
Chapter 5

Assembly
Language

 Assembly
 APPLICATION LEVEL

 HIGH-ORDER LANGUAGE LEVEL

 ASSEMBLY LEVEL

 OPERATING SYSTEM LEVEL

 MICROCODE LEVEL

 LOGIC GATE LEVEL

 INSTRUCTION SET
ARCHITECTURE LEVEL

5

 LEVEL

 5

9781284079630_CH05_231_286.indd 231 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Instructions

‣ Mnemonics for opcodes

‣ Letters for addressing modes

• Data

‣ Pseudo-ops, also called dot commands

Two types of bit
patterns

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

memory aid. It is easier to remember that LDWA stands for the load word
accumulator instruction than to remember that opcode 1100 and register-r
0 stand for the load word accumulator instruction. Th e operand specifi er is
written in hexadecimal, 009A , preceded by 0x , which stands for hexadecimal
constant. In Pep/9 assembly language, you specify the addressing mode
by placing one or more letters aft er the operand specifi er with a comma
between them. FIGURE 5.1 shows the letters that go with each of the eight
addressing modes.

 Example 5.1 Here are some examples of the load word register r instruction
written in binary machine language and in assembly language. LDWX
corresponds to the same machine language statement as LDWA, except that
the register-r bit for LDWX is 1 instead of 0.

 1100 0011 0000 0000 1001 1010 LDWA 0x009A,s
 1100 0110 0000 0000 1001 1010 LDWA 0x009A,sx
 1100 1011 0000 0000 1001 1010 LDWX 0x009A,s
 1100 1110 0000 0000 1001 1010 LDWX 0x009A,sx ❚

 FIGURE 5.2 summarizes the 40 instructions of the Pep/9 instruction
set at Level Asmb5. It shows the mnemonic that goes with each opcode and
the meaning of each instruction. Th e addressing modes column tells what
addressing modes are allowed or whether the instruction is unary (U). Th e
status bits column lists the status bits the instruction aff ects when it executes.

 Letters for the addressing
mode

 FIGURE 5 . 1
 The letters that specify the addressing mode in Pep/9 assembly
language.

aaa Addressing Mode Letters

000 Immediate i

001 Direct d

010 Indirect n

011 Stack-relative s

100 Stack-relative deferred sf

101 Indexed x

110 Stack-indexed sx

111 Stack-deferred indexed sfx

2355.1 Assemblers

9781284079630_CH05_231_286.indd 235 29/01/16 8:29 am

Figure 5.1

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

FIGURE 5.2
The Pep/9 instruction set at Level Asmb5.

Instruction
Specifi er Mnemonic Instruction

Addressing
Mode

Status
Bits

0000 0000 STOP Stop execution U

0000 0001 RET Return from CALL U

0000 0010 RETTR Return from trap U

0000 0011 MOVSPA Move SP to A U

0000 0100 MOVFLGA Move NZVC fl ags to A〈12..15〉 U

0000 0101 MOVAFLG Move A〈12..15〉 to NZVC fl ags U

0000 011r NOTr Bitwise invert r U NZ

0000 100r NEGr Negate r U NZV

0000 101r ASLr Arithmetic shift left r U NZVC

0000 110r ASRr Arithmetic shift right r U NZC

0000 111r ROLr Rotate left r U C

0001 000r RORr Rotate right r U C

0001 001a BR Branch unconditional i, x

0001 010a BRLE Branch if less than or equal to i, x

0001 011a BRLT Branch if less than i, x

0001 100a BREQ Branch if equal to i, x

0001 101a BRNE Branch if not equal to i, x

0001 110a BRGE Branch if greater than or equal to i, x

0001 111a BRGT Branch if greater than i, x

0010 000a BRV Branch if V i, x

0010 001a BRC Branch if C i, x

0010 010a CALL Call subroutine i, x

0010 011n NOPn Unary no operation trap U

0010 1aaa NOP Nonunary no operation trap i

236 CHAPTER 5 Assembly Language

9781284079630_CH05_231_286.indd 236 29/01/16 8:29 am

Figure 5.2

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

FIGURE 5.2
The Pep/9 instruction set at Level Asmb5.

Instruction
Specifi er Mnemonic Instruction

Addressing
Mode

Status
Bits

0000 0000 STOP Stop execution U

0000 0001 RET Return from CALL U

0000 0010 RETTR Return from trap U

0000 0011 MOVSPA Move SP to A U

0000 0100 MOVFLGA Move NZVC fl ags to A〈12..15〉 U

0000 0101 MOVAFLG Move A〈12..15〉 to NZVC fl ags U

0000 011r NOTr Bitwise invert r U NZ

0000 100r NEGr Negate r U NZV

0000 101r ASLr Arithmetic shift left r U NZVC

0000 110r ASRr Arithmetic shift right r U NZC

0000 111r ROLr Rotate left r U C

0001 000r RORr Rotate right r U C

0001 001a BR Branch unconditional i, x

0001 010a BRLE Branch if less than or equal to i, x

0001 011a BRLT Branch if less than i, x

0001 100a BREQ Branch if equal to i, x

0001 101a BRNE Branch if not equal to i, x

0001 110a BRGE Branch if greater than or equal to i, x

0001 111a BRGT Branch if greater than i, x

0010 000a BRV Branch if V i, x

0010 001a BRC Branch if C i, x

0010 010a CALL Call subroutine i, x

0010 011n NOPn Unary no operation trap U

0010 1aaa NOP Nonunary no operation trap i

236 CHAPTER 5 Assembly Language

9781284079630_CH05_231_286.indd 236 29/01/16 8:29 am

Figure 5.2
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0011 0aaa DECI Decimal input trap d, n, s, sf, x, sx, sfx NZV

0011 1aaa DECO Decimal output trap i, d, n, s, sf, x, sx, sfx

0100 0aaa HEXO Hexadecimal output trap i, d, n, s, sf, x, sx, sfx

0100 1aaa STRO String output trap d, n, s, sf, x

0101 0aaa ADDSP Add to stack pointer (SP) i, d, n, s, sf, x, sx, sfx NZVC

0101 1aaa SUBSP Subtract from stack pointer (SP) i, d, n, s, sf, x, sx, sfx NZVC

0110 raaa ADDr Add to r i, d, n, s, sf, x, sx, sfx NZVC

0111 raaa SUBr Subtract from r i, d, n, s, sf, x, sx, sfx NZVC

1000 raaa ANDr Bitwise AND to r i, d, n, s, sf, x, sx, sfx NZ

1001 raaa ORr Bitwise OR to r i, d, n, s, sf, x, sx, sfx NZ

1010 raaa CPWr Compare word to r i, d, n, s, sf, x, sx, sfx NZVC

1011 raaa CPBr Compare byte to r〈8..15〉 i, d, n, s, sf, x, sx, sfx NZVC

1100 raaa LDWr Load word r from memory i, d, n, s, sf, x, sx, sfx NZ

1101 raaa LDBr Load byte r〈8..15〉 from memory i, d, n, s, sf, x, sx, sfx NZ

1110 raaa STWr Store word r to memory d, n, s, sf, x, sx, sfx

1111 raaa STBr Store byte r〈8..15〉 to memory d, n, s, sf, x, sx, sfx

 Figure 5 . 2 shows the unimplemented opcode instructions replaced by
six new instructions:

 NOPn Unary no operation trap
 NOP Nonunary no operation trap
 DECI Decimal input trap
 DECO Decimal output trap
 HEXO Hexadecimal output trap
 STRO String output trap

 Th ese new instructions are available to the assembly language
programmer at Level Asmb5, but they are not part of the instruction set
at Level ISA3. Th e operating system at Level OS4 provides them with its
trap handler. At the assembly level, you may simply program with them as
if they were part of the Level ISA3 instruction set, even though they are
not. Chapter 8 shows in detail how the operating system provides these

 Th e unimplemented opcode
instructions at Level Asmb5

2375.1 Assemblers

9781284079630_CH05_231_286.indd 237 29/01/16 8:29 am

Figure 5.2
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0011 0aaa DECI Decimal input trap d, n, s, sf, x, sx, sfx NZV

0011 1aaa DECO Decimal output trap i, d, n, s, sf, x, sx, sfx

0100 0aaa HEXO Hexadecimal output trap i, d, n, s, sf, x, sx, sfx

0100 1aaa STRO String output trap d, n, s, sf, x

0101 0aaa ADDSP Add to stack pointer (SP) i, d, n, s, sf, x, sx, sfx NZVC

0101 1aaa SUBSP Subtract from stack pointer (SP) i, d, n, s, sf, x, sx, sfx NZVC

0110 raaa ADDr Add to r i, d, n, s, sf, x, sx, sfx NZVC

0111 raaa SUBr Subtract from r i, d, n, s, sf, x, sx, sfx NZVC

1000 raaa ANDr Bitwise AND to r i, d, n, s, sf, x, sx, sfx NZ

1001 raaa ORr Bitwise OR to r i, d, n, s, sf, x, sx, sfx NZ

1010 raaa CPWr Compare word to r i, d, n, s, sf, x, sx, sfx NZVC

1011 raaa CPBr Compare byte to r〈8..15〉 i, d, n, s, sf, x, sx, sfx NZVC

1100 raaa LDWr Load word r from memory i, d, n, s, sf, x, sx, sfx NZ

1101 raaa LDBr Load byte r〈8..15〉 from memory i, d, n, s, sf, x, sx, sfx NZ

1110 raaa STWr Store word r to memory d, n, s, sf, x, sx, sfx

1111 raaa STBr Store byte r〈8..15〉 to memory d, n, s, sf, x, sx, sfx

 Figure 5 . 2 shows the unimplemented opcode instructions replaced by
six new instructions:

 NOPn Unary no operation trap
 NOP Nonunary no operation trap
 DECI Decimal input trap
 DECO Decimal output trap
 HEXO Hexadecimal output trap
 STRO String output trap

 Th ese new instructions are available to the assembly language
programmer at Level Asmb5, but they are not part of the instruction set
at Level ISA3. Th e operating system at Level OS4 provides them with its
trap handler. At the assembly level, you may simply program with them as
if they were part of the Level ISA3 instruction set, even though they are
not. Chapter 8 shows in detail how the operating system provides these

 Th e unimplemented opcode
instructions at Level Asmb5

2375.1 Assemblers

9781284079630_CH05_231_286.indd 237 29/01/16 8:29 am

Figure 5.2
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The unimplemented
opcode instructions

• NOPn Unary no-operation trap

• NOP Nonunary no-operation trap

• DECI Decimal input trap

• DECO Decimal output trap

• HEXO Hexadecimal output trap

• STRO String output trap

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Pseudo-operations
• .ADDRSS The address of a symbol

• .ALIGN Padding to align at a memory boundary

• .ASCII A string of ASCII bytes

• .BLOCK A block of zero bytes

• .BURN Initiate ROM burn

• .BYTE A byte value

• .END The sentinel for the assembler

• .EQUATE Equate a symbol to a constant value

• .WORD A word value

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembler Input
;Stan Warford
;May 1, 2017
;A program to output "Hi"
;
LDBA 0x000D,d ;Load byte accumulator 'H'
STBA 0xFC16,d ;Store byte accumulator output device
LDBA 0x000E,d ;Load byte accumulator 'i'
STBA 0xFC16,d ;Store byte accumulator output device
STOP ;Stop
.ASCII "Hi" ;ASCII "Hi" characters
.END

Assembler Output
D1 00 0D F1 FC 16 D1 00 0E F1 FC 16 00 48 69 zz

Program Output
Hi

Figure 5.3

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Application
level

Assembly
level

Operating system
level

Instruction set
architecture level

Microcode
level

Logic gate
level

7

6

5

4

3

2

1

High-order
language level

Figure 5.4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

part was straightforward. It only involved looking up the binary opcodes for
the instructions and the binary codes for the ASCII characters in the ASCII
table. Th e hexadecimal operands could similarly be converted to binary with
hexadecimal conversion tables. Only aft er the program was translated could
it be loaded and executed.

 Th e translation of a long program was a routine and tedious job. Soon
programmers realized that a computer program could be written to do
the translation. Such a program is called an assembler, and FIGURE 5.4

illustrates how it functions.
 An assembler is a program whose input is an assembly language

program and whose output is that same program translated into machine
language in a format suitable for a loader. Input to the assembler is called
the source program. Output from the assembler is called the object program.
 FIGURE 5.5 shows the eff ect of the Pep/9 assembler on the assembly
language of Figure 5 . 3 .

 It is important to realize that an assembler merely translates a program
into a format suitable for a loader. It does not execute the program.
Translation and execution are separate processes, and translation always
occurs fi rst.

 Because the assembler is itself a program, it must be written in some
programming language. Th e computer pioneers who wrote the fi rst
assemblers had to write them in machine language. Or, if they wrote them
in assembly language, they had to translate them into machine language by
hand because no assemblers were available at the time. Th e point is that a
machine can execute only programs that are written in machine language.

 The .BLOCK Pseudo-op
 FIGURE 5.6 is the assembly language version of Figure 4 . 35 . It inputs two
characters and outputs them in reverse order.

FIGURE 5.4
The function of an
assembler.

Application
level

Assembly
level

Operating system
level

Instruction set
architecture level

Microcode
level

Logic gate
level

7

6

5

4

3

2

1

High-order
language level

0x000D,d
0xFC16,d

"Hi"

LDBA
STBA

0x000E,dLDBA
0xFC16,dSTBA

.ASCII

.END

Assembler

D1 00 0D
F1 FC 16
D1 00 0E
F1 FC 16

00
48 69
zz

OutputProcessingInput

STOP

FIGURE 5.5
The action of the Pep/9 assembler on the program of Figure 5.3.

0xFC16,d

2415.1 Assemblers

9781284079630_CH05_Pass03.indd 241 19/01/16 5:13 pm

Figure 5.5

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembler Input
LDBA 0xFC15,d ;Input first character
STBA 0x0013,d ;Store first character
LDBA 0xFC15,d ;Input second character
STBA 0xFC16,d ;Output second character
LDBA 0x0013,d ;Load first character
STBA 0xFC16,d ;Output first character
STOP ;Stop
.BLOCK 1 ;Storage for first character
.END

Assembler Output
D1 FC 15 F1 00 13 D1 FC 15 F1 FC 16 D1 00 13 F1
FC 16 00 00 zz

Program Input
up

Program Output
pu

Figure 5.6

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembler Input
LDWA 0x000D,d ;A <- first number
ADDA 0x000F,d ;Add the two numbers
ORA 0x0011,d ;Convert sum to character
STBA 0xFC16,d ;Output the character
STOP ;Stop
.WORD 5 ;Decimal 5
.WORD 3 ;Decimal 3
.WORD 0x0030 ;Mask for ASCII char
.END

Assembler Output
C1 00 0D 61 00 0F 91 00 11 F1 FC 16 00 00 05 00
03 00 30 zz

Program Output
8

Figure 5.7

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 You can compare the assembler output of this assembly language
program with the hexadecimal machine language of Figure 4 . 36 to see
that they are identical. Th e assembler was designed to generate output that
carefully follows the format expected by the loader. Th ere are no leading
blank lines or spaces. Th ere is exactly one space between bytes, with no
trailing spaces on a line. Th e byte sequence terminates with zz .

 Using the Pep/9 Assembler
 Execution of the program in Figure 5 . 6 , the application program that outputs
the two input characters in reverse order, requires the computer runs shown
in FIGURE 5.8 .

 First the assembler is loaded into main memory and the application
program is taken as the input fi le. Th e output from this run is the machine
language version of the application program. It is then loaded into main
memory for the second run. All the programs in the center boxes must be
in machine language.

 Th e Pep/9 system comes with an assembler as well as the simulator.
When you execute the assembler, you must provide it with your assembly
language program, previously created with the text editor. If you have made
no errors in your program, the assembler will generate the object code in a
format suitable for the loader. Otherwise, it will protest with one or more
error messages and will generate no code. Aft er you generate code from
an error-free program, you can use it with the simulator (as described in
Chapter 4).

 When writing an assembly language program, you must place at least
one space aft er the mnemonic or dot command. Other than that, there are
no restrictions on spacing. Your source program may be in any combination
of uppercase or lowercase letters. For example, you could write your source
of Figure 5 . 6 as in FIGURE 5.9 , and the assembler would accept it as valid
and generate the correct code.

Application
(assembly language)

Assembler
(machine language)

ProcessingInput

Application
(machine language)

Output

up Application
(machine language)

pu

FIGURE 5.8
Two computer runs necessary for execution of the program in Figure 5.6.

(assembly language) (machine language) (machine language)

244 CHAPTER 5 Assembly Language

9781284079630_CH05_231_286.indd 244 29/01/16 8:29 am

Figure 5.8

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembler Input
 ldwa 0x000D,d ;A <- first number
 ADda 0x000F,d ;Add the two numbers
 ORA 0x0011, d ;Convert sum to character
 StBA 0Xfc16 , d ;Output the character
 STop ;Stop
 .WORD 5 ;Decimal 5
 .worD 3 ;Decimal 3
 .WORD 0x0030 ;Mask for ASCII char
 .end

Assembler Listing

 Object
Addr code Mnemon Operand Comment

0000 C1000D LDWA 0x000D,d ;A <- first number
0003 61000F ADDA 0x000F,d ;Add the two numbers
0006 910011 ORA 0x0011,d ;Convert sum to character
0009 F1FC16 STBA 0xFC16,d ;Output the character
000C 00 STOP ;Stop
000D 0005 .WORD 5 ;Decimal 5
000F 0003 .WORD 3 ;Decimal 3
0011 0030 .WORD 0x0030 ;Mask for ASCII char
0013 .END

Figure 5.9

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = Mem[OprndSpec]

• Asmb5 letter: d

• The operand specifier is the address in
memory of the operand.

Direct addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = OprndSpec

• Asmb5 letter: i

• The operand specifier is the operand.

Immediate addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

LDBA 'H',i ;Output 'H'
STBA 0xFC16,d
LDBA 'i',i ;Output 'i'
STBA 0xFC16,d
STOP
.END

Output
Hi

Figure 5.10

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The decimal input
instruction

• Instruction specifier: 0011 0aaa

• Mnemonic: DECI

• Convert a string of ASCII characters from
the input device into a 16-bit signed integer
and store it into memory

Oprnd {decimal input}

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The decimal output
instruction

• Instruction specifier: 0011 1aaa

• Mnemonic: DECO

• Convert a 16-bit signed integer from
memory into a string of ASCII characters
and send the string to the output device

{decimal output} Oprnd

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The unconditional
branch instruction

• Instruction specifier: 0001 001a

• Mnemonic: BR

• Skips to a different memory location for the
next instruction to be executed.

PC {Oprnd}

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0000 120005 BR 0x0005 ;Branch around data
0003 0000 .BLOCK 2 ;Storage for one integer
 ;
0005 310003 DECI 0x0003,d ;Get the number
0008 390003 DECO 0x0003,d ;and output it
000B D00020 LDBA ' ',i ;Output " + 1 = "
000E F1FC16 STBA 0xFC16,d
0011 D0002B LDBA '+',i
0014 F1FC16 STBA 0xFC16,d
0017 D00020 LDBA ' ',i
001A F1FC16 STBA 0xFC16,d
001D D00031 LDBA '1',i
0020 F1FC16 STBA 0xFC16,d
0023 D00020 LDBA ' ',i
0026 F1FC16 STBA 0xFC16,d
0029 D0003D LDBA '=',i
002C F1FC16 STBA 0xFC16,d
002F D00020 LDBA ' ',i
0032 F1FC16 STBA 0xFC16,d
0035 C10003 LDWA 0x0003,d ;A <- the number
0038 600001 ADDA 1,i ;Add one to it
003B E10003 STWA 0x0003,d ;Store the sum
003E 390003 DECO 0x0003,d ;Output the sum
0041 00 STOP
0042 .END

Figure 5.11

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Input
-479

Output
-479 + 1 = -478

Figure 5.11
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The string output
instruction

• Instruction specifier: 0100 1aaa

• Mnemonic: STRO

• Send a string of null-terminated ASCII
characters to the output device

{string output} Oprnd

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0000 120005 BR 0x0005 ;Branch around data
0003 0000 .BLOCK 2 ;Storage for one integer
 ;
0005 310003 DECI 0x0003,d ;Get the number
0008 390003 DECO 0x0003,d ;and output it
000B 49001B STRO 0x001B,d ;Output " + 1 = "
000E C10003 LDWA 0x0003,d ;A <- the number
0011 600001 ADDA 1,i ;Add one to it
0014 E10003 STWA 0x0003,d ;Store the sum
0017 390003 DECO 0x0003,d ;Output the sum
001A 00 STOP
001B 202B20 .ASCII " + 1 = \x00"
 31203D
 2000
0023 .END
 

Input
-479

Output
-479 + 1 = -478

Figure 5.12

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The hexadecimal output
instruction

• Instruction specifier: 0100 0aaa

• Mnemonic: HEXO

• Convert a 2-byte word from memory into
four hexadecimal digits and send the string
to the output device

Pep/9 RTL specification of the instruction set

Instruction Register transfer language specification

STOP Stop execution
RET PC←Mem[SP] ; SP← SP+2
RETTR NZVC←Mem[SP]⟨4..7⟩ ; A←Mem[SP+1] ; X←Mem[SP+3] ; PC←Mem[SP+5] ; SP←Mem[SP+7]
MOVSPA A← SP
MOVFLGA A⟨8..11⟩ ← 0 , A⟨12..15⟩ ← NZVC
MOVAFLG NZVC← A⟨12..15⟩

NOTr r← ¬r ; N← r < 0 , Z← r = 0
NEGr r←−r ; N← r < 0 , Z← r = 0 , V← {overflow}
ASLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← 0 ; N← r < 0 , Z← r = 0 , V← {overflow}
ASRr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ ; N← r < 0 , Z← r = 0
ROLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← C
RORr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ , r⟨0⟩ ← C

BR PC← Oprnd
BRLE N = 1∨Z = 1⇒ PC← Oprnd
BRLT N = 1⇒ PC← Oprnd
BREQ Z = 1⇒ PC← Oprnd
BRNE Z = 0⇒ PC← Oprnd
BRGE N = 0⇒ PC← Oprnd
BRGT N = 0∧Z = 0⇒ PC← Oprnd
BRV V = 1⇒ PC← Oprnd
BRC C = 1⇒ PC← Oprnd
CALL SP← SP−2 ; Mem[SP]← PC ; PC← Oprnd

NOPn Trap: Unary no operation
NOP Trap: Nonunary no operation

DECI Trap: Oprnd← {decimal input}
DECO Trap: {decimal output}← Oprnd
HEXO Trap: {hexadecimal output}← Oprnd
STRO Trap: {string output}← Oprnd

ADDSP SP← SP+Oprnd
SUBSP SP← SP−Oprnd

ADDr r← r+Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
SUBr r← r−Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
ANDr r← r∧Oprnd ; N← r < 0 , Z← r = 0
ORr r← r∨Oprnd ; N← r < 0 , Z← r = 0

CPWr T← r−Oprnd ; N← T < 0 , Z← T = 0 , V← {overflow} , C← {carry} ; N← N⊕V
CPBr T← r⟨8..15⟩−byte Oprnd ; N← T < 0 , Z← T = 0 , V← 0 , C← 0
LDWr r← Oprnd ; N← r < 0 , Z← r = 0
LDBr r⟨8..15⟩ ← byte Oprnd ; N← 0 , Z← r⟨8..15⟩= 0
STWr Oprnd← r
STBr byte Oprnd← r⟨8..15⟩
Trap T←Mem[FFF6] ; Mem[T−1]← IR⟨0..7⟩ ; Mem[T−3]← SP ; Mem[T−5]← PC ; Mem[T−7]← X ;

Mem[T−9]← A ; Mem[T−10]⟨4..7⟩ ← NZVC ; SP← T−10 ; PC←Mem[FFFE]

2

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Dot commands set bit patterns at assembly
time

• Executable statements interpret bit patterns
at run time

Interpreting bit patterns

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0000 120009 BR 0x0009 ;Branch around data
0003 FFFE .WORD 0xFFFE ;First
0005 00 .BYTE 0x00 ;Second
0006 55 .BYTE 'U' ;Third
0007 0470 .WORD 1136 ;Fourth
 ;
0009 390003 DECO 0x0003,d ;Interpret First as dec
000C D0000A LDBA '\n',i
000F F1FC16 STBA 0xFC16,d
0012 390005 DECO 0x0005,d ;Interpret Second and Third as dec
0015 D0000A LDBA '\n',i
0018 F1FC16 STBA 0xFC16,d
001B 410005 HEXO 0x0005,d ;Interpret Second and Third as hex
001E D0000A LDBA '\n',i
0021 F1FC16 STBA 0xFC16,d
0024 D10006 LDBA 0x0006,d ;Interpret Third as char
0027 F1FC16 STBA 0xFC16,d
002A D10008 LDBA 0x0008,d ;Interpret Fourth as char
002D F1FC16 STBA 0xFC16,d
0030 00 STOP
0031 .END
 

Figure 5.13

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Output
-2
85
0055
Up

Figure 5.13
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• The inverse mapping of an assembler is not
unique

• Given a bit pattern at level ISA3, you cannot
determine the Asmb5 statement that
produced it

Disassembler

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language Program
0000 D10013 LDBA 0x0013,d
0003 F1FC16 STBA 0xFC16,d
0006 D10014 LDBA 0x0014,d
0009 F1FC16 STBA 0xFC16,d
000C D10015 LDBA 0x0015,d
000F F1FC16 STBA 0xFC16,d
0012 00 STOP
0013 50756E .ASCII "Pun"
0016 .END

Assembly Language Program
0000 D10013 LDBA 0x0013,d
0003 F1FC16 STBA 0xFC16,d
0006 D10014 LDBA 0x0014,d
0009 F1FC16 STBA 0xFC16,d
000C D10015 LDBA 0x0015,d
000F F1FC16 STBA 0xFC16,d
0012 00 STOP
0013 50756E ADDSP 0x756E,i
0016 .END

Program Output
Pun

Figure 5.14

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• The mapping from Asmb5 to ISA3 is one-to-
one

• The mapping from HOL6 to Asmb5 is one-
to-many

Mappings

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Symbols
• Defined by an identifier followed by a colon

at the start of a statement

• The value of a symbol is the address of the
object code generated by the statement

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembler Listing
--
 Object
Addr code Symbol Mnemon Operand Comment
--
0000 120005 BR main ;Branch around data
0003 0000 num: .BLOCK 2 ;Storage for one integer #2d
 ;
0005 310003 main: DECI num,d ;Get the number
0008 390003 DECO num,d ;and output it
000B 49001B STRO msg,d ;Output " + 1 = "
000E C10003 LDWA num,d ;A <- the number
0011 600001 ADDA 1,i ;Add one to it
0014 E10003 STWA num,d ;Store the sum
0017 390003 DECO num,d ;Output the sum
001A 00 STOP
001B 202B20 msg: .ASCII " + 1 = \x00"
 31203D
 2000
0023 .END
--

Figure 5.15

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Symbol table

Symbol Value Symbol Value

main 0005 msg 001B
num 0003

Input
-479

Output
-479 + 1 = -478

Figure 5.15
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembler Input
this: DECO this,d
 STOP
 .END

Assembler Listing
0000 390000 this: DECO this,d
0003 00 STOP
0004 .END

Output
14592

Figure 5.16

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 It is important to realize that computer hardware has no innate
intelligence or reasoning power. Th e execution cycle and the instruction
set are wired into the CPU. As this program illustrates, the CPU has no
knowledge of the history of the bits it processes. It has no overall picture. It
simply executes the von Neumann cycle over and over again. Th e same thing
is true of main memory, which has no knowledge of the history of the bits
it remembers. It simply stores 1’s and 0’s as commanded by the CPU. Any
intelligence or reasoning power must come from soft ware, which is written
by humans.

x86 Assembly Language

Figure 5.8 shows two steps for the Pep/9 system—
assemble, which translates from assembly language
to machine language, followed by load, which puts
the machine language in main memory for execution.

FIGURE 5.17 shows an additional step in typical
systems called linking, which happens aft er assembly
and before loading. Like the assembler and loader, the
linker is a program that uses another program as data.

Th e linker is necessary if you want your assembly
language program to use a previously written module
stored in a static library. For example, it is possible for
an assembly language program to call the printf()
function to send values to the output stream. Th e code
for printf() is stored in a static library, and the linker
combines a copy of its code in the object fi le along with
the object code from your assembly language program.
In a Microsoft system, a static library fi le has extension
.lib for library.

Th e only function of the Pep/9 loader is to load the
object fi le into main memory. In an actual system, the
loader has the additional function of setting up links to
the dynamic library, also called the shared library. Th e

idea behind a shared library is to decrease the size of the
executable fi les in the system by not having the code for
commonly used libraries duplicated in all the executable
fi les. In a Microsoft system, a dynamic library fi le has
extension .dll for dynamic link library.

Programming in assembly language for x86 is
complicated by the fact that there are many different
incompatible assembly languages for the same x86
instruction set. Also, there are many diff erent incompatible
object fi le formats, depending on the operating system.
Th e following examples compare some Pep/9 assembly
language features with those of the Microsoft assembler
(MASM) in 32-bit mode available in the Visual
Studio IDE.

Here is a code fragment from a Pep/9 assembler
listing that allocates storage with some pseudo-ops:

0000 FFFE first: .WORD 0xFFFE
0002 00 second: .BYTE 0x00
0003 55 third: .BYTE 'U'
0004 0470 fourth: .WORD 1136
0006 000000 fifth: .BLOCK 4
 00

FIGURE 5.17
Preparation of an assembly language program for execution.

Assembly
source file

Assembler Object
file

Linker

Static
library

LoaderExecutable

Dynamic
library

Loaded
executable

2615.3 Symbols

9781284079630_CH05_231_286.indd 261 29/01/16 8:29 am

Figure 5.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th is section describes the translation process from C to Pep/9 assembly
language. It shows how a compiler translates scanf () , printf () , and
assignment statements, and how it enforces the concept of type at the C
level. Chapter 6 continues the discussion of the relationship between the
high-order language level (Level HOL6) and the assembly level (Level
Asmb5).

 The Printf() Function
 Th e program in FIGURE 5.19 shows how a compiler would translate a simple
C program with one output statement into assembly language.

 Th e compiler translates the single C statement

 printf("Hello, world!\n");

 into one executable assembly language statement

 STRO msg,d

 and one dot command

 Translating printf()

Application
level

High-order
language level

Assembly
level

Operating system
level

Instruction set
architecture level

Microcode
level

Logic gate
level

7

6

5

4

3

2

1

(a) Translation directly to
 machine language.

(b) Translation to assembly
 language.

Application
level

High-order
language level

Assembly
level

Operating system
level

Instruction set
architecture level

Microcode
level

Logic gate
level

FIGURE 5.18
The function of a compiler.

2635.4 Translating from Level HOL6

9781284079630_CH05_231_286.indd 263 29/01/16 8:29 am

Figure 5.18

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Translating printf()
• Translate string output with STRO

• Translate character output with

STBA charOut,d

• Translate integer output with DECO

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
int main() {
 printf("Hello, world!\n");
 return 0;
}

Assembly Language
0000 490004 STRO msg,d
0003 00 STOP
0004 48656C msg: .ASCII "Hello, world!\n\x00"
 6C6F2C
 20776F
 726C64
 210A00
0013 .END

Output
Hello, world!

Figure 5.19

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

convention is that a returned value of 0 indicates that no errors occurred
during the program’s execution. If an error did occur, the program returns
some nonzero value, but what happens in such a case depends on the
particular operating system. In the Pep/9 system, returning from main()
corresponds to terminating the program. Hence, returning from main()
will always translate to STOP . Chapter 6 shows how the compiler translates
returns from functions other than main() .

 Other elements of the C program are not even translated directly. For
example,

 #include <stdio.h>

 does not appear in the assembly language program at all. A real compiler
would use the # include statement to make the correct interface to the
operating system and its library. Th e Pep/9 system ignores these kinds of
details to keep things simple at the introductory level.

 FIGURE 5.20 shows the input and output of a compiler with this
program. Part (a) is a compiler that translates directly into machine language.
Th e object program could be loaded and executed. Part (b) is a compiler that
translates to assembly language at Level Asmb5. Th e object program would
need to be assembled before it could be loaded and executed.

FIGURE 5.20
The action of a compiler on the program in Figure 5.19.

Compiler

OutputProcessingInput

Compiler

(a) A compiler that translates directly into machine language.

(b) A compiler that translates into assembly language.

#include <stdio.h>
int main() {
 printf("Hello, world!\n");
 return 0;
}

#include <stdio.h>
int main() {
 printf("Hello, world!\n");
 return 0;
}

49 00 04
00
48 65 6C 6C 6F 2C 20
77 6F 72 6C 64 21 0A 00
zz

 STRO msg,d
 STOP
msg: .ASCII "Hello, world!\n\x00"
 .END

int main() {

2655.4 Translating from Level HOL6

9781284079630_CH05_Pass03.indd 265 19/01/16 5:13 pm

Figure 5.20

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Variables and Types
 Every C variable has three attributes—name, type, and value. For each
variable that is declared, the compiler reserves one or more memory cells
in the machine language program. A variable in a high-order language is
simply a memory location in a low-level language. Level-HOL6 programs
refer to variables by names, which are C identifi ers. Level-ISA3 programs
refer to them by addresses. Th e value of the variable is the value in the
memory cell at the address associated with the C identifi er.

Th e compiler must remember which address corresponds to which
variable name in the Level-HOL6 program. It uses a symbol table to make
the connection between variable names and addresses.

 Th e symbol table for a compiler is similar to, but inherently more
complicated than, the symbol table for an assembler. A variable name in
C is not limited to eight characters, as is a symbol in Pep/9. In addition,
the symbol table for a compiler must store the variable’s type as well as its
associated address.

 A compiler that translates directly to machine language does not require
a second translation with an assembler. FIGURE 5.21(a) shows the mapping
produced by the symbol table for such a compiler. Th e programs in this text
illustrate the translation process for a hypothetical compiler that translates
to assembly language, however, because assembly language is easier to read
than machine language. Variable names in C correspond to symbols in
Pep/9 assembly language, as Figure 5 . 21 (b) shows.

 Th e correspondence in Figure 5 . 21 (b) is unrealistic for compilers that
translate to assembly language. Consider the problem of a C program that
has two variables named discountRate1 and discountRate2 . Because
they are longer than eight characters, the compiler would have a diffi cult
time mapping the identifi ers to unique Pep/9 symbols. Our examples
will limit the C identifi ers to, at most, eight characters to make clear the
correspondence between C and assembly language. Real compilers that
translate to assembly language typically do not use assembly language
symbols for the variable names.

 Th e symbol table for a
compiler

C identifier
for variable name

Memory
address

Memory
address

C identifier
for variable name

Pep/9 assembly
language symbol

(b) A hypothetical compiler for illustrative purposes.(a) A compiler that translates to
 machine language.

FIGURE 5.21
The mapping a compiler makes between a Level-HOL6 variable and a
 Level-ISA3 storage location.

language symbol

266 CHAPTER 5 Assembly Language

9781284079630_CH05_Pass03.indd 266 19/01/16 5:13 pm

Figure 5.21

 Variables and Types
 Every C variable has three attributes—name, type, and value. For each
variable that is declared, the compiler reserves one or more memory cells
in the machine language program. A variable in a high-order language is
simply a memory location in a low-level language. Level-HOL6 programs
refer to variables by names, which are C identifi ers. Level-ISA3 programs
refer to them by addresses. Th e value of the variable is the value in the
memory cell at the address associated with the C identifi er.

Th e compiler must remember which address corresponds to which
variable name in the Level-HOL6 program. It uses a symbol table to make
the connection between variable names and addresses.

 Th e symbol table for a compiler is similar to, but inherently more
complicated than, the symbol table for an assembler. A variable name in
C is not limited to eight characters, as is a symbol in Pep/9. In addition,
the symbol table for a compiler must store the variable’s type as well as its
associated address.

 A compiler that translates directly to machine language does not require
a second translation with an assembler. FIGURE 5.21(a) shows the mapping
produced by the symbol table for such a compiler. Th e programs in this text
illustrate the translation process for a hypothetical compiler that translates
to assembly language, however, because assembly language is easier to read
than machine language. Variable names in C correspond to symbols in
Pep/9 assembly language, as Figure 5 . 21 (b) shows.

 Th e correspondence in Figure 5 . 21 (b) is unrealistic for compilers that
translate to assembly language. Consider the problem of a C program that
has two variables named discountRate1 and discountRate2 . Because
they are longer than eight characters, the compiler would have a diffi cult
time mapping the identifi ers to unique Pep/9 symbols. Our examples
will limit the C identifi ers to, at most, eight characters to make clear the
correspondence between C and assembly language. Real compilers that
translate to assembly language typically do not use assembly language
symbols for the variable names.

 Th e symbol table for a
compiler

C identifier
for variable name

Memory
address

Memory
address

C identifier
for variable name

Pep/9 assembly
language symbol

(b) A hypothetical compiler for illustrative purposes.(a) A compiler that translates to
 machine language.

FIGURE 5.21
The mapping a compiler makes between a Level-HOL6 variable and a
 Level-ISA3 storage location.

language symbol

266 CHAPTER 5 Assembly Language

9781284079630_CH05_Pass03.indd 266 19/01/16 5:13 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Global variables
• Allocated at a fixed location in memory with
.BLOCK

• Accessed with direct addressing (d)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assignment statements
• Load the accumulator from the right hand

side of the assignment with LDWA or LDBA

• Compute the value of the right hand side of
the assignment if necessary

• Store the value to the variable on the left
hand side of the assignment with STWA or
STBA

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Translating scanf()
• Translate character input with

LDBA charIn,d

• Translate integer input with DECI

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
char ch;
int j;
int main() {
 scanf("%c %d", &ch, &j);
 j += 5;
 ch++;
 printf("%c\n%d\n", ch, j);
 return 0;
}

Figure 5.22

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120006 BR main
0003 00 ch: .BLOCK 1 ;global variable #1c
0004 0000 j: .BLOCK 2 ;global variable #2d
 ;
0006 D1FC15 main: LDBA charIn,d ;scanf("%c %d", &ch, &j)
0009 F10003 STBA ch,d
000C 310004 DECI j,d
000F C10004 LDWA j,d ;j += 5
0012 600005 ADDA 5,i
0015 E10004 STWA j,d
0018 D10003 LDBA ch,d ;ch++
001B 600001 ADDA 1,i
001E F10003 STBA ch,d
0021 D10003 LDBA ch,d ;printf("%c\n%d\n", ch, j)
0024 F1FC16 STBA charOut,d
0027 D0000A LDBA '\n',i
002A F1FC16 STBA charOut,d
002D 390004 DECO j,d
0030 D0000A LDBA '\n',i
0033 F1FC16 STBA charOut,d
0036 00 STOP
0037 .END

Figure 5.22
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Input
M 419

Output
N
424

Figure 5.22
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>
char ch;
int j;
int main() {
 scanf("%c %d", &ch, &j);
 j += 5;
 ch++;
 printf("%c\n%d\n", ch, j);
 return 0;
}

Figure 5.23

 KindType kind;
 };

 SymbolTableEntry symbolTable[100];

 An entry in a symbol table contains three parts—the symbol itself; its value,
which is the address in Pep/9 memory where the value of the variable will be
stored; and the kind of value that is stored, that is, the variable’s type.

 FIGURE 5.23 shows the entries in the symbol table for this program.
Th e fi rst variable has the symbolic name ch . Th e compiler allocates the byte
at Mem[0003] by generating the .BLOCK command and stores its type as
 sChar in the symbol table, an indication that the variable is a C character.
Th e second variable has the symbolic name j . Th e compiler allocates two
bytes at Mem[0004] for its value and stores its type as sInt , indicating a
C integer. It gets the types from the variable declaration of the C program.

 During the code generation phase, the compiler translates

 scanf("%c %d", &ch, &j);

 into

 LDBA 0xFC15,d
 STBA 0x0003,d
 DECI 0x0004,d

 It consults the symbol table in Figure 5 . 23 , which was fi lled at an earlier
phase of compilation, to determine the addresses for the operands of the
 LDBA , STBA , and DECI instructions.

 Note that the value stored in the symbol table is not the value of the
variable during execution. It is the memory address of where that value will
be stored. If the user enters 419 for j during execution, then the value stored
at Mem[0004] will be 01A3 (hex), which is the binary representation of 419
(dec). Th e symbol table contains 0004, not 01A3, as the value of the symbol

FIGURE 5.23
The symbol table for a hypothetical compiler that translates the
program in Figure 5.22.

symbol value kind

[0] ch 0003 sChar

[1] j 0004 sInt

[2] ⋮ ⋮ ⋮

2695.4 Translating from Level HOL6

9781284079630_CH05_231_286.indd 269 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

#include <stdio.h>

int j;
float y;

int main () {
 ...
 j = j % 8;
 ...
 y = y % 8; // Compile error
 ...
}

Figure 5.1

 Th e compiler translates

 printf("%c\n%d\n", ch, j);

 into

 LDBA ch,d
 STBA charOut,d
 LDBA '\n',i
 STBA charOut,d
 DECO j,d
 LDBA '\n',i
 STBA charOut,d

 using direct addressing to output the values of the global variables ch and j .
 Th e compiler must search its symbol table to make the connection

between a symbol such as ch and its address, 0003. Th e symbol table is
an array. If it is not maintained in alphabetic order by symbolic name, a
sequential search would be necessary to locate ch in the table. If the symbolic
names are in alphabetic order, a binary search is possible.

 Type Compatibility
 To see how type compatibility is enforced at Level HOL6, suppose you have
two variables, integer j and fl oating-point y , in a C program. Also suppose
that you have a computer unlike Pep/9 that is able to store and manipulate
fl oating-point values. Th e compiler’s symbol table for your program might
look something like FIGURE 5.24 .

 Now consider the operation j % 8 in C. % is the modulus operator,
which is restricted to operate on integer values. In binary, to perform j % 8 ,
you simply set all the bits except the rightmost three bits to 0. For example, if
 j has the value 61 (dec) = 0011 1101 (bin), then j % 8 has the value 5 (dec)

Th e output operator at
Level Asmb5

FIGURE 5.24
The compiler symbol table for a program with a fl oating-point
variable.

symbol value kind

[0] j 0003 sInt

[1] y 0005 sFloat

[2] ⋮ ⋮ ⋮

2715.4 Translating from Level HOL6

9781284079630_CH05_231_286.indd 271 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Format trace tags

‣ Required for global and local variables

• Symbol trace tags

‣ Not required for global variables

Trace tags

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• #1c One-byte character

• #1d One-byte decimal

• #2d Two-byte decimal

• #1h One-byte hexadecimal

• #2h Two-byte hexadecimal

Format trace tags

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The arithmetic shift
right instruction

• Instruction specifier: 0000 110r

• Mnemonic: ASRr (ASRA, ASRX)

• Performs a one-bit arithmetic shift right on a
16-bit register

C rh15i , rh1..15i rh0..14i;
N r< 0 , Z r= 0

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Global variables do not require the use of symbol trace tags, because the
Pep/9 symbol tracer takes the symbol from the .BLOCK line on which the
trace tag is placed. Local variables, however, require symbol trace tags,
which are described in Chapter 6.

 The Shift and Rotate Instructions
 Pep/9 has two arithmetic shift instructions and two rotate instructions. All
four are unary, with the following instruction specifi ers, mnemonics, and
status bits that they aff ect:

 0000 101r ASLr Arithmetic shift left r NZVC
 0000 110r ASRr Arithmetic shift right r NZC
 0000 111r ROLr Rotate left r C
 0001 000r RORr Rotate right r C

 Th e shift and rotate instructions have no operand specifi er. Each one
operates on either the accumulator or the index register, depending on
the value of r. A shift left multiplies a signed integer by 2, and a shift right
divides a signed integer by 2 (as described in Chapter 3). Rotate left rotates
each bit to the left by one bit, sending the most signifi cant bit into C and
C into the least signifi cant bit. Rotate right rotates each bit to the right
by one bit, sending the least signifi cant bit into C and C into the most
signifi cant bit.

 Th e register transfer language (RTL) specifi cation for the ASLr
instruction is

 C ← r〈0〉, r〈0..14〉, ← r〈1..15〉, r〈15〉 ← 0;
N ← r < 0, Z ← r = 0, V ← {overfl ow}

 Th e RTL specifi cation for the ASRr instruction is

 C ← r〈15〉, r〈1..15〉 ← r〈0..14〉; N ← r < 0, Z ← r = 0

 Th e RTL specifi cation for the ROLr instruction is

 C ← r〈0〉, r〈0..14〉 ← r〈1..15〉, r〈15〉 ← C

 Th e RTL specifi cation for the RORr instruction is

 C ← r〈15〉, r〈1..15〉 ← r〈0..14〉, r〈0〉 ← C

Example 5.4 Suppose the instruction to be executed is 0C in hexadecimal,
which FIGURE 5.25 shows in binary. Th e opcode indicates that the ASRr
instruction will execute, and the register-r fi eld indicates that the instruction
will aff ect the accumulator.

Th e shift and rotate
instructions

0 0 0 0 1 1 0

0 C

r
Instruction specifier

Opcode

0

FIGURE 5.25
The ASRA instruction.

274 CHAPTER 5 Assembly Language

9781284079630_CH05_Pass03.indd 274 19/01/16 5:13 pm

Figure 5.25, 5.26

 FIGURE 5.26 shows the eff ect of executing the ASRA instruction,
assuming the accumulator has an initial content of 0098 (hex) = 152 (dec).
Th e ASRA instruction changes the bit pattern to 004C (hex) = 76 (dec),
which is half of 152. Th e N bit is 0 because the quantity in the accumulator
is positive. Th e Z bit is 0 because the accumulator is not all 0’s. Th e C bit is 0
because the least signifi cant bit was 0 before the shift occurred. ❚

 Constants and .EQUATE
 .EQUATE is one of the few pseudo-ops to not generate any object code.
Furthermore, the normal mechanism of taking the value of a symbol from
the address of the object code does not apply. .EQUATE operates as follows:

 ❯ It must be on a line that defi nes a symbol.
 ❯ It equates the value of the symbol to the value that follows the
.EQUATE.

 ❯ It does not generate any object code.

 Th e C compiler uses the .EQUATE dot command to translate C constants.
 Th e C program in FIGURE 5.27 is identical to the one in Figure 2 . 6 ,

except that the variables are global instead of local. It shows how to translate
a C constant to machine language. It also illustrates the ASRA assembly
language statement. Th e program calculates a value for score as the average
of two exam grades plus a 10-point bonus.

 Th e compiler translates

 const int bonus = 10;

 as

 bonus: .EQUATE 10

 Th e assembly language listing in Figure 5 . 27 is notable on two counts.
First, the line that contains the .EQUATE has no code in the machine
language column. Th ere is not even an address in the address column
because there is no code to which the address would apply. Th is is consistent

 Th e operation of .EQUATE

A 0098

(a) Before.

0C
Arithmetic shift right

accumulator

NZCNZC

A 004C

CPUCPU

(b) After.

000

FIGURE 5.26
Execution of the ASRA instruction.

Arithmetic shift right

2755.4 Translating from Level HOL6

9781284079630_CH05_231_286.indd 275 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The arithmetic shift
left instruction

• Instruction specifier: 0000 101r

• Mnemonic: ASLr (ASLA, ASLX)

• Performs a one-bit arithmetic shift left on a
16-bit register

C rh0i , rh0..14i rh1..15i , rh15i 0 ;
N r< 0 , Z r= 0 , V {overflow}

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The rotate left
instruction

• Instruction specifier: 0000 111r

• Mnemonic: ROLr (ROLA, ROLX)

• Performs a one-bit rotate left on a 16-bit
register

C rh0i , rh0..14i rh1..15i , rh15i C ;

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The rotate right
instruction

• Instruction specifier: 0001 000r

• Mnemonic: RORr (RORA, RORX)

• Performs a one-bit rotate right on a 16-bit
register

C rh15i , rh1..15i rh0..14i , rh0i C ;

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Constants
• Equate the constant to its value

with .EQUATE

• .EQUATE does not generate object code

• The value of the constant symbol is not an
address

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

const int bonus = 10;
int exam1;
int exam2;
int score;
 

int main() {
 scanf("%d %d", &exam1, &exam2);
 score = (exam1 + exam2) / 2 + bonus;
 printf("score = %d\n", score);
 return 0;
}
 

Figure 5.27

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120009 BR main
 bonus: .EQUATE 10 ;constant
0003 0000 exam1: .BLOCK 2 ;global variable #2d
0005 0000 exam2: .BLOCK 2 ;global variable #2d
0007 0000 score: .BLOCK 2 ;global variable #2d
 ;
0009 310003 main: DECI exam1,d ;scanf("%d %d", &exam1, &exam2)
000C 310005 DECI exam2,d
000F C10003 LDWA exam1,d ;score = (exam1 + exam2) / 2 + bonus
0012 610005 ADDA exam2,d
0015 0C ASRA
0016 60000A ADDA bonus,i
0019 E10007 STWA score,d
001C 490029 STRO msg,d ;printf("score = %d\n", score)
001F 390007 DECO score,d
0022 D0000A LDBA '\n',i
0025 F1FC16 STBA charOut,d
0028 00 STOP
0029 73636F msg: .ASCII "score = \x00"
 726520
 3D2000
0032 .END

Figure 5.27
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Symbol table

Symbol Value Symbol Value

bonus 000A exam1 0003
exam2 0005 main 0009
msg 0029 score 0007

Input
68 84

Output
score = 86

Figure 5.27
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 310020 main: DECI exam1,d ;scanf("%d %d", &exam1,
0003 310022 DECI exam2,d ; &exam2)
0006 C10020 LDWA exam1,d ;score = (exam1
0009 610022 ADDA exam2,d ; + exam2)
000C 0C ASRA ; / 2
000D 60000A ADDA bonus,i ; + bonus
0010 E10024 STWA score,d
0013 490026 STRO msg,d ;printf("score = %d\n",
0016 390024 DECO score,d ; score)
0019 D0000A LDBA '\n',i
001C F1FC16 STBA charOut,d
001F 00 STOP
 ;
 bonus: .EQUATE 10 ;constant
0020 0000 exam1: .BLOCK 2 ;global variable #2d
0022 0000 exam2: .BLOCK 2 ;global variable #2d
0024 0000 score: .BLOCK 2 ;global variable #2d
0026 73636F msg: .ASCII "score = \x00"
 726520
 3D2000
002F .END

Figure 5.28

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language

Symbol table

Symbol Value Symbol Value

bonus 000A exam1 0020
exam2 0022 main 0000
msg 0026 score 0024

Figure 5.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Run 1 A E

Run 2 F

Run 3 G

Run 4 H

Input Processing Output

Figure 5.29

