, and all four 
status bits are set accordingly. As with the load word instruction, a copy of 
the memory word is sent to the CPU. Th e original content of the memory 
word is unchanged. Th e RTL specifi cation of the add instruction is 

r ← r + Oprnd; N ← r < 0, Z ← r = 0, V ← { overfl ow }, C ← { carry }       

  Example 4.6  Suppose the instruction to be executed is 69004A in 
hexadecimal, which     FIGURE 4.14      shows in binary. Th e register-r fi eld 
indicates that the instruction will aff ect the index register. Th e addressing-
aaa fi eld, 001, indicates direct addressing. 

    FIGURE 4.15     shows the eff ect of executing the add instruction, 
assuming the index register has an initial content of 0005 and Mem[004A] 

Opcode r aaa
Instruction specifier

0 1 1 0 1 0 0 1
6 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

  FIGURE   4 . 14  
  The add instruction. 

Add index register

69004A

(a) Before. (b) After.

CPU

NZVC

X 0005

Mem

FFF9
004A

CPU

1000NZVC

X FFFE

Mem

FFF9
004A

  FIGURE   4 . 15 
  Execution of the add instruction. 

Add index register004A 004A

1974.2 Direct Addressing
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Figure 4.14, 4.15
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indicates that the instruction will aff ect the index register. Th e addressing-
aaa fi eld, 001, indicates direct addressing. 

    FIGURE 4.15     shows the eff ect of executing the add instruction, 
assuming the index register has an initial content of 0005 and Mem[004A] 

Opcode r aaa
Instruction specifier

0 1 1 0 1 0 0 1
6 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

  FIGURE   4 . 14  
  The add instruction. 

Add index register

69004A

(a) Before. (b) After.

CPU

NZVC

X 0005

Mem

FFF9
004A
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1000NZVC

X FFFE

Mem

FFF9
004A

  FIGURE   4 . 15 
  Execution of the add instruction. 

Add index register004A 004A
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The subtract instruction
• Instruction specifier:  0111 raaa

• Subtracts one word (two bytes) from 
memory from register r

V {overflow} , C {carry}

r r�Oprnd ; N r< 0 , Z r= 0 ,
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has –7 (dec) = FFF9 (hex). In decimal, the sum 5 + (–7) is –2, which is 
shown as FFFE (hex) in     Figure 4.15        (b). Th e fi gure shows the NZVC bits in 
binary. Th e N bit is 1 because the sum is negative. Th e Z bit is 0 because the 
sum is not all 0’s. Th e V bit is 0 because an overfl ow did not occur, and the 
C bit is 0 because a carry did not occur out of the most signifi cant bit. ❚        

 The Subtract Instruction 
 Th e subtract instruction has instruction specifi er 0111 raaa. It is similar to 
the add instruction, except that the operand is subtracted from the register. 
Th e result is placed in the register, and the operand is unchanged. With 
subtraction, the C bit represents a carry from adding the negation of the 
operand. Th e RTL specifi cation of the subtract instruction is 

r ← r − Oprnd; N ← r < 0, Z ← r = 0, V ← { overfl ow }, C ← { carry }       

  Example 4.7  Suppose the instruction to be executed is 71004A in 
hexadecimal, which     FIGURE 4.16          shows in binary. Th e register-r fi eld 
indicates that the instruction will aff ect the accumulator. 

     FIGURE 4.17      shows the eff ect of executing the subtract instruction, 
assuming the accumulator has an initial content of 0003 and Mem[004A] 
has 0009. In decimal, the diff erence 3 – 9 is –6, which is shown as FFFA 
(hex) in Figure 4.17(b). Th e fi gure shows the NZVC bits in binary. Th e N bit 

Opcode r aaa
Instruction specifier

0 1 1 1 0 0 0 1
7 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE   4 . 16 
  The subtract instruction. 

71004A
Subtract accumulator

(a) Before. (b) After.

CPU

NZVC

A 0003

Mem

0009
004A

CPU

1000NZVC

A FFFA

Mem

0009
004A

FIGURE   4 . 17 
  Execution of the subtract instruction. 

Subtract accumulator004A 004A
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The and instruction
• Instruction specifier:  1000 raaa

• ANDs one word (two bytes) from memory 
to register r

r r^Oprnd ; N r< 0 , Z r= 0
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is 1 because the sum is negative. Th e Z bit is 0 because the sum is not all 0’s. 
Th e V bit is 0 because an overfl ow did not occur, and the C bit is 0 because 
a carry did not occur when –9 was added to 3. ❚

 The And and Or Instructions 
 Th e and instruction has instruction specifi er 1000 raaa, and the or instruction 
has instruction specifi er 1001 raaa. Both instructions are similar to the add 
instruction. Rather than add the operand to the register, each instruction 
performs a logical operation on the register. Th e and operation is useful for 
masking out undesired 1 bits from a bit pattern. Th e or operation is useful 
for inserting 1 bits into a bit pattern. Both instructions aff ect the N and Z 
bits and leave the V and C bits unchanged. Th e RTL specifi cations for the 
and and or instructions are          

r ← r ⋀ Oprnd; N ← r < 0, Z ← r = 0
r ← r ⋁ Oprnd; N ← r < 0, Z ← r = 0

  Example 4.8  Suppose the instruction to be executed is 89004A in 
hexadecimal, which    FIGURE 4.18         shows in binary. Th e opcode indicates 
that the and instruction will execute and the register-r fi eld indicates that 
the instruction will aff ect the index register. 

     FIGURE 4.19          shows the eff ect of executing the and instruction, assuming 
the index register has an initial content of 5DC3 and Mem[004A] has 00FF. 
In binary, 00FF is 0000 0000 1111 1111. At every position where there is a 1 
in Mem[004A], the corresponding bit in the index register is unchanged. At 
every position where there is a 0, the corresponding bit is cleared to 0. Th e 
fi gure shows the NZ bits in binary. Th e N bit is 0 because the quantity in the 
index register is not negative when interpreted as a signed integer. Th e Z bit 
is 0 because the index register is not all 0’s. ❚

  Example 4.9      FIGURE 4.20          shows the operation of the or instruction. Th e 
initial state is identical to that of Example 4.8, except that the opcode of 
the instruction specifi er 99 is 1001, which indicates the or instruction. Th is 
time, at every position where there is a 0 in Mem[004A], the corresponding 

Opcode r aaa
Instruction specifier

1 0 0 0 1 0 0 1
8 9

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A  

 FIGURE   4 . 18 
  The and instruction. 
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Figure 4.18, 4.19

89004A
And index register

(a) Before. (b) After.

CPU

NZ

X 5DC3

Mem

00FF
004A

CPU

NZ 00

X 00C3

Mem

00FF
004A

FIGURE   4 . 19 
  Execution of the and instruction.  

And index register004A 004A

99004A
Or index register

(a) Before. (b) After.

CPU

NZ

X 5DC3

Mem

00FF
004A

CPU

00NZ

X 5DFF

Mem

00FF
004A

FIGURE   4 . 20 
  Execution of the or instruction.  

Or index register004A 004A

bit in the index register is unchanged. At every position where there is a 1, 
the corresponding bit is set to 1. Th e N bit is 0 because the index register 
would not be negative if it were interpreted as a signed integer. ❚        

 The Invert and Negate Instructions 
 Th e invert instruction has instruction specifi er 0000 011r, and the negate 
instruction has instruction specifi er 0000 100r. Both instructions are unary. 
Th ey have no operand specifi er. Th e invert instruction performs the NOT 
operation on the register. Th at is, each 1 is changed to 0, and each 0 is 
changed to 1. It aff ects the N and Z bits. Th e RTL specifi cation of the invert 
instruction is   

r ← ¬r ; N ← r < 0 , Z ← r = 0

200 CHAPTER 4 Computer Architecture
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The or instruction
• Instruction specifier:  1001 raaa

• ORs one word (two bytes) from memory to 
register r

r r_Oprnd ; N r< 0 , Z r= 0
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FIGURE   4 . 19 
  Execution of the and instruction.  
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  Execution of the or instruction.  

Or index register004A 004A

bit in the index register is unchanged. At every position where there is a 1, 
the corresponding bit is set to 1. Th e N bit is 0 because the index register 
would not be negative if it were interpreted as a signed integer. ❚        

 The Invert and Negate Instructions 
 Th e invert instruction has instruction specifi er 0000 011r, and the negate 
instruction has instruction specifi er 0000 100r. Both instructions are unary. 
Th ey have no operand specifi er. Th e invert instruction performs the NOT 
operation on the register. Th at is, each 1 is changed to 0, and each 0 is 
changed to 1. It aff ects the N and Z bits. Th e RTL specifi cation of the invert 
instruction is   

r ← ¬r ; N ← r < 0 , Z ← r = 0
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The invert instruction
• Instruction specifier:  0000 011r

• Bit-wise NOT operation on register r

• Each 0 changed to 1, each 1 changed to 0

r ¬r ; N r< 0 , Z r= 0
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 Th e negate instruction interprets the register as a signed integer and 
negates it. Th e 16-bit register stores signed integers in the range –32768 
to 32767. Th e negate instruction aff ects the N, Z, and V bits. Th e V bit is 
set only if the original value in the register is –32768, because there is no 
corresponding positive value of 32768. Th e RTL specifi cation of the negate 
instruction is 

r ← −r; N ← r < 0, Z ← r = 0, V ← { overfl ow }       

  Example 4.10  Suppose the instruction to be executed is 06 in hexadecimal, 
which     FIGURE 4.21          shows in binary. Th e opcode indicates that the invert 
instruction will execute, and the register-r fi eld indicates that the instruction 
will aff ect the accumulator. 

     FIGURE 4.22          shows the eff ect of executing the invert instruction, 
assuming the accumulator has an initial content of 0003 (hex), which is 0000 
0000 0000 0011 (bin). Th e not instruction changes the bit pattern to 1111 
1111 1111 1100. Th e N bit is 1 because the quantity in the accumulator is 
negative when interpreted as a signed integer. Th e Z bit is 0 because the 
accumulator is not all 0’s. ❚        

  Example 4.11      FIGURE 4.23  shows the operation of the negate instruction. 
Th e initial state is identical to that of Example 4.10, except that the opcode 
of the instruction specifi er 1A is 0000 100, which indicates the negate 
instruction. Th e negation of 3 is –3, which is 1111 1111 1111 1101 (bin) = 
FFFD (hex). ❚        

Opcode r
Instruction specifier

0 0 0 0 0 1 1 0

0 6

  FIGURE   4 . 21 
  The invert instruction. 

06
 Invert accumulator

(a) Before. (b) After.

CPU

NZ

A 0003

CPU

10NZ

A FFFC

  FIGURE   4 . 22 
  Execution of the invert 
instruction.  

(a) Before. (b) After.

08
Negate accumulator

(a)  Before. (b) After.

CPU

NZ

A 0003

CPU

NZ 10

A FFFD

  FIGURE   4 . 23 
  Execution of the negate 
instruction.  

(a)  Before. (b) After.
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The negate instruction
• Instruction specifier:  0000 100r

• Negate (take two’s complement of) register r

r �r ; N r< 0 , Z r= 0
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 Th e negate instruction interprets the register as a signed integer and 
negates it. Th e 16-bit register stores signed integers in the range –32768 
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  Example 4.10  Suppose the instruction to be executed is 06 in hexadecimal, 
which     FIGURE 4.21          shows in binary. Th e opcode indicates that the invert 
instruction will execute, and the register-r fi eld indicates that the instruction 
will aff ect the accumulator. 

     FIGURE 4.22          shows the eff ect of executing the invert instruction, 
assuming the accumulator has an initial content of 0003 (hex), which is 0000 
0000 0000 0011 (bin). Th e not instruction changes the bit pattern to 1111 
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negative when interpreted as a signed integer. Th e Z bit is 0 because the 
accumulator is not all 0’s. ❚        

  Example 4.11      FIGURE 4.23  shows the operation of the negate instruction. 
Th e initial state is identical to that of Example 4.10, except that the opcode 
of the instruction specifi er 1A is 0000 100, which indicates the negate 
instruction. Th e negation of 3 is –3, which is 1111 1111 1111 1101 (bin) = 
FFFD (hex). ❚        
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The load byte 
instruction

• Instruction specifier:  1101 raaa

• Loads one byte from memory to the right 
half of register r

Pep/9 RTL specification of the instruction set

Instruction Register transfer language specification

STOP Stop execution
RET PC←Mem[SP] ; SP← SP+2
RETTR NZVC←Mem[SP]⟨4..7⟩ ; A←Mem[SP+1] ; X←Mem[SP+3] ; PC←Mem[SP+5] ; SP←Mem[SP+7]
MOVSPA A← SP
MOVFLGA A⟨8..11⟩ ← 0 , A⟨12..15⟩ ← NZVC
MOVAFLG NZVC← A⟨12..15⟩

NOTr r← ¬r ; N← r < 0 , Z← r = 0
NEGr r←−r ; N← r < 0 , Z← r = 0 , V← {overflow}
ASLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← 0 ; N← r < 0 , Z← r = 0 , V← {overflow}
ASRr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ ; N← r < 0 , Z← r = 0
ROLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← C
RORr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ , r⟨0⟩ ← C

BR PC← Oprnd
BRLE N = 1∨Z = 1⇒ PC← Oprnd
BRLT N = 1⇒ PC← Oprnd
BREQ Z = 1⇒ PC← Oprnd
BRNE Z = 0⇒ PC← Oprnd
BRGE N = 0⇒ PC← Oprnd
BRGT N = 0∧Z = 0⇒ PC← Oprnd
BRV V = 1⇒ PC← Oprnd
BRC C = 1⇒ PC← Oprnd
CALL SP← SP−2 ; Mem[SP]← PC ; PC← Oprnd

NOPn Trap: Unary no operation
NOP Trap: Nonunary no operation

DECI Trap: Oprnd← {decimal input}
DECO Trap: {decimal output}← Oprnd
HEXO Trap: {hexadecimal output}← Oprnd
STRO Trap: {string output}← Oprnd

ADDSP SP← SP+Oprnd
SUBSP SP← SP−Oprnd

ADDr r← r+Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
SUBr r← r−Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
ANDr r← r∧Oprnd ; N← r < 0 , Z← r = 0
ORr r← r∨Oprnd ; N← r < 0 , Z← r = 0

CPWr T← r−Oprnd ; N← T < 0 , Z← T = 0 , V← {overflow} , C← {carry} ; N← N⊕V
CPBr T← r⟨8..15⟩−byte Oprnd ; N← T < 0 , Z← T = 0 , V← 0 , C← 0
LDWr r← Oprnd ; N← r < 0 , Z← r = 0
LDBr r⟨8..15⟩ ← byte Oprnd ; N← 0 , Z← r⟨8..15⟩= 0
STWr Oprnd← r
STBr byte Oprnd← r⟨8..15⟩
Trap T←Mem[FFF6] ; Mem[T−1]← IR⟨0..7⟩ ; Mem[T−3]← SP ; Mem[T−5]← PC ; Mem[T−7]← X ;

Mem[T−9]← A ; Mem[T−10]⟨4..7⟩ ← NZVC ; SP← T−10 ; PC←Mem[FFFE]

2
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 The Load Byte and Store Byte Instructions 
 Th ese instructions, along with the two that follow, are byte instructions. Byte 
instructions operate on a single byte of information instead of a word. Th e 
load byte instruction has instruction specifi er 1101 raaa, and the store byte 
instruction has instruction specifi er 1111 raaa. Th e load byte instruction 
loads the operand into the right half of either the accumulator or the index 
register, and aff ects the N and Z bits. It leaves the left  half of the register 
unchanged. Th e store byte instruction stores the right half of either the 
accumulator or the index register into a one-byte memory location and does 
not aff ect any status bits. Th e RTL specifi cation of the load byte instruction is

   r〈8..15〉 ← byte Oprnd; N ← 0, Z ← r〈8..15〉 = 0

 and the RTL specifi cation of the store byte instruction is 

byte Operand ← r〈8..15〉       

  Example 4.12  Suppose the instruction to be executed is D1004A in 
hexadecimal, which     FIGURE 4.24          shows in binary. Th e register-r fi eld in this 
example is 0, which indicates a load to the accumulator instead of the index 
register. Th e addressing-aaa fi eld is 001, which indicates direct addressing. 

     FIGURE 4.25          shows the eff ect of executing the load byte instruction, 
assuming Mem[004A] has an initial content of 92. Th e N bit is always set to 

Opcode r aaa
Instruction specifier

1 1 0 1 0 0 0 1
D 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE   4 . 24 
  The load byte instruction. 

D1004A
Load byte

accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92
004A

CPU

00NZ

A 0392

Mem

92
004A

FIGURE   4 . 25 
  Execution of the load byte instruction.  

Load byt004A 004A
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Figure 4.24, 4.25
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assuming Mem[004A] has an initial content of 92. Th e N bit is always set to 

Opcode r aaa
Instruction specifier

1 1 0 1 0 0 0 1
D 1

Operand specifier

0 0 0 0 0 0 0 0
0 0

0 1 0 0 1 0 1 0
4 A

FIGURE   4 . 24 
  The load byte instruction. 

D1004A
Load byte

accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92
004A

CPU

00NZ

A 0392

Mem

92
004A

FIGURE   4 . 25 
  Execution of the load byte instruction.  
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The store byte 
instruction

• Instruction specifier:  1111 raaa

• Stores one byte from the right half of 
register r to memory

byte Oprnd rh8..15i
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0 with this instruction. Th e Z bit is set to 0 because the eight bits loaded into 
the right half of the accumulator are not all 0’s. ❚

  Example 4.13  FIGURE 4.26          shows the eff ect of executing the store byte 
instruction. Th e initial state is the same as in Example 4.12, except that the 
instruction is store byte instead of load byte. Th e right half of the accumulator 
is 6D, which is sent to the memory cell at address 004A. ❚

 The Input and Output Devices 
 Th e input device is at address FC15, and is attached to an ASCII character 
input device like a keyboard. You get a character from the input device by 
executing the load byte instruction from address FC15. Th e output device is 
at address FC16 and is attached to an ASCII output device like a screen. You 
send a character to the output device by executing the store byte instruction 
to address FC16.        

  Example 4.14         Suppose the instruction to be executed is D1FC15 in 
hexadecimal, which is the load byte instruction from the input device with 
direct addressing. FIGURE 4.27          shows the eff ect of executing the instruction, 
assuming that the next character in the input stream is W. Th e character 
from the input stream can come from the keyboard or from a fi le. Th e fi gure 
shows the keyboard wired into the memory location at address FC15. Th e 
user has pressed the W key. Th e ASCII value of the letter W is 57 (hex), 
which is sent to the accumulator. 

 Th e dashed lines from the CPU to main memory represent control 
signals that instruct the memory subsystem to put the byte from address 
FC15 onto the system bus. Th e memory subsystem has a special input circuit 
that detects when a memory load request is made from address FC15. It then 
performs all the necessary steps to put the next character from the input 
stream into Mem[FC15], which is then put on the system bus. Th is is an 
example of levels of abstraction in a computer system. Th e details of how the 

F1004A
Store byte

accumulator

(a) Before. (b) After.

CPU

A 036D A 036D

Mem

92
004A

CPU Mem

6D
004A

  FIGURE   4 . 26 
  Execution of the store byte instruction. 
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Load byte from input device
Figure 4.27

character is transferred from the keyboard to Mem[FC15] are hidden from 
the Level ISA3 programmer, who only needs to know that to get the next 
ASCII character from the input stream you load a byte from that address. ❚        

  Example 4.15  Suppose the instruction to be executed is F1FC16 in 
hexadecimal, which is the store byte instruction to the output device with 
direct addressing.     FIGURE 4.28          shows the eff ect of executing the instruction, 
assuming that 69 (hex), which is the ASCII value for the letter i, is in the 
right half of the accumulator. Th e fi gure shows the screen wired into the 
memory location at address FC16. Th e ASCII value of the letter i is sent to 
Mem[FC16]. As with the input device, the memory subsystem has a special 
circuit that detects when a byte is stored to Mem[FC16] and routes it to the 
output stream to be displayed on the screen. ❚ 

 Big Endian Versus Little Endian 
 Th ere are two CPU design philosophies regarding the transfer of information 
between the registers of the CPU and the bytes in main memory. Th e 
problem arises because main memory is always byte-addressable and a 

FIGURE   4 . 27 
  The load byte instruction from the input device. 
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KeyboardKeyboard

CPU
Mem

FC16
A
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0069
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FC16
A

69F1FC16
Store byte

accumulator
0069

HiH

(b) After.(a) Before.

ScreenScreen

FIGURE   4 . 28 
  The store byte instruction to the output device.  
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Store byte to output device
Figure 4.28
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A little-endian CPU
Figure 4.29

register in a CPU typically contains more than one byte. Th e design question 
is, in what order should the sequence of bytes be stored in main memory? 
Th ere are two choices. Th e CPU can store the most signifi cant byte at the 
lowest address, called big-endian order, or it can store the least signifi cant 
byte at the lowest address, called little-endian order. Th e choice of which 
order to use is arbitrary as long as the same order is used consistently for all 
instructions in the instruction set. 

 Th ere is no dominant standard in the computing industry. Some 
processors use big-endian order, some use little-endian order, and some can 
use either order depending on a switch that is set by low-level soft ware. Pep/9 
is a big-endian CPU.             Figure 4.13 shows the eff ect of the store instruction. 
Th e most signifi cant byte in the register is 16, which is stored at the lowest 
address, 004A. Th e next byte in the register is BC and is stored at the next 
higher address, 004B. Figure 4.11 shows the load instruction, which is 
consistent. Th e most signifi cant byte of the register gets 92, which is the byte 
from the lowest address at 004A. Th e next byte gets EF from the next higher 
address at 004B.               

 In contrast, FIGURE 4.29          shows what happens when a load instruction 
executes in a little-endian CPU. Th e byte at the lowest address, 004A, is 92 
and is put in the least signifi cant byte of the register. Th e byte from the next 
higher address, 004B, is put to the left  of the low-order byte in the register. 

FIGURE 4.30  shows the eff ect of a load instruction in a CPU with 32-bit 
registers for both big-endian and little-endian ordering. A 32-bit register holds 
four bytes, which are loaded into the accumulator from most signifi cant to least 
signifi cant byte, or from least signifi cant to most signifi cant byte, depending 
on whether the CPU uses big-endian or little-endian ordering, respectively. 

 Th e word endian comes from Jonathan Swift ’s 1726 novel  Gulliver’s 
Travels,  in which two competing kingdoms, Lilliput and Blefuscu, have 
diff erent customs for breaking eggs. Th e inhabitants of Lilliput break their eggs 
at the little end, and hence are known as little endians, while the inhabitants of 

Little-endian CPU
Load accumulator

(a) Before. (b) After.

CPU

NZ

A 036D

Mem

92EF 10
004A

CPU

NZ

A EF92

Mem

92EF
004A

  FIGURE   4 . 29 
  The load instruction in a little-endian CPU.  

Load accumulator004A 004A
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A 32-bit register load
Figure 4.30

Blefuscu break their eggs at the big end, and hence are known as big endians. 
Th e novel is a parody refl ecting the absurdity of war over meaningless issues. 
Th e terminology is fi tting, as whether a CPU is big-endian or little-endian is 
of little fundamental importance. 

4.3  von Neumann Machines 
 In the earliest electronic computers, each program was hand-wired. To 
change the program, the wires had to be manually reconnected, a tedious 
and time-consuming process. Th e Electronic Numerical Integrator and 
Calculator (ENIAC) computer described in Section 3.1 was an example of 
this kind of machine. Its memory was used only to store data. 

 In 1945, John von Neumann had proposed in a report published by the 
University of Pennsylvania that the United States Ordnance Department 
build a computer that would store in main memory not only the data, but the 
program as well. Th e stored-program concept was a radical idea at the time. 
Maurice V. Wilkes built the Electronic Delay Storage Automatic Calculator 
(EDSAC) at Cambridge University in England in 1949. It was the fi rst 
computer to be built that used von Neumann’s stored-program idea. Practically 
all commercial computers today are based on the stored-program concept, 
with programs and data sharing the same main memory. Such computers are 
called von Neumann machines, although some believe that J. Presper Eckert, 
Jr., originated the idea several years before von Neumann’s paper. 

 The von Neumann Execution Cycle 
 Th e Pep/9 computer is a classic von Neumann machine.     FIGURE 4.31          is a 
pseudocode description of the steps required to execute a program:        

Initial State
Big Endian 
Final State

Little Endian 
Final State

Mem[019E] 89 89 89

Mem[019F] AB AB AB

Mem[01A0] CD CD CD

Mem[01A1] EF EF EF

Accumulator 89 AB CD EF EF CD AB 89

  FIGURE   4 . 30  
  The load instruction with a 32-bit register. 
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The von Neumann 
execution cycle

• Fetch instruction at Mem[PC].

• Decode instruction fetched.

• Increment PC.

• Execute the instruction fetched.

• Repeat.



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

Load the machine language program
Initialize PC and SP
do {
   Fetch the next instruction
   Decode the instruction specifier
   Increment PC
   Execute the instruction fetched
}
while (the stop instruction does not execute)

Figure 4.31
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Load the machine language program into memory starting at address 0000
PC ← 0000
SP ← Mem[FFF4]
do {
   Fetch the instruction specifier at address in PC
   PC ← PC + 1
   Decode the instruction specifier
   if (the instruction is not unary) {
      Fetch the operand specifier at address in PC
      PC ← PC + 2
   }
   Execute the instruction fetched
}
while ((the stop instruction does not execute) &&
       (the instruction is legal))

Figure 4.32
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Address! Machine Language (bin)
0000          1101 0001 0000 0000 0000 1101 
0003          1111 0001 1111 1100 0001 0110 
0006          1101 0001 0000 0000 0000 1110 
0009          1111 0001 1111 1100 0001 0110 
000C          0000 0000 
000D          0100 1000 0110 1001 
000F  

Address! Machine Language (hex)
0000          D1000D  ;Load byte accumulator 'H'
0003          F1FC16  ;Store byte accumulator output device
0006          D1000E  ;Load byte accumulator 'i'
0009          F1FC16  ;Store byte accumulator output device
000C          00      ;Stop
000D          4869    ;ASCII "Hi" characters

Output
Hi

Figure 4.33
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  FIGURE   4 . 34 
  The von Neumann execution cycle for the program of Figure 4.33.      
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(b) Program loaded into main memory.
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(a) Initial state before loading.
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(f ) Execute. Load byte for H to accumulator.
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(e) Increment PC.

(continues )

2114.3 von Neumann Machines

9781284079630_CH04_183_230.indd   211 29/01/16   8:05 pm

Figure 4.34



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

  FIGURE   4 . 34 
  The von Neumann execution cycle for the program of Figure 4.33.      

CPU

IR

Mem

PC

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

(b) Program loaded into main memory.

CPU

IR

Mem

PC

A

000D

000C

0009

0006

0003

0000

FC16

...
Screen

(a) Initial state before loading.

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0000

D1000D

(d) Fetch instruction at Mem[PC].

CPU

IR

Mem

PC 0000

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869

(c) PC ← 0000 (hex).

CPU

IR

Mem

A

000D

000C

0009

0006

0003

0000 D1000D

FC16

...
Screen

F1FC16

D1000E

F1FC16

00

4869PC 0003

0048

D1000D

(f ) Execute. Load byte for H to accumulator.
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(g) Fetch instruction at Mem[PC]. (h) Increment PC.

(i)  Execute. Store byte from accumulator to output device. (j) Fetch instruction at Mem[PC].

(k) Increment PC. (l) Execute. Load byte for i to accumulator.

FIGURE 4.34
The von Neumann execution cycle for the program of Figure 4.33. (continued )
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FIGURE 4.34
The von Neumann execution cycle for the program of Figure 4.33. (continued )
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FIGURE 4.34
The von Neumann execution cycle for the program of Figure 4.33. (continued )
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Address! Machine Language (bin)
0000          1101 0001 1111 1100 0001 0101 
0003          1111 0001 0000 0000 0001 0011 
0006          1101 0001 1111 1100 0001 0101 
0009          1111 0001 1111 1100 0001 0110 
000C          1101 0001 0000 0000 0001 0011 
000F          1111 0001 1111 1100 0001 0110 
0012          0000 0000 

Address! Machine Language (hex)
0000          D1FC15  ;Input first character
0003          F10013  ;Store first character
0006          D1FC15  ;Input second character
0009          F1FC16  ;Output second character
000C          D10013  ;Load first character
000F          F1FC16  ;Output first character
0012          00      ;Stop             

Input
up

Output
pu

Figure 4.35
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Address! Machine Language (bin)
0000          1100 0001 0000 0000 0000 1101
0003          0110 0001 0000 0000 0000 1111
0006          1001 0001 0000 0000 0001 0001
0009          1111 0001 1111 1100 0001 0110
000C          0000 0000
000D          0000 0000 0000 0101
000F          0000 0000 0000 0011
0011          0000 0000 0011 0000

Address! Machine Language (hex)
0000          C1000D  ;A <- first number
0003          61000F  ;Add the two numbers
0006          910011  ;Convert sum to character
0009          F1FC16  ;Output the character
000C          00      ;Stop
000D          0005    ;Decimal 5
000F          0003    ;Decimal 3
0011          0030    ;Mask for ASCII char

Output
8

Figure 4.36
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Address! Machine Language (bin)
0000          1101 0001 0000 0000 0001 1001
0003          1111 0001 0000 0000 0000 1001
0006          1100 0001 0000 0000 0001 0011
0009          0110 0001 0000 0000 0001 0101
000C          1001 0001 0000 0000 0001 0111
000F          1111 0001 1111 1100 0001 0110
0012          0000 0000
0013          0000 0000 0000 0101
0015          0000 0000 0000 0011
0017          0000 0000 0011 0000
0019          0111 0001

Figure 4.37
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Address! Machine Language (hex)
0000          D10019  ;Load byte accumulator
0003          F10009  ;Store byte accumulator
0006          C10013  ;A <- first number
0009          610015  ;Add the two numbers
000C          910017  ;Convert sum to character
000F          F1FC16  ;Output the character
0012          00      ;Stop
0013          0005    ;Decimal 5
0015          0003    ;Decimal 3
0017          0030    ;Mask for ASCII char
0019          71      ;Byte to modify instruction

Output
2

Figure 4.37
(continued)
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Intel x-86 computer 
architecture
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 Of course, this is not a very practical program. If you wanted to subtract 
the two numbers, you would simply write the program of     Figure 4.36     with the 
subtract instruction in place of the add instruction. But it does show that in a 
von Neumann machine, main memory places no signifi cance on the bits it is 
storing. It simply remembers 1’s and 0’s and has no idea which are program 
bits, which are data bits, which are ASCII characters, and so on. Furthermore, 
the CPU cranks out the von Neumann execution cycle and interprets the 
bits accordingly, with no idea of their history. When it fetches the bits at 
Mem[0009], it does not know, or care, how they got there in the fi rst place. It 
simply repeats the fetch, decode, increment, execute cycle over and over.  

 The x86 Architecture 

 Th e designation x86 refers to a family of processors 
beginning with the 8086 introduced by Intel in 1978 
and continuing with the 80186, 80286, 80386, 80486 
series; the Pentium series; and the Core series. Th e CPU 
registers vary in size from 16 bits in the 8086, to 32 bits 
in the 80386, to 64 bits beginning with the Pentium 4. 
Th e processors are generally backward compatible. For 

example, the 64-bit processors have a 32-bit execution 
mode so that older soft ware can run unchanged on the 
newer CPUs.               

FIGURE 4.38           shows the registers in a typical 
32-bit model. Th e x86 processors are little-endian and 
number the bits in a register starting from 0 for the 
least signifi cant bit. Th e EFLAGS register has a number 

  FIGURE   4 . 38 
  The registers in a typical 32-bit x86 CPU. 
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of status bits besides the four NZVC bits in Pep/9. 
    FIGURE 4.39          shows the location of the four bits that 
correspond to the Pep/9 status bits. SF stands for sign 
fl ag, and OF stands for overfl ow fl ag. 

 Th e x86 architecture has four general-purpose 
accumulators named EAX, EBX, ECX, and EDX that 
correspond to the single Pep/9 accumulator.           Figure 4.38 
shows that the rightmost two bytes of the EAX register 
are named AX, the left  byte of AX is named AH for 
A-high, and the right byte of AX is named AL for 
A-low. Th e other accumulators are named accordingly. 
For example, the rightmost byte of the ECX register is 
named CL. 

 Th e x86 architecture has two index registers 
corresponding to the single X register of Pep/9. ESI is the 
source index register, and EDI is the destination index 
register. ESP is the stack pointer, which corresponds to 

the stack pointer SP of Pep/9. EBP is the base pointer, 
which points to the bottom of the current stack frame. 
Pep/9 has no corresponding register. EIP is called the 
instruction pointer in Intel terminology and corresponds 
to the program counter PC in Pep/9.        

     FIGURE 4.40      shows a machine language 
instruction that adds the content of the ECX register 
to the content of the EAX register and puts the sum in 
the ECX register. As with all von Neumann machines, 
a machine language instruction begins with an opcode 
fi eld, 000000 in this example, which is the opcode for 
the  add instruction. Th e following fi elds correspond to 
the register-r fi eld and the addressing-aaa fi eld of Pep/9 
but with meaning specifi c to the x86 instruction set. Th e 1 
in the s fi eld indicates that the sum is on 32-bit quantities. 
If s were 0, only a single byte would be added. Th e 11 
in the mod fi eld indicates that the r/m fi eld is a register. 
Th e 000 in the reg fi eld, along with the 0 in the d fi eld, 
indicates the EAX register, and the 001 in the r/m fi eld, 
along with the 0 in the d fi eld, indicates the ECX register. 
Th e hexadecimal abbreviation of the instruction is 01C1. 

 Th is is only one format from the x86 instruction 
set. Th ere are multiple formats with some instruction 
specifi ers preceded by special prefi x bytes that change 
the format of the instruction specifi er, and some 
followed by operand specifi ers that might include a 
so-called scaled indexed byte. Th e instruction format 
scheme is complicated because it evolved from a small 
CPU with the requirement of backward compatibility. 
Pep/9 illustrates the concepts underlying machine 
languages in all von Neumann machines without the 
above complexities. 

  FIGURE   4 . 40 
  The x86 instruction format for the add register instruction. 

  FIGURE   4 . 39 
  The x86 status bits corresponding to the 
Pep/9 status bits. 

Status Bit Intel Name EFLAGS Position

N SF 7

Z ZF 6

V OF 11

C CF 0

0 00 0 1000

Opcode d s mod reg r/m

1 1 0 00 0 10

0 1 C 1
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of status bits besides the four NZVC bits in Pep/9. 
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Memory devices
• Read/Write memory

‣ Also called Random-Access Memory 
(RAM)

‣ Can load from RAM and store to RAM

• Read-Only memory (ROM)

‣ Can load from ROM

‣ Cannot store to ROM

• RAM and ROM are both random
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  4.4  Programming at Level ISA3 
 To program at Level ISA3 is to write a set of instructions in binary. To execute 
the binary sequence, fi rst you must load it into main memory. Th e operating 
system is responsible for loading the binary sequence into main memory. 

 An operating system is a program. Like any other program, a soft ware 
engineer must design, write, test, and debug it. Most operating systems are 
so large and complex that teams of engineers must write them. Th e primary 
function of an operating system is to control the execution of application 
programs on the computer. Because the operating system is itself a program, 
it must reside in main memory in order to be executed. So main memory 
must store not only the application programs, but also the operating system. 

 In the Pep/9 computer, the bottom part of main memory—that is, the 
part with high memory addresses—is reserved for the operating system. Th e 
top part is reserved for the application program.    FIGURE 4.41         is a memory 
map of the Pep/9 computer system. It shows that the operating system starts 
at memory location FB8F and occupies the rest of main memory. Th at leaves 
memory locations 0000 to FB8E for the application program.    

 Th e loader is that part of the operating system that loads the application 
program into main memory so it can be executed. What loads the loader? 
Th e Pep/9 loader, along with several other parts of the operating system, is 
permanently stored in main memory.     

 Read-Only Memory 
 Th ere are two types of electronic-circuit elements from which memory 
devices are manufactured—read/write circuit elements and read-only 
circuit elements. 

 In the program of     Figure 4.35        , when the store byte instruction, F10013, 
executed, the CPU transferred the content of the right half of the accumulator 
to Mem[0013]. Th e original content of Mem[0013] was destroyed, and 
the memory location then contained 0111 0101 (bin), the binary code for 
the letter u. When the load byte instruction, D10013, executed, the bits at 
location 0013 were sent back to the accumulator so they could be sent to the 
output device. 

 Th e circuit element at memory location 0013 is a read/write circuit. Th e 
store byte instruction did a write operation on it, which changed its content. 
Th e read byte instruction did a read operation on it, which sent a copy of 
its content to the accumulator. If the circuit element at location 0013 were 
a read-only circuit, the store byte instruction would not have changed its 
content. 
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The load option
• SP ← Mem[FFF6]

• PC ← Mem[FFFC]

• Start the von Neumann cycle
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 Selecting the load option initializes the stack pointer and program 
counter to the predetermined values stored at FFF6 and FFFC. It just so 
happens that the value at address FFF6 is FC0F, the bottom of the system 
stack. FC0F is the value the stack pointer should have when the system stack 
is empty. It also happens that the value at address FFFC is FC17. In fact, 
FC17 is the address of the fi rst instruction to be executed in the loader. 

 Th e system programmer who wrote the operating system decided where 
the system stack and the loader should be located. Realizing that the Pep/9 
computer would fetch the vectors from locations FFFA and FFFC when the load 
option is selected, she placed the appropriate values in those locations. Because 
the fi rst step in the execution cycle is fetch, the fi rst instruction to be executed 
aft er selecting the load option is the fi rst instruction of the loader program. 
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  FIGURE   4 . 42 
  The Pep/9 load option. 
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Figure 4.42
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The execute option
• SP ← Mem[FFF4]

• PC ← 0000

• Start the von Neumann cycle
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Address! Machine Language (hex)
0000          D1000D  ;Load byte accumulator 'H'
0003          F1FC16  ;Store byte accumulator output device
0006          D1000E  ;Load byte accumulator 'i'
0009          F1FC16  ;Store byte accumulator output device
000C          00      ;Stop
000D          4869    ;ASCII "Hi" characters

Hex Version for the Loader
D1 00 0D F1 FC 16 D1 00 0E F1 FC 16 00 48 69 zz

Output
Hi

Figure 4.43


