
Chapter 6

Compiling
to the

Assembly Level

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = Mem[OprndSpec]

• Asmb5 letter: d

• The operand specifier is the address in
memory of the operand.

Direct addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = OprndSpec

• Asmb5 letter: i

• The operand specifier is the operand.

Immediate addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = Mem[SP + OprndSpec]

• Asmb5 letter: s

• The stack pointer plus the operand specifier
is the address in memory of the operand.

Stack-relative addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The add SP instruction
• Instruction specifier: 0101 0aaa

• Mnemonic: ADDSP

• Adds the operand to the stack pointer, SP

Pep/9 RTL specification of the instruction set

Here is the RTL specification of the Pep/9 instruction set.

Instruction Register transfer language specification

STOP Stop execution
RET PC←Mem[SP] ; SP← SP+2
RETTR NZVC←Mem[SP]⟨4..7⟩ ; A←Mem[SP+1] ; X←Mem[SP+3] ; PC←Mem[SP+5] ; SP←Mem[SP+7]
MOVSPA A← SP
MOVFLGA A⟨8..11⟩ ← 0 , A⟨12..15⟩ ← NZVC
MOVAFLG NZVC← A⟨12..15⟩

NOTr r← ¬r ; N← r < 0 , Z← r = 0
NEGr r←−r ; N← r < 0 , Z← r = 0 , V← {overflow}
ASLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← 0 ; N← r < 0 , Z← r = 0 , V← {overflow}
ASRr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ ; N← r < 0 , Z← r = 0
ROLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← C
RORr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ , r⟨0⟩ ← C

BR PC← Oprnd
BRLE N = 1∨Z = 1⇒ PC← Oprnd
BRLT N = 1⇒ PC← Oprnd
BREQ Z = 1⇒ PC← Oprnd
BRNE Z = 0⇒ PC← Oprnd
BRGE N = 0⇒ PC← Oprnd
BRGT N = 0∧Z = 0⇒ PC← Oprnd
BRV V = 1⇒ PC← Oprnd
BRC C = 1⇒ PC← Oprnd
CALL SP← SP−2 ; Mem[SP]← PC ; PC← Oprnd

NOPn Trap: Unary no operation
NOP Trap: Nonunary no operation

DECI Trap: Oprnd← {decimal input}
DECO Trap: {decimal output}← Oprnd
HEXO Trap: {hexadecimal output}← Oprnd
STRO Trap: {string output}← Oprnd

ADDSP SP← SP+Oprnd
SUBSP SP← SP−Oprnd

ADDr r← r+Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
SUBr r← r−Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
ANDr r← r∧Oprnd ; N← r < 0 , Z← r = 0
ORr r← r∨Oprnd ; N← r < 0 , Z← r = 0

CPWr T← r−Oprnd ; N← T < 0 , Z← T = 0 , V← {overflow} , C← {carry} ; N← N⊕V
CPBr T← r⟨8..15⟩−byte Oprnd ; N← T < 0 , Z← T = 0 , V← 0 , C← 0
LDWr r← Oprnd ; N← r < 0 , Z← r = 0
LDBr r⟨8..15⟩ ← byte Oprnd ; N← 0 , Z← r⟨8..15⟩= 0
STWr Oprnd← r
STBr byte Oprnd← r⟨8..15⟩
Trap T←Mem[FFF6] ; Mem[T−1]← IR⟨0..7⟩ ; Mem[T−3]← SP ; Mem[T−5]← PC ; Mem[T−7]← X ;

Mem[T−9]← A ; Mem[T−10]⟨4..7⟩ ← NZVC ; SP← T−10 ; PC←Mem[FFFE]

4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The subtract SP instruction
• Instruction specifier: 0101 1aaa

• Mnemonic: SUBSP

• Subtracts the operand from the stack
pointer, SP

Pep/9 RTL specification of the instruction set

Here is the RTL specification of the Pep/9 instruction set.

Instruction Register transfer language specification

STOP Stop execution
RET PC←Mem[SP] ; SP← SP+2
RETTR NZVC←Mem[SP]⟨4..7⟩ ; A←Mem[SP+1] ; X←Mem[SP+3] ; PC←Mem[SP+5] ; SP←Mem[SP+7]
MOVSPA A← SP
MOVFLGA A⟨8..11⟩ ← 0 , A⟨12..15⟩ ← NZVC
MOVAFLG NZVC← A⟨12..15⟩

NOTr r← ¬r ; N← r < 0 , Z← r = 0
NEGr r←−r ; N← r < 0 , Z← r = 0 , V← {overflow}
ASLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← 0 ; N← r < 0 , Z← r = 0 , V← {overflow}
ASRr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ ; N← r < 0 , Z← r = 0
ROLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← C
RORr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ , r⟨0⟩ ← C

BR PC← Oprnd
BRLE N = 1∨Z = 1⇒ PC← Oprnd
BRLT N = 1⇒ PC← Oprnd
BREQ Z = 1⇒ PC← Oprnd
BRNE Z = 0⇒ PC← Oprnd
BRGE N = 0⇒ PC← Oprnd
BRGT N = 0∧Z = 0⇒ PC← Oprnd
BRV V = 1⇒ PC← Oprnd
BRC C = 1⇒ PC← Oprnd
CALL SP← SP−2 ; Mem[SP]← PC ; PC← Oprnd

NOPn Trap: Unary no operation
NOP Trap: Nonunary no operation

DECI Trap: Oprnd← {decimal input}
DECO Trap: {decimal output}← Oprnd
HEXO Trap: {hexadecimal output}← Oprnd
STRO Trap: {string output}← Oprnd

ADDSP SP← SP+Oprnd
SUBSP SP← SP−Oprnd

ADDr r← r+Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
SUBr r← r−Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
ANDr r← r∧Oprnd ; N← r < 0 , Z← r = 0
ORr r← r∨Oprnd ; N← r < 0 , Z← r = 0

CPWr T← r−Oprnd ; N← T < 0 , Z← T = 0 , V← {overflow} , C← {carry} ; N← N⊕V
CPBr T← r⟨8..15⟩−byte Oprnd ; N← T < 0 , Z← T = 0 , V← 0 , C← 0
LDWr r← Oprnd ; N← r < 0 , Z← r = 0
LDBr r⟨8..15⟩ ← byte Oprnd ; N← 0 , Z← r⟨8..15⟩= 0
STWr Oprnd← r
STBr byte Oprnd← r⟨8..15⟩
Trap T←Mem[FFF6] ; Mem[T−1]← IR⟨0..7⟩ ; Mem[T−3]← SP ; Mem[T−5]← PC ; Mem[T−7]← X ;

Mem[T−9]← A ; Mem[T−10]⟨4..7⟩ ← NZVC ; SP← T−10 ; PC←Mem[FFFE]

4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• SP←Mem[FFF4]

• PC←0000

Pep/9 execute option

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 4.4 Programming at Level ISA3
 To program at Level ISA3 is to write a set of instructions in binary. To execute
the binary sequence, fi rst you must load it into main memory. Th e operating
system is responsible for loading the binary sequence into main memory.

 An operating system is a program. Like any other program, a soft ware
engineer must design, write, test, and debug it. Most operating systems are
so large and complex that teams of engineers must write them. Th e primary
function of an operating system is to control the execution of application
programs on the computer. Because the operating system is itself a program,
it must reside in main memory in order to be executed. So main memory
must store not only the application programs, but also the operating system.

 In the Pep/9 computer, the bottom part of main memory—that is, the
part with high memory addresses—is reserved for the operating system. Th e
top part is reserved for the application program. FIGURE 4.41 is a memory
map of the Pep/9 computer system. It shows that the operating system starts
at memory location FB8F and occupies the rest of main memory. Th at leaves
memory locations 0000 to FB8E for the application program.

 Th e loader is that part of the operating system that loads the application
program into main memory so it can be executed. What loads the loader?
Th e Pep/9 loader, along with several other parts of the operating system, is
permanently stored in main memory.

 Read-Only Memory
 Th ere are two types of electronic-circuit elements from which memory
devices are manufactured—read/write circuit elements and read-only
circuit elements.

 In the program of Figure 4.35 , when the store byte instruction, F10013,
executed, the CPU transferred the content of the right half of the accumulator
to Mem[0013]. Th e original content of Mem[0013] was destroyed, and
the memory location then contained 0111 0101 (bin), the binary code for
the letter u. When the load byte instruction, D10013, executed, the bits at
location 0013 were sent back to the accumulator so they could be sent to the
output device.

 Th e circuit element at memory location 0013 is a read/write circuit. Th e
store byte instruction did a write operation on it, which changed its content.
Th e read byte instruction did a read operation on it, which sent a copy of
its content to the accumulator. If the circuit element at location 0013 were
a read-only circuit, the store byte instruction would not have changed its
content.

FC52FFFE

FC17FFFC

FC16FFFA

FC15FFF8

FC0FFFF6

FB8FFFF4

Trap
handler

FC52

Loader

FC17

System
globals

FC0F

Output deviceFC16

Input deviceFC15

System
stack

FB8F

Run-time
stack

Heap

Application
program

Globals0000

O
pe

ra
tin

g
sy

st
em

A
pp

lic
at

io
n

Mem

FIGURE 4 . 41
 A memory map of the
Pep/9 memory. The
shaded part is read-only
memory.

2214.4 Programming at Level ISA3

9781284079630_CH04_183_230.indd 221 29/01/16 8:05 pm

Figure 4.41

 4.4 Programming at Level ISA3
 To program at Level ISA3 is to write a set of instructions in binary. To execute
the binary sequence, fi rst you must load it into main memory. Th e operating
system is responsible for loading the binary sequence into main memory.

 An operating system is a program. Like any other program, a soft ware
engineer must design, write, test, and debug it. Most operating systems are
so large and complex that teams of engineers must write them. Th e primary
function of an operating system is to control the execution of application
programs on the computer. Because the operating system is itself a program,
it must reside in main memory in order to be executed. So main memory
must store not only the application programs, but also the operating system.

 In the Pep/9 computer, the bottom part of main memory—that is, the
part with high memory addresses—is reserved for the operating system. Th e
top part is reserved for the application program. FIGURE 4.41 is a memory
map of the Pep/9 computer system. It shows that the operating system starts
at memory location FB8F and occupies the rest of main memory. Th at leaves
memory locations 0000 to FB8E for the application program.

 Th e loader is that part of the operating system that loads the application
program into main memory so it can be executed. What loads the loader?
Th e Pep/9 loader, along with several other parts of the operating system, is
permanently stored in main memory.

 Read-Only Memory
 Th ere are two types of electronic-circuit elements from which memory
devices are manufactured—read/write circuit elements and read-only
circuit elements.

 In the program of Figure 4.35 , when the store byte instruction, F10013,
executed, the CPU transferred the content of the right half of the accumulator
to Mem[0013]. Th e original content of Mem[0013] was destroyed, and
the memory location then contained 0111 0101 (bin), the binary code for
the letter u. When the load byte instruction, D10013, executed, the bits at
location 0013 were sent back to the accumulator so they could be sent to the
output device.

 Th e circuit element at memory location 0013 is a read/write circuit. Th e
store byte instruction did a write operation on it, which changed its content.
Th e read byte instruction did a read operation on it, which sent a copy of
its content to the accumulator. If the circuit element at location 0013 were
a read-only circuit, the store byte instruction would not have changed its
content.

FC52FFFE

FC17FFFC

FC16FFFA

FC15FFF8

FC0FFFF6

FB8FFFF4

Trap
handler

FC52

Loader

FC17

System
globals

FC0F

Output deviceFC16

Input deviceFC15

System
stack

FB8F

Run-time
stack

Heap

Application
program

Globals0000

O
pe

ra
tin

g
sy

st
em

A
pp

lic
at

io
n

Mem

FIGURE 4 . 41
 A memory map of the
Pep/9 memory. The
shaded part is read-only
memory.

2214.4 Programming at Level ISA3

9781284079630_CH04_183_230.indd 221 29/01/16 8:05 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0000 D00042 LDBA 'B',i ;move B to stack
0003 F3FFFF STBA -1,s
0006 D0004D LDBA 'M',i ;move M to stack
0009 F3FFFE STBA -2,s
000C D00057 LDBA 'W',i ;move W to stack
000F F3FFFD STBA -3,s
0012 C0014F LDWA 335,i ;move 335 to stack
0015 E3FFFB STWA -5,s
0018 D00069 LDBA 'i',i ;move i to stack
001B F3FFFA STBA -6,s
001E 580006 SUBSP 6,i ;push 6 bytes onto stack
0021 D30005 LDBA 5,s ;output B
0024 F1FC16 STBA charOut,d
0027 D30004 LDBA 4,s ;output M
002A F1FC16 STBA charOut,d
002D D30003 LDBA 3,s ;output W
0030 F1FC16 STBA charOut,d
0033 3B0001 DECO 1,s ;output 335
0036 D30000 LDBA 0,s ;output i
0039 F1FC16 STBA charOut,d
003C 500006 ADDSP 6,i ;pop 6 bytes off stack
003F 00 STOP
0040 .END

Output
BMW335i

Figure 6.1

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 put an ASCII ‘B’ character in the byte just above the top of the stack. LDBA puts
the ‘B’ byte in the right half of the accumulator, and STBA puts it above the
stack. Th e store instruction uses stack-relative addressing with an operand
specifi er of –1 (dec) = FFFF (hex). Because the stack pointer has the value
FB8F, the ‘B’ is stored at Mem[FB8F + FFFF] = Mem[FB8E]. Th e next two
instructions put ‘M’ and ‘W’ at Mem[FB8D] and Mem[FB8C], respectively.

 Th e decimal integer 335, however, occupies two bytes. Th e program
must store it at an address that diff ers from the address of the ‘W’ by two.
Th at is why the instruction to store the 335 is

 0015 E3FFFB STWA -5,s

 and not STWA -4,s. In general, when you push items onto the run-time
stack, you must take into account how many bytes each item occupies and
set the operand specifi er accordingly.

 Th e subtract stack pointer instruction

 001E 580006 SUBSP 6,i ;push 6 bytes onto stack

 subtracts 6 from the stack pointer, as Figure 6 . 2 (b) shows. Th at completes
the push operation.

 Tracing a program that uses stack-relative addressing does not require
you to know the absolute value in the stack pointer. Th e push operation
would work the same if the stack pointer were initialized to some other
value, say FA18. In that case, ‘B’, ‘M’, ‘W’, 335, and ‘i’ would be at Mem[FA17],
Mem[FA16], Mem[FA15], Mem[FA13], and Mem[FA12], respectively, and
the stack pointer would wind up with a value of FA12. Th e values would be
at the same locations relative to the top of the stack, even though they would
be at diff erent absolute memory locations.

 FIGURE 6.3 is a more convenient way of tracing the operation and
makes use of the fact that the value in the stack pointer is irrelevant. Rather
than show the value in the stack pointer, it shows an arrow pointing to the
memory cell whose address is contained in the stack pointer. Rather than
show the address of the cells in memory, it shows their off sets from the
stack pointer. Figures depicting the state of the run-time stack will use this
drawing convention from now on.

 Th e instruction

 0021 D30005 LDBA 5,s ;output B

 loads the ASCII ‘B’ character from the stack. Note that the stack-relative
address of the ‘B’ before SUBSP executes is –1, but its address aft er SUBSP
executes is 5. Its stack-relative address is diff erent because the stack pointer
has changed. Both

 0003 F3FFFF STBA -1,s

FB8FSP

FB89

FB8A

FB8C

FB8D

FB8E

FB8F

(a) Before the program executes.

FB89

FB8A

FB8C

FB8D

FB8E

FB8F

FB89SP

i

335

W

M

B

(b)After SUBSP executes.

FIGURE 6.2
Pushing BMW335i onto
the run-time stack in
Figure 6.1.

 FIGURE 6 . 3
 The stack of Figure
6.2 with relative
addresses.

SP

–6

–5

–3

–2

–1

0

(a) Before the program executes.

0

1

3

4

5

6

i

335

W

M

B

SP

(b) After SUBSP executes.

(continues)

2916.1 Stack Addressing and Local Variables

9781284079630_CH06_287_390.indd 291 29/01/16 8:29 am

Figure 6.2

 put an ASCII ‘B’ character in the byte just above the top of the stack. LDBA puts
the ‘B’ byte in the right half of the accumulator, and STBA puts it above the
stack. Th e store instruction uses stack-relative addressing with an operand
specifi er of –1 (dec) = FFFF (hex). Because the stack pointer has the value
FB8F, the ‘B’ is stored at Mem[FB8F + FFFF] = Mem[FB8E]. Th e next two
instructions put ‘M’ and ‘W’ at Mem[FB8D] and Mem[FB8C], respectively.

 Th e decimal integer 335, however, occupies two bytes. Th e program
must store it at an address that diff ers from the address of the ‘W’ by two.
Th at is why the instruction to store the 335 is

 0015 E3FFFB STWA -5,s

 and not STWA -4,s. In general, when you push items onto the run-time
stack, you must take into account how many bytes each item occupies and
set the operand specifi er accordingly.

 Th e subtract stack pointer instruction

 001E 580006 SUBSP 6,i ;push 6 bytes onto stack

 subtracts 6 from the stack pointer, as Figure 6 . 2 (b) shows. Th at completes
the push operation.

 Tracing a program that uses stack-relative addressing does not require
you to know the absolute value in the stack pointer. Th e push operation
would work the same if the stack pointer were initialized to some other
value, say FA18. In that case, ‘B’, ‘M’, ‘W’, 335, and ‘i’ would be at Mem[FA17],
Mem[FA16], Mem[FA15], Mem[FA13], and Mem[FA12], respectively, and
the stack pointer would wind up with a value of FA12. Th e values would be
at the same locations relative to the top of the stack, even though they would
be at diff erent absolute memory locations.

 FIGURE 6.3 is a more convenient way of tracing the operation and
makes use of the fact that the value in the stack pointer is irrelevant. Rather
than show the value in the stack pointer, it shows an arrow pointing to the
memory cell whose address is contained in the stack pointer. Rather than
show the address of the cells in memory, it shows their off sets from the
stack pointer. Figures depicting the state of the run-time stack will use this
drawing convention from now on.

 Th e instruction

 0021 D30005 LDBA 5,s ;output B

 loads the ASCII ‘B’ character from the stack. Note that the stack-relative
address of the ‘B’ before SUBSP executes is –1, but its address aft er SUBSP
executes is 5. Its stack-relative address is diff erent because the stack pointer
has changed. Both

 0003 F3FFFF STBA -1,s

FB8FSP

FB89

FB8A

FB8C

FB8D

FB8E

FB8F

(a) Before the program executes.

FB89

FB8A

FB8C

FB8D

FB8E

FB8F

FB89SP

i

335

W

M

B

(b)After SUBSP executes.

FIGURE 6.2
Pushing BMW335i onto
the run-time stack in
Figure 6.1.

 FIGURE 6 . 3
 The stack of Figure
6.2 with relative
addresses.

SP

–6

–5

–3

–2

–1

0

(a) Before the program executes.

0

1

3

4

5

6

i

335

W

M

B

SP

(b) After SUBSP executes.

(continues)

2916.1 Stack Addressing and Local Variables

9781284079630_CH06_287_390.indd 291 29/01/16 8:29 am

Absolute addresses

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 put an ASCII ‘B’ character in the byte just above the top of the stack. LDBA puts
the ‘B’ byte in the right half of the accumulator, and STBA puts it above the
stack. Th e store instruction uses stack-relative addressing with an operand
specifi er of –1 (dec) = FFFF (hex). Because the stack pointer has the value
FB8F, the ‘B’ is stored at Mem[FB8F + FFFF] = Mem[FB8E]. Th e next two
instructions put ‘M’ and ‘W’ at Mem[FB8D] and Mem[FB8C], respectively.

 Th e decimal integer 335, however, occupies two bytes. Th e program
must store it at an address that diff ers from the address of the ‘W’ by two.
Th at is why the instruction to store the 335 is

 0015 E3FFFB STWA -5,s

 and not STWA -4,s. In general, when you push items onto the run-time
stack, you must take into account how many bytes each item occupies and
set the operand specifi er accordingly.

 Th e subtract stack pointer instruction

 001E 580006 SUBSP 6,i ;push 6 bytes onto stack

 subtracts 6 from the stack pointer, as Figure 6 . 2 (b) shows. Th at completes
the push operation.

 Tracing a program that uses stack-relative addressing does not require
you to know the absolute value in the stack pointer. Th e push operation
would work the same if the stack pointer were initialized to some other
value, say FA18. In that case, ‘B’, ‘M’, ‘W’, 335, and ‘i’ would be at Mem[FA17],
Mem[FA16], Mem[FA15], Mem[FA13], and Mem[FA12], respectively, and
the stack pointer would wind up with a value of FA12. Th e values would be
at the same locations relative to the top of the stack, even though they would
be at diff erent absolute memory locations.

 FIGURE 6.3 is a more convenient way of tracing the operation and
makes use of the fact that the value in the stack pointer is irrelevant. Rather
than show the value in the stack pointer, it shows an arrow pointing to the
memory cell whose address is contained in the stack pointer. Rather than
show the address of the cells in memory, it shows their off sets from the
stack pointer. Figures depicting the state of the run-time stack will use this
drawing convention from now on.

 Th e instruction

 0021 D30005 LDBA 5,s ;output B

 loads the ASCII ‘B’ character from the stack. Note that the stack-relative
address of the ‘B’ before SUBSP executes is –1, but its address aft er SUBSP
executes is 5. Its stack-relative address is diff erent because the stack pointer
has changed. Both

 0003 F3FFFF STBA -1,s

FB8FSP

FB89

FB8A

FB8C

FB8D

FB8E

FB8F

(a) Before the program executes.

FB89

FB8A

FB8C

FB8D

FB8E

FB8F

FB89SP

i

335

W

M

B

(b)After SUBSP executes.

FIGURE 6.2
Pushing BMW335i onto
the run-time stack in
Figure 6.1.

 FIGURE 6 . 3
 The stack of Figure
6.2 with relative
addresses.

SP

–6

–5

–3

–2

–1

0

(a) Before the program executes.

0

1

3

4

5

6

i

335

W

M

B

SP

(b) After SUBSP executes.

(continues)

2916.1 Stack Addressing and Local Variables

9781284079630_CH06_287_390.indd 291 29/01/16 8:29 am

Figure 6.3
 and

 0021 D30005 LDBA 5,s ;output B

 access the same memory cell because SP has a diff erent value when each of
them executes. Th e other items are output similarly using their stack off sets,
as shown in Figure 6 . 3 (b).

 Th e instruction

 003C 500006 ADDSP 6,i ;pop 6 bytes off stack

 deallocates six bytes of storage from the run-time stack by adding 6 to SP.
Because the stack grows upward toward smaller addresses, you push storage
by subtracting from the stack pointer, and you pop storage by adding to the
stack pointer.

 Local Variables
 Th e previous chapter shows how the compiler translates programs with
global variables. It allocates storage for a global variable with a .BLOCK
dot command and accesses the global variable with direct addressing.
Local variables, however, are allocated on the run-time stack. To translate a
program with local variables, the compiler

 ❯ pushes local variables onto the stack with SUBSP ,
 ❯ accesses local variables with stack-relative addressing, and
 ❯ pops local variables off the stack with ADDSP .

 An important diff erence between global and local variables is the
time at which the allocation takes place. Th e .BLOCK dot command is not
an executable statement. Storage for global variables is reserved at a fi xed
location before the program executes. In contrast, the SUBSP statement
is executable. Storage for local variables is created on the run-time stack
during program execution.

 Th e C program in FIGURE 6.4 is from Figure 2 . 6 . It is identical to the
program of Figure 5 . 27 except that the variables are declared local to main() .
Although this diff erence is not perceptible to the user of the program, the
translation performed by the compiler is signifi cantly diff erent. FIGURE 6.5
shows the run-time stack for the program. bonus is a constant and is defi ned
with the .EQUATE command (as in Figure 5 . 27). However, local variables are
also defi ned with .EQUATE . With a constant, .EQUATE specifi es the value
of the constant, but with a local variable, .EQUATE specifi es the stack off set
on the run-time stack. For example, Figure 6 . 5 shows that the stack off set
for local variable exam1 is 4. Th erefore, the assembly language program
equates the symbol exam1 to 4. Note from the assembly language listing that
 .EQUATE does not generate any code for the local variables.

 Th e rules for accessing local
variables

 Th e memory model for
global versus local variables

.EQUATE specifi es the
stack off set for a local
variable

SP

–6

–5

–3

–2

–1

0

(a) Before the program executes.

0

1

3

4

5

6

i

335

W

M

B

SP

(b) After SUBSP executes.

 FIGURE 6 . 3
 The stack of
Figure 6.2 with
relative addresses.
(continued)

292 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 292 29/01/16 8:29 am

Stack-relative addresses

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Push locals with SUBSP

• Access locals with stack-relative addressing (s)

• Pop locals with ADDSP

Local variables

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
 
int main() {
 const int bonus = 10;
 int exam1;
 int exam2;
 int score;
 scanf("%d %d", &exam1, &exam2);
 score = (exam1 + exam2) / 2 + bonus;
 printf("score = %d\n", score);
 return 0;
}
 

Figure 6.4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120003 BR main
 bonus: .EQUATE 10 ;constant
 exam1: .EQUATE 4 ;local variable #2d
 exam2: .EQUATE 2 ;local variable #2d
 score: .EQUATE 0 ;local variable #2d
 ;
0003 580006 main: SUBSP 6,i ;push #exam1 #exam2 #score
0006 330004 DECI exam1,s ;scanf("%d %d", &exam1, &exam2)
0009 330002 DECI exam2,s
000C C30004 LDWA exam1,s ;score = (exam1 + exam2) / 2 + bonus
000F 630002 ADDA exam2,s
0012 0C ASRA
0013 60000A ADDA bonus,i
0016 E30000 STWA score,s
0019 490029 STRO msg,d ;printf("score = %d\n", score)
001C 3B0000 DECO score,s
001F D0000A LDBA '\n',i
0022 F1FC16 STBA charOut,d
0025 500006 ADDSP 6,i ;pop #score #exam2 #exam1
0028 00 STOP
0029 73636F msg: .ASCII "score = \x00"
 726520
 3D2000
0032 .END

Figure 6.4
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Translation of the executable statements in main() diff ers in two
respects from the version with global variables. First, SUBSP and ADDSP push
and pop storage on the run-time stack for the locals. Second, all accesses
to the variables use stack-relative addressing instead of direct addressing.
Other than these diff erences, the translation of the assignment and output
statements is the same.

 Figure 6 . 4 shows how to write trace tags for debugging with local
variables. Th e assembly language program uses the format trace tag #2d
with the .EQUATE pseudo-op to tell the debugger that the values of exam1 ,
 exam2 , and score should be displayed as two-byte decimal values.

 Th ese local variables are pushed onto the run-time stack with the
 SUBSP instruction. Consequently, to debug your program you specify the
three symbol trace tags #exam1 , #exam2 , and #score in the comment
for SUBSP . When you single-step through the program, the Pep/9 system
displays a fi gure on the screen like that of Figure 6 . 5 (b), with the symbolic
labels of the cells on the right of the run-time stack. For the debugger to
function accurately, you must list the symbol trace tags in the comment fi eld
in the exact order they are pushed onto the run-time stack. In this program,
 exam1 is pushed fi rst, followed by exam2 and then score . Furthermore, this
order must be consistent with the off set values in the . EQUATE pseudo-op.

 Th e variables are popped off the stack with the ADDSP instruction. So
you must list the variables that are popped off the run-time stack in the
proper order. Because the variables are popped off in the opposite order
they are pushed on, you list them in the opposite order from the order in
the SUBSP instruction. In this program, score is popped off , followed by
 exam2 and then exam1 .

 Although trace tags are not necessary for the program to execute, they
serve to document the program. Th e information provided by the symbol
trace tags is valuable for the reader of the program, because it describes
the purpose of the SUBSP and ADDSP instructions. Th e assembly language
programs in this chapter all include trace tags for documentation purposes,
and your programs should as well.

 6.2 Branching Instructions
and Flow of Control

 Th e Pep/9 instruction set has eight conditional branches:

BRLE Branch on less than or equal to
BRLT Branch on less than
BREQ Branch on equal to

 Format trace tags

 Symbol trace tags

 FIGURE 6 . 5
 The run-time stack
for the program of
Figure 6.4.

–6 score

–4 exam2

–2 exam1

(a) Before SUBSP executes.

SP

0 score

2 exam2

4 exam1

(b) After SUBSP executes.

SP

–6 score

294 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 294 29/01/16 8:29 am

Figure 6.5

 Translation of the executable statements in main() diff ers in two
respects from the version with global variables. First, SUBSP and ADDSP push
and pop storage on the run-time stack for the locals. Second, all accesses
to the variables use stack-relative addressing instead of direct addressing.
Other than these diff erences, the translation of the assignment and output
statements is the same.

 Figure 6 . 4 shows how to write trace tags for debugging with local
variables. Th e assembly language program uses the format trace tag #2d
with the .EQUATE pseudo-op to tell the debugger that the values of exam1 ,
 exam2 , and score should be displayed as two-byte decimal values.

 Th ese local variables are pushed onto the run-time stack with the
 SUBSP instruction. Consequently, to debug your program you specify the
three symbol trace tags #exam1 , #exam2 , and #score in the comment
for SUBSP . When you single-step through the program, the Pep/9 system
displays a fi gure on the screen like that of Figure 6 . 5 (b), with the symbolic
labels of the cells on the right of the run-time stack. For the debugger to
function accurately, you must list the symbol trace tags in the comment fi eld
in the exact order they are pushed onto the run-time stack. In this program,
 exam1 is pushed fi rst, followed by exam2 and then score . Furthermore, this
order must be consistent with the off set values in the . EQUATE pseudo-op.

 Th e variables are popped off the stack with the ADDSP instruction. So
you must list the variables that are popped off the run-time stack in the
proper order. Because the variables are popped off in the opposite order
they are pushed on, you list them in the opposite order from the order in
the SUBSP instruction. In this program, score is popped off , followed by
 exam2 and then exam1 .

 Although trace tags are not necessary for the program to execute, they
serve to document the program. Th e information provided by the symbol
trace tags is valuable for the reader of the program, because it describes
the purpose of the SUBSP and ADDSP instructions. Th e assembly language
programs in this chapter all include trace tags for documentation purposes,
and your programs should as well.

 6.2 Branching Instructions
and Flow of Control

 Th e Pep/9 instruction set has eight conditional branches:

BRLE Branch on less than or equal to
BRLT Branch on less than
BREQ Branch on equal to

 Format trace tags

 Symbol trace tags

 FIGURE 6 . 5
 The run-time stack
for the program of
Figure 6.4.

–6 score

–4 exam2

–2 exam1

(a) Before SUBSP executes.

SP

0 score

2 exam2

4 exam1

(b) After SUBSP executes.

SP

–6 score

294 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 294 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• BRLE Branch on less than or equal to

• BRLT Branch on less than

• BREQ Branch on equal to

• BRNE Branch on not equal to

• BRGE Branch on greater than or equal to

• BRGT Branch on greater than

• BRV Branch on V

• BRC Branch on C

Branching instructions

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• BRLE

• BRLT

• BREQ

• BRNE

• BRGE

• BRGT

• BRV

• BRC

Branching instructions
N= 1_Z= 1) PC Oprnd
N= 1) PC Oprnd
Z= 1) PC Oprnd
Z= 0) PC Oprnd
N= 0) PC Oprnd
N= 0^Z= 0) PC Oprnd
V= 1) PC Oprnd
C= 1) PC Oprnd

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
 
int main() {
 int number;
 scanf("%d", &number);
 if (number < 0) {
 number = -number;
 }
 printf("%d", number);
 return 0;
}

Figure 6.6

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120003 BR main
 number: .EQUATE 0 ;local variable #2d
 ;
0003 580002 main: SUBSP 2,i ;push #number
0006 330000 DECI number,s ;scanf("%d", &number)
0009 C30000 if: LDWA number,s ;if (number < 0)
000C 1C0016 BRGE endIf
000F C30000 LDWA number,s ;number = -number
0012 08 NEGA
0013 E30000 STWA number,s
0016 3B0000 endIf: DECO number,s ;printf("%d", number)
0019 500002 ADDSP 2,i ;pop #number
001C 00 STOP
001D .END
 

Figure 6.6
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

body of the if statement. FIGURE 6.7(a) shows the structure of the if
statement at Level HOL6. S1 represents the scanf() function call,
C1 represents the condition number < 0, S2 represents the statement
number = -number, and S3 represents the statement printf() function
call. Figure 6 . 7 (b) shows the structure with the more primitive branching
instructions at Level Asmb5. The dot following C1 represents the
conditional branch, BRGE.

 Th e braces { and } for delimiting a compound statement have no
counterpart in assembly language. Th e sequence

 Statement 1
 if (number >= 0) {
 Statement 2
 Statement 3
 }
 Statement 4

 translates to

 Statement 1
 if: LDWA number,d
 BRLT endIf
 Statement 2
 Statement 3
 endIf: Statement 4

 Optimizing Compilers
 You may have noticed an extra load statement that was not strictly required
in Figure 6 . 6 . You can eliminate the LDWA at 000F because the value of
number will still be in the accumulator from the previous load at 0009.

 Th e question is, what would a compiler do? Th e answer depends on
the compiler. A compiler is a program that must be written and debugged.
Imagine that you must design a compiler to translate from C to assembly
language. When the compiler detects an assignment statement, you program
it to generate the following sequence: (a) load accumulator, (b) evaluate
expression if necessary, (c) store result to variable. Such a compiler would
generate the code of Figure 6 . 6 , with the LDWA at 000F.

 Imagine how diffi cult your compiler program would be if you wanted it to
eliminate the unnecessary load. When your compiler detected an assignment
statement, it would not always generate the initial load. Instead, it would
analyze the previous instructions generated and remember the content of the
accumulator. If it determined that the value in the accumulator was the same
as the value that the initial load put there, it would not generate the initial load.

 FIGURE 6 . 7
 The structure of the
if statement in
Figure 6.6.

S1
if (C1) {

S2
}
S3

(a) The structure at Level
 HOL6.

(b) The same structure at
 Level Asmb5.

S1
C1

S2
S3

2976.2 Branching Instructions and Flow of Control

9781284079630_CH06_287_390.indd 297 29/01/16 8:29 am

Figure 6.7

body of the if statement. FIGURE 6.7(a) shows the structure of the if
statement at Level HOL6. S1 represents the scanf() function call,
C1 represents the condition number < 0, S2 represents the statement
number = -number, and S3 represents the statement printf() function
call. Figure 6 . 7 (b) shows the structure with the more primitive branching
instructions at Level Asmb5. The dot following C1 represents the
conditional branch, BRGE.

 Th e braces { and } for delimiting a compound statement have no
counterpart in assembly language. Th e sequence

 Statement 1
 if (number >= 0) {
 Statement 2
 Statement 3
 }
 Statement 4

 translates to

 Statement 1
 if: LDWA number,d
 BRLT endIf
 Statement 2
 Statement 3
 endIf: Statement 4

 Optimizing Compilers
 You may have noticed an extra load statement that was not strictly required
in Figure 6 . 6 . You can eliminate the LDWA at 000F because the value of
number will still be in the accumulator from the previous load at 0009.

 Th e question is, what would a compiler do? Th e answer depends on
the compiler. A compiler is a program that must be written and debugged.
Imagine that you must design a compiler to translate from C to assembly
language. When the compiler detects an assignment statement, you program
it to generate the following sequence: (a) load accumulator, (b) evaluate
expression if necessary, (c) store result to variable. Such a compiler would
generate the code of Figure 6 . 6 , with the LDWA at 000F.

 Imagine how diffi cult your compiler program would be if you wanted it to
eliminate the unnecessary load. When your compiler detected an assignment
statement, it would not always generate the initial load. Instead, it would
analyze the previous instructions generated and remember the content of the
accumulator. If it determined that the value in the accumulator was the same
as the value that the initial load put there, it would not generate the initial load.

 FIGURE 6 . 7
 The structure of the
if statement in
Figure 6.6.

S1
if (C1) {

S2
}
S3

(a) The structure at Level
 HOL6.

(b) The same structure at
 Level Asmb5.

S1
C1

S2
S3

2976.2 Branching Instructions and Flow of Control

9781284079630_CH06_287_390.indd 297 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Eliminates unnecessary instructions in the
object code

• Advantage: Object code runs faster

• Disadvantage: Takes longer to compile

Optimizing compiler

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Instruction specifier: 1010 raaa

• Mnemonic: CPWr (CPWA, CPWX)

• Compare r with operand

Compare word instruction

Pep/9 RTL specification of the instruction set

Here is the RTL specification of the Pep/9 instruction set.

Instruction Register transfer language specification

STOP Stop execution
RET PC←Mem[SP] ; SP← SP+2
RETTR NZVC←Mem[SP]⟨4..7⟩ ; A←Mem[SP+1] ; X←Mem[SP+3] ; PC←Mem[SP+5] ; SP←Mem[SP+7]
MOVSPA A← SP
MOVFLGA A⟨8..11⟩ ← 0 , A⟨12..15⟩ ← NZVC
MOVAFLG NZVC← A⟨12..15⟩

NOTr r← ¬r ; N← r < 0 , Z← r = 0
NEGr r←−r ; N← r < 0 , Z← r = 0 , V← {overflow}
ASLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← 0 ; N← r < 0 , Z← r = 0 , V← {overflow}
ASRr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ ; N← r < 0 , Z← r = 0
ROLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← C
RORr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ , r⟨0⟩ ← C

BR PC← Oprnd
BRLE N = 1∨Z = 1⇒ PC← Oprnd
BRLT N = 1⇒ PC← Oprnd
BREQ Z = 1⇒ PC← Oprnd
BRNE Z = 0⇒ PC← Oprnd
BRGE N = 0⇒ PC← Oprnd
BRGT N = 0∧Z = 0⇒ PC← Oprnd
BRV V = 1⇒ PC← Oprnd
BRC C = 1⇒ PC← Oprnd
CALL SP← SP−2 ; Mem[SP]← PC ; PC← Oprnd

NOPn Trap: Unary no operation
NOP Trap: Nonunary no operation

DECI Trap: Oprnd← {decimal input}
DECO Trap: {decimal output}← Oprnd
HEXO Trap: {hexadecimal output}← Oprnd
STRO Trap: {string output}← Oprnd

ADDSP SP← SP+Oprnd
SUBSP SP← SP−Oprnd

ADDr r← r+Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
SUBr r← r−Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
ANDr r← r∧Oprnd ; N← r < 0 , Z← r = 0
ORr r← r∨Oprnd ; N← r < 0 , Z← r = 0

CPWr T← r−Oprnd ; N← T < 0 , Z← T = 0 , V← {overflow} , C← {carry} ; N← N⊕V
CPBr T← r⟨8..15⟩−byte Oprnd ; N← T < 0 , Z← T = 0 , V← 0 , C← 0
LDWr r← Oprnd ; N← r < 0 , Z← r = 0
LDBr r⟨8..15⟩ ← byte Oprnd ; N← 0 , Z← r⟨8..15⟩= 0
STWr Oprnd← r
STBr byte Oprnd← r⟨8..15⟩
Trap T←Mem[FFF6] ; Mem[T−1]← IR⟨0..7⟩ ; Mem[T−3]← SP ; Mem[T−5]← PC ; Mem[T−7]← X ;

Mem[T−9]← A ; Mem[T−10]⟨4..7⟩ ← NZVC ; SP← T−10 ; PC←Mem[FFFE]

4

Pep/9 RTL specification of the instruction set

Here is the RTL specification of the Pep/9 instruction set.

Instruction Register transfer language specification

STOP Stop execution
RET PC←Mem[SP] ; SP← SP+2
RETTR NZVC←Mem[SP]⟨4..7⟩ ; A←Mem[SP+1] ; X←Mem[SP+3] ; PC←Mem[SP+5] ; SP←Mem[SP+7]
MOVSPA A← SP
MOVFLGA A⟨8..11⟩ ← 0 , A⟨12..15⟩ ← NZVC
MOVAFLG NZVC← A⟨12..15⟩

NOTr r← ¬r ; N← r < 0 , Z← r = 0
NEGr r←−r ; N← r < 0 , Z← r = 0 , V← {overflow}
ASLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← 0 ; N← r < 0 , Z← r = 0 , V← {overflow}
ASRr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ ; N← r < 0 , Z← r = 0
ROLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← C
RORr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ , r⟨0⟩ ← C

BR PC← Oprnd
BRLE N = 1∨Z = 1⇒ PC← Oprnd
BRLT N = 1⇒ PC← Oprnd
BREQ Z = 1⇒ PC← Oprnd
BRNE Z = 0⇒ PC← Oprnd
BRGE N = 0⇒ PC← Oprnd
BRGT N = 0∧Z = 0⇒ PC← Oprnd
BRV V = 1⇒ PC← Oprnd
BRC C = 1⇒ PC← Oprnd
CALL SP← SP−2 ; Mem[SP]← PC ; PC← Oprnd

NOPn Trap: Unary no operation
NOP Trap: Nonunary no operation

DECI Trap: Oprnd← {decimal input}
DECO Trap: {decimal output}← Oprnd
HEXO Trap: {hexadecimal output}← Oprnd
STRO Trap: {string output}← Oprnd

ADDSP SP← SP+Oprnd
SUBSP SP← SP−Oprnd

ADDr r← r+Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
SUBr r← r−Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
ANDr r← r∧Oprnd ; N← r < 0 , Z← r = 0
ORr r← r∨Oprnd ; N← r < 0 , Z← r = 0

CPWr T← r−Oprnd ; N← T < 0 , Z← T = 0 , V← {overflow} , C← {carry} ; N← N⊕V
CPBr T← r⟨8..15⟩−byte Oprnd ; N← T < 0 , Z← T = 0 , V← 0 , C← 0
LDWr r← Oprnd ; N← r < 0 , Z← r = 0
LDBr r⟨8..15⟩ ← byte Oprnd ; N← 0 , Z← r⟨8..15⟩= 0
STWr Oprnd← r
STBr byte Oprnd← r⟨8..15⟩
Trap T←Mem[FFF6] ; Mem[T−1]← IR⟨0..7⟩ ; Mem[T−3]← SP ; Mem[T−5]← PC ; Mem[T−7]← X ;

Mem[T−9]← A ; Mem[T−10]⟨4..7⟩ ← NZVC ; SP← T−10 ; PC←Mem[FFFE]

4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int main() {
 const int limit = 100;
 int num;
 scanf("%d", &num);
 if (num >= limit) {
 printf("high\n");
 }
 else {
 printf("low\n");
 }
 return 0;
}

Figure 6.8

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120003 BR main
 limit: .EQUATE 100 ;constant
 num: .EQUATE 0 ;local variable #2d
 ;
0003 580002 main: SUBSP 2,i ;push #num
0006 330000 DECI num,s ;scanf("%d", &num)
0009 C30000 if: LDWA num,s ;if (num >= limit)
000C A00064 CPWA limit,i
000F 160018 BRLT else
0012 49001F STRO msg1,d ;printf("high\n")
0015 12001B BR endIf
0018 490025 else: STRO msg2,d ;printf("low\n")
001B 500002 endIf: ADDSP 2,i ;pop #num
001E 00 STOP
001F 686967 msg1: .ASCII "high\n\x00"
 680A00
0025 6C6F77 msg2: .ASCII "low\n\x00"
 0A00
002A .END
 

Figure 6.8
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

then the N bit is inverted from its normal value and does not duplicate the sign
bit. With this adjustment, the compare operation extends the range of valid
comparisons. Even though there is an overfl ow, the N bit is set as if there were
no overfl ow so that a subsequent conditional branch will operate as expected.)

 Th is program computes num - limit and sets the NZVC bits. BRLT
tests the N bit, which is set if

 num - limit < 0

 that is, if

 num < limit

 Th at is the condition under which the else part must execute.
FIGURE 6.9 shows the structure of the control statements at the two

levels. Part (a) shows the Level-HOL6 control statement, and part (b) shows
the Level-Asmb5 translation for this program.

 Translating the While Loop
 Translating a loop requires branches to previous instructions. FIGURE 6.10
shows the translation of a while statement. Th e C program is identical
to the one in Figure 2 . 13 . It echoes ASCII input characters to the output,
replacing a space character with a newline character, using the sentinel

 FIGURE 6 . 9
 The structure of the
if/else statement
in Figure 6.8.

S1
if (C1) {

S2
}
else {

}
S4

(a) The structure at Level HOL6.

S1
C1

S2

S3
S4

(b) The same structure at Level
 Asmb5.

S3

S1

FIGURE 6.10
The while statement at Level HOL6 and Level Asmb5. The C program is from Figure 2.13.

High-Order Language
#include <stdio.h>

char letter;

int main() {
 scanf("%c", &letter);
 while (letter != '*') {
 if (letter == ' ') {
 printf("\n");
 }
 else {
 printf("%c", letter);
 }
 scanf("%c", &letter);
 }
 return 0;
}

300 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 300 29/01/16 8:29 am

Figure 6.9

then the N bit is inverted from its normal value and does not duplicate the sign
bit. With this adjustment, the compare operation extends the range of valid
comparisons. Even though there is an overfl ow, the N bit is set as if there were
no overfl ow so that a subsequent conditional branch will operate as expected.)

 Th is program computes num - limit and sets the NZVC bits. BRLT
tests the N bit, which is set if

 num - limit < 0

 that is, if

 num < limit

 Th at is the condition under which the else part must execute.
FIGURE 6.9 shows the structure of the control statements at the two

levels. Part (a) shows the Level-HOL6 control statement, and part (b) shows
the Level-Asmb5 translation for this program.

 Translating the While Loop
 Translating a loop requires branches to previous instructions. FIGURE 6.10
shows the translation of a while statement. Th e C program is identical
to the one in Figure 2 . 13 . It echoes ASCII input characters to the output,
replacing a space character with a newline character, using the sentinel

 FIGURE 6 . 9
 The structure of the
if/else statement
in Figure 6.8.

S1
if (C1) {

S2
}
else {

}
S4

(a) The structure at Level HOL6.

S1
C1

S2

S3
S4

(b) The same structure at Level
 Asmb5.

S3

S1

FIGURE 6.10
The while statement at Level HOL6 and Level Asmb5. The C program is from Figure 2.13.

High-Order Language
#include <stdio.h>

char letter;

int main() {
 scanf("%c", &letter);
 while (letter != '*') {
 if (letter == ' ') {
 printf("\n");
 }
 else {
 printf("%c", letter);
 }
 scanf("%c", &letter);
 }
 return 0;
}

300 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 300 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
 
char letter;
 
int main() {
 scanf("%c", &letter);
 while (letter != '*') {
 if (letter == ' ') {
 printf("\n");
 }
 else {
 printf("%c", letter);
 }
 scanf("%c", &letter);
 }
 return 0;
}
 

Figure 6.10

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120004 BR main
0003 00 letter: .BLOCK 1 ;global variable #1c
 ;
0004 D1FC15 main: LDBA charIn,d ;scanf("%c", &letter)
0007 F10003 STBA letter,d
000A D10003 while: LDBA letter,d ;while (letter != '*')
000D B0002A CPBA '*',i
0010 18002E BREQ endWh
0013 B00020 if: CPBA ' ',i ;if (letter == ' ')
0016 1A0022 BRNE else
0019 D0000A LDBA '\n',i ;printf("\n")
001C F1FC16 STBA charOut,d
001F 120025 BR endIf
0022 F1FC16 else: STBA charOut,d ;printf("%c", letter)
0025 D1FC15 endIf: LDBA charIn,d ;scanf("%c", &letter)
0028 F10003 STBA letter,d
002B 12000A BR while
002E 00 endWh: STOP
002F .END

Figure 6.10
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

technique with * as the sentinel. If the input is Hello, world!* on a single
line, the output is Hello, on one line and world! on the next.

 Th e test for a while statement is made with a conditional branch at the
top of the loop. Th is program tests a character value, which is a byte quantity.
Every while loop ends with an unconditional branch to the test at the top
of the loop. Th e unconditional branch at 002B brings control back to the
initial test. FIGURE 6.11 shows the structure of the while statement at the
two levels.

 Th e RTL specifi cation of CPBr is

 T ← r〈8..15〉 – byte Oprnd ; N ← T < 0 , Z ← T = 0 , V ← 0 , C ← 0

 where T represents an eight-bit temporary value. Th e instruction sets the
status bits according to the eight-bit value without regard to the high-order
byte of register r. Th e CPBA instruction in Figure 6 . 10 (b) would still function
correctly even if the accumulator had some 1’s in its high-order byte.

 Th e RTL specifi cation of LDBr is

 r〈8..15〉 ← byte Oprnd ; N ← 0 , Z ← r〈8..15〉 = 0

 As with CPBr, the instruction sets the status bits according to the eight-bit
value without regard to the high-order byte of register r. If you ever need to

Assembly Language
0000 120004 BR main
0003 00 letter: .BLOCK 1 ;global variable #1c
 ;
0004 D1FC15 main: LDBA charIn,d ;scanf("%c", &letter)
0007 F10003 STBA letter,d
000A D10003 while: LDBA letter,d ;while (letter != '*')
000D B0002A CPBA '*',i
0010 18002E BREQ endWh
0013 B00020 if: CPBA ' ',i ;if (letter == ' ')
0016 1A0022 BRNE else
0019 D0000A LDBA '\n',i ;printf("\n")
001C F1FC16 STBA charOut,d
001F 120025 BR endIf
0022 F1FC16 else: STBA charOut,d ;printf("%c", letter)
0025 D1FC15 endIf: LDBA charIn,d ;scanf("%c", &letter)
0028 F10003 STBA letter,d
002B 12000A BR while
002E 00 endWh: STOP
002F .END

 FIGURE 6 . 11
 The structure of the
while statement in
Figure 6.10.

S1
while (C1) {

S2
}
S3

(a) The structure at Level HOL6.

S1
C1

S2

S3

(b) The same structure at
 Level Asmb5.

S1

3016.2 Branching Instructions and Flow of Control

9781284079630_CH06_287_390.indd 301 29/01/16 8:29 am

Figure 6.11

technique with * as the sentinel. If the input is Hello, world!* on a single
line, the output is Hello, on one line and world! on the next.

 Th e test for a while statement is made with a conditional branch at the
top of the loop. Th is program tests a character value, which is a byte quantity.
Every while loop ends with an unconditional branch to the test at the top
of the loop. Th e unconditional branch at 002B brings control back to the
initial test. FIGURE 6.11 shows the structure of the while statement at the
two levels.

 Th e RTL specifi cation of CPBr is

 T ← r〈8..15〉 – byte Oprnd ; N ← T < 0 , Z ← T = 0 , V ← 0 , C ← 0

 where T represents an eight-bit temporary value. Th e instruction sets the
status bits according to the eight-bit value without regard to the high-order
byte of register r. Th e CPBA instruction in Figure 6 . 10 (b) would still function
correctly even if the accumulator had some 1’s in its high-order byte.

 Th e RTL specifi cation of LDBr is

 r〈8..15〉 ← byte Oprnd ; N ← 0 , Z ← r〈8..15〉 = 0

 As with CPBr, the instruction sets the status bits according to the eight-bit
value without regard to the high-order byte of register r. If you ever need to

Assembly Language
0000 120004 BR main
0003 00 letter: .BLOCK 1 ;global variable #1c
 ;
0004 D1FC15 main: LDBA charIn,d ;scanf("%c", &letter)
0007 F10003 STBA letter,d
000A D10003 while: LDBA letter,d ;while (letter != '*')
000D B0002A CPBA '*',i
0010 18002E BREQ endWh
0013 B00020 if: CPBA ' ',i ;if (letter == ' ')
0016 1A0022 BRNE else
0019 D0000A LDBA '\n',i ;printf("\n")
001C F1FC16 STBA charOut,d
001F 120025 BR endIf
0022 F1FC16 else: STBA charOut,d ;printf("%c", letter)
0025 D1FC15 endIf: LDBA charIn,d ;scanf("%c", &letter)
0028 F10003 STBA letter,d
002B 12000A BR while
002E 00 endWh: STOP
002F .END

 FIGURE 6 . 11
 The structure of the
while statement in
Figure 6.10.

S1
while (C1) {

S2
}
S3

(a) The structure at Level HOL6.

S1
C1

S2

S3

(b) The same structure at
 Level Asmb5.

S1

3016.2 Branching Instructions and Flow of Control

9781284079630_CH06_287_390.indd 301 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int cop;
int driver;
 
int main() {
 cop = 0;
 driver = 40;
 do {
 cop += 25;
 driver += 20;
 }
 while (cop < driver);
 printf("%d", cop);
 return 0;
}

Figure 6.12

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120007 BR main
0003 0000 cop: .BLOCK 2 ;global variable #2d
0005 0000 driver: .BLOCK 2 ;global variable #2d
 ;
0007 C00000 main: LDWA 0,i ;cop = 0
000A E10003 STWA cop,d
000D C00028 LDWA 40,i ;driver = 40
0010 E10005 STWA driver,d
0013 C10003 do: LDWA cop,d ;cop += 25
0016 600019 ADDA 25,i
0019 E10003 STWA cop,d
001C C10005 LDWA driver,d ;driver += 20
001F 600014 ADDA 20,i
0022 E10005 STWA driver,d
0025 C10003 while: LDWA cop,d ;while (cop < driver)
0028 A10005 CPWA driver,d
002B 160013 BRLT do
002E 390003 DECO cop,d ;printf("%d", cop)
0031 00 STOP
0032 .END

Figure 6.12
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

execution of the do loop represents one second of elapsed time, during which
the offi cer travels 25 meters and the driver 20, until the offi cer catches the driver.

 A do statement has its test at the bottom of the loop. In this program, the
compiler translates the while test to the sequence LDWA , CPWA , BRLT . BRLT
executes the branch if N is set to 1. Because CPWA computes the diff erence,
 cop - driver , N will be 1 if

 cop - driver < 0

 that is, if

 cop < driver

 Th at is the condition under which the loop should repeat. FIGURE 6.13
shows the structure of the do statement at Levels 6 and 5.

 Translating the For Loop
 for statements are similar to while statements because the test for both
is at the top of the loop. Th e compiler must generate code to initialize and
to increment the control variable. Th e program in FIGURE 6.14 shows
how a compiler generates code for the for statement. It translates the for
statement into the following sequence at Level Asmb5:

 ❯ Initialize the control variable.
 ❯ Test the control variable.
 ❯ Execute the loop body.
 ❯ Increment the control variable.
 ❯ Branch to the test.

000D C00028 LDWA 40,i ;driver = 40
0010 E10005 STWA driver,d
0013 C10003 do: LDWA cop,d ;cop += 25
0016 600019 ADDA 25,i
0019 E10003 STWA cop,d
001C C10005 LDWA driver,d ;driver += 20
001F 600014 ADDA 20,i
0022 E10005 STWA driver,d
0025 C10003 while: LDWA cop,d ;while (cop < driver)
0028 A10005 CPWA driver,d
002B 160013 BRLT do
002E 390003 DECO cop,d ;printf("%d", cop)
0031 00 STOP
0032 .END

 FIGURE 6 . 13
 The structure of the
do statement in
Figure 6.12.

S1
do {

S2
}
while (C1)
S3

(a) The structure at Level HOL6.

S1
S2
C1

S3

(b) The same structure at
 Level Asmb5.

S1

3036.2 Branching Instructions and Flow of Control

9781284079630_CH06_287_390.indd 303 29/01/16 8:29 am

Figure 6.13

execution of the do loop represents one second of elapsed time, during which
the offi cer travels 25 meters and the driver 20, until the offi cer catches the driver.

 A do statement has its test at the bottom of the loop. In this program, the
compiler translates the while test to the sequence LDWA , CPWA , BRLT . BRLT
executes the branch if N is set to 1. Because CPWA computes the diff erence,
 cop - driver , N will be 1 if

 cop - driver < 0

 that is, if

 cop < driver

 Th at is the condition under which the loop should repeat. FIGURE 6.13
shows the structure of the do statement at Levels 6 and 5.

 Translating the For Loop
 for statements are similar to while statements because the test for both
is at the top of the loop. Th e compiler must generate code to initialize and
to increment the control variable. Th e program in FIGURE 6.14 shows
how a compiler generates code for the for statement. It translates the for
statement into the following sequence at Level Asmb5:

 ❯ Initialize the control variable.
 ❯ Test the control variable.
 ❯ Execute the loop body.
 ❯ Increment the control variable.
 ❯ Branch to the test.

000D C00028 LDWA 40,i ;driver = 40
0010 E10005 STWA driver,d
0013 C10003 do: LDWA cop,d ;cop += 25
0016 600019 ADDA 25,i
0019 E10003 STWA cop,d
001C C10005 LDWA driver,d ;driver += 20
001F 600014 ADDA 20,i
0022 E10005 STWA driver,d
0025 C10003 while: LDWA cop,d ;while (cop < driver)
0028 A10005 CPWA driver,d
002B 160013 BRLT do
002E 390003 DECO cop,d ;printf("%d", cop)
0031 00 STOP
0032 .END

 FIGURE 6 . 13
 The structure of the
do statement in
Figure 6.12.

S1
do {

S2
}
while (C1)
S3

(a) The structure at Level HOL6.

S1
S2
C1

S3

(b) The same structure at
 Level Asmb5.

S1

3036.2 Branching Instructions and Flow of Control

9781284079630_CH06_287_390.indd 303 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Initialize the control variable

• Test the control variable

• Execute the loop body

• Increment the control variable

• Branch to the test

The for loop

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int main() {
 int j;
 for (j = 0; j < 3; j++) {
 printf("j = %d\n", j);
 }
 return 0;
}

Figure 6.14

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120003 BR main
 j: .EQUATE 0 ;local variable #2d
 ;
0003 580002 main: SUBSP 2,i ;push #j
0006 C00000 LDWA 0,i ;for (j = 0
0009 E30000 STWA j,s
000C A00003 for: CPWA 3,i ;j < 3
000F 1C002A BRGE endFor
0012 49002E STRO msg,d ;printf("j = %d\n", j)
0015 3B0000 DECO j,s
0018 D0000A LDBA '\n',i
001B F1FC16 STBA charOut,d
001E C30000 LDWA j,s ;j++)
0021 600001 ADDA 1,i
0024 E30000 STWA j,s
0027 12000C BR for
002A 500002 endFor: ADDSP 2,i ;pop #j
002D 00 STOP
002E 6A203D msg: .ASCII "j = \x00"
 2000
0033 .END
 

Figure 6.14
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 or, equivalently,

 j >= 3

 Th e body executes three times for j having the values 0, 1, and 2. Aft er
the last execution, j increments to 3, the loop terminates, and the value of 3
is not written by the output statement.

 Spaghetti Code
 At the assembly level, a programmer can write control structures that do not
correspond to the control structures in C. FIGURE 6.15 shows one possible
fl ow of control that is not directly possible in many Level-HOL6 languages.
Condition C1 is tested, and if it is true, a branch is taken to the middle of a
loop whose test is C2 .

 Assembly language programs generated by a compiler are usually longer
than programs written by humans directly in assembly language. Not only that,
but they oft en execute more slowly. If human programmers can write shorter,
faster assembly language programs than compilers, why does anyone program
in a high-order language? One reason is the ability of the compiler to perform
type checking (as mentioned in Chapter 5). Another is the additional burden
of responsibility that is placed on the programmer when given the freedom of
using primitive branching instructions. If you are not careful when you write
programs at Level Asmb5, the branching instructions can get out of hand.

 Th e program in FIGURE 6.16 is an extreme example of the problem
that can occur with unbridled use of primitive branching instructions. It

 FIGURE 6 . 15
 A fl ow of control
not possible directly
in many HOL6
languages.

S1

S2

C1

S3
C2

S4

FIGURE 6.16
A mystery program.

0000 120009 BR main
0003 0000 n1: .BLOCK 2 ;#2d
0005 0000 n2: .BLOCK 2 ;#2d
0007 0000 n3: .BLOCK 2 ;#2d
 ;
0009 310005 main: DECI n2,d
000C 310007 DECI n3,d
000F C10005 LDWA n2,d
0012 A10007 CPWA n3,d
0015 16002A BRLT L1
0018 310003 DECI n1,d

(continues)

3056.2 Branching Instructions and Flow of Control

9781284079630_CH06_287_390.indd 305 29/01/16 8:29 am

Figure 6.15

Not possible in many HOL6 languages

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0000 120009 BR main
0003 0000 n1: .BLOCK 2 ;#2d
0005 0000 n2: .BLOCK 2 ;#2d
0007 0000 n3: .BLOCK 2 ;#2d
 ;
0009 310005 main: DECI n2,d
000C 310007 DECI n3,d
000F C10005 LDWA n2,d
0012 A10007 CPWA n3,d
0015 16002A BRLT L1
0018 310003 DECI n1,d
001B C10003 LDWA n1,d
001E A10007 CPWA n3,d
0021 160074 BRLT L7
0024 120065 BR L6
0027 E10007 STWA n3,d
002A 310003 L1: DECI n1,d
002D C10005 LDWA n2,d
0030 A10003 CPWA n1,d
0033 160053 BRLT L5
0036 390003 DECO n1,d
0039 390005 DECO n2,d
003C 390007 L2: DECO n3,d
003F 00 STOP
 

Figure 6.16

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

0040 390005 L3: DECO n2,d
0043 390007 DECO n3,d
0046 120081 BR L9
0049 390003 L4: DECO n1,d
004C 390005 DECO n2,d
004F 00 STOP
0050 E10003 STWA n1,d
0053 C10007 L5: LDWA n3,d
0056 A10003 CPWA n1,d
0059 160040 BRLT L3
005C 390005 DECO n2,d
005F 390003 DECO n1,d
0062 12003C BR L2
0065 390007 L6: DECO n3,d
0068 C10003 LDWA n1,d
006B A10005 CPWA n2,d
006E 160049 BRLT L4
0071 12007E BR L8
0074 390003 L7: DECO n1,d
0077 390007 DECO n3,d
007A 390005 DECO n2,d
007D 00 STOP
007E 390005 L8: DECO n2,d
0081 390003 L9: DECO n1,d
0084 00 STOP
0085 .END
 

Figure 6.16
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Spaghetti code.Structured flow. (b)(a)

Figure 6.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Any algorithm containing goto’s, no matter
how complicated or unstructured, can be
written with only nested if statements and
while loops.

Bohm and Jacopini, 1966

The Structured
Programming Theorem

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

More recently I discovered why the use of the
goto statement has such disastrous effects,
and I became convinced that the goto
statement should be abolished from all
“higher level” programming languages. ... The
goto statement as it stands is just too
primitive; it is too much an invitation to make
a mess of one’s program.

Dijkstra, 1968

The goto controversy

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Instruction specifier: 0010 010a

• Mnemonic: CALL

• Push return address onto run-time stack

The call subroutine
instruction

SP SP�2 ; Mem[SP] PC ; PC Oprnd

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Instruction specifier: 0000 0001

• Mnemonic: RET

• Pop return address off of run-time stack

The return from
subroutine instructionPep/9 RTL specification of the instruction set

Here is the RTL specification of the Pep/9 instruction set.

Instruction Register transfer language specification

STOP Stop execution
RET PC←Mem[SP] ; SP← SP+2
RETTR NZVC←Mem[SP]⟨4..7⟩ ; A←Mem[SP+1] ; X←Mem[SP+3] ; PC←Mem[SP+5] ; SP←Mem[SP+7]
MOVSPA A← SP
MOVFLGA A⟨8..11⟩ ← 0 , A⟨12..15⟩ ← NZVC
MOVAFLG NZVC← A⟨12..15⟩

NOTr r← ¬r ; N← r < 0 , Z← r = 0
NEGr r←−r ; N← r < 0 , Z← r = 0 , V← {overflow}
ASLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← 0 ; N← r < 0 , Z← r = 0 , V← {overflow}
ASRr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ ; N← r < 0 , Z← r = 0
ROLr C← r⟨0⟩ , r⟨0..14⟩ ← r⟨1..15⟩ , r⟨15⟩ ← C
RORr C← r⟨15⟩ , r⟨1..15⟩ ← r⟨0..14⟩ , r⟨0⟩ ← C

BR PC← Oprnd
BRLE N = 1∨Z = 1⇒ PC← Oprnd
BRLT N = 1⇒ PC← Oprnd
BREQ Z = 1⇒ PC← Oprnd
BRNE Z = 0⇒ PC← Oprnd
BRGE N = 0⇒ PC← Oprnd
BRGT N = 0∧Z = 0⇒ PC← Oprnd
BRV V = 1⇒ PC← Oprnd
BRC C = 1⇒ PC← Oprnd
CALL SP← SP−2 ; Mem[SP]← PC ; PC← Oprnd

NOPn Trap: Unary no operation
NOP Trap: Nonunary no operation

DECI Trap: Oprnd← {decimal input}
DECO Trap: {decimal output}← Oprnd
HEXO Trap: {hexadecimal output}← Oprnd
STRO Trap: {string output}← Oprnd

ADDSP SP← SP+Oprnd
SUBSP SP← SP−Oprnd

ADDr r← r+Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
SUBr r← r−Oprnd ; N← r < 0 , Z← r = 0 , V← {overflow} , C← {carry}
ANDr r← r∧Oprnd ; N← r < 0 , Z← r = 0
ORr r← r∨Oprnd ; N← r < 0 , Z← r = 0

CPWr T← r−Oprnd ; N← T < 0 , Z← T = 0 , V← {overflow} , C← {carry} ; N← N⊕V
CPBr T← r⟨8..15⟩−byte Oprnd ; N← T < 0 , Z← T = 0 , V← 0 , C← 0
LDWr r← Oprnd ; N← r < 0 , Z← r = 0
LDBr r⟨8..15⟩ ← byte Oprnd ; N← 0 , Z← r⟨8..15⟩= 0
STWr Oprnd← r
STBr byte Oprnd← r⟨8..15⟩
Trap T←Mem[FFF6] ; Mem[T−1]← IR⟨0..7⟩ ; Mem[T−3]← SP ; Mem[T−5]← PC ; Mem[T−7]← X ;

Mem[T−9]← A ; Mem[T−10]⟨4..7⟩ ← NZVC ; SP← T−10 ; PC←Mem[FFFE]

4

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

void printTri() {
 printf("*\n");
 printf("**\n");
 printf("***\n");
 printf("****\n");
}
 
int main() {
 printTri();
 printTri();
 printTri();
 return 0;
}

Figure 6.18

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
000 120019 BR main
 ;
 ;******* void printTri()
0003 49000D printTri:STRO msg1,d ;printf("*\n")
0006 490010 STRO msg2,d ;printf("**\n")
0009 490014 STRO msg3,d ;printf("***\n")
000C 01 RET
000D 2A0A00 msg1: .ASCII "*\n\x00"
0010 2A2A0A msg2: .ASCII "**\n\x00"
 00
0014 2A2A2A msg3: .ASCII "***\n\x00"
 0A00
 ;
 ;******* int main()
0019 240003 main: CALL printTri ;printTri()
001C 240003 CALL printTri ;printTri()
001F 240003 CALL printTri ;printTri()
0022 00 STOP
0023 .END

Figure 6.18
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 As with the branch instructions, CALL usually executes in the
immediate addressing mode, in which case the operand is the operand
specifi er. If you do not specify the addressing mode, the Pep/9 assembler
will assume immediate addressing.

 Here is the RTL specifi cation of RET :

 PC ← Mem[SP] ; SP ← SP + 2

 Th e instruction moves the return address from the top of the stack into the
program counter. Th en it adds 2 to the stack pointer, which completes the
pop operation.

 In Figure 6 . 18 ,

 0000 120019 BR main

 puts 0019 into the program counter. Th e next statement to execute is,
therefore, the one at 0019, which is the fi rst CALL instruction. Th e discussion
of the program in Figure 6 . 1 explains how the stack pointer is initialized to
FB8F. FIGURE 6.19 shows the run-time stack before and aft er execution of the
fi rst CALL statement. As usual, the initial value of the stack pointer is FB8F.

 Th e operations of CALL and RET crucially depend on the von Neumann
execution cycle: fetch, decode, increment, execute, repeat. In particular,
the increment step happens before the execute step. As a consequence, the
statement that is executing is not the statement whose address is in the
program counter. It is the statement that was fetched before the program
counter was incremented and that is now contained in the instruction
register. Why is that so important in the execution of CALL and RET ?

 Figure 6 . 19 (a) shows the content of the program counter as 001C before
execution of the fi rst CALL instruction. It is not the address of the fi rst CALL
instruction, which is 0019. Why not? Because the program counter was incre-
mented to 001C before execution of the CALL . Th erefore, during execution
of the fi rst CALL instruction, the program counter contains the address of the
instruction in main memory located just aft er the fi rst CALL instruction.

 What happens when the fi rst CALL executes? First, SP ← SP – 2 subtracts
two from SP, giving it the value FB8D. Th en, Mem[SP] ← PC puts the value
of the program counter, 001C, into main memory at address FB8D—that
is, on top of the run-time stack. Finally, PC ← Oprnd puts 0003 into the
program counter, because the operand specifi er is 0003 and the addressing
mode is immediate. Th e result is Figure 6 . 19 (b).

 Th e von Neumann cycle continues with the next fetch. But now the
program counter contains 0003. So, the next instruction to be fetched is
the one at address 0003, which is the fi rst instruction of the printTri
procedure. Th e output instructions of the procedure execute, producing the
pattern of a triangle of asterisks.

 Th e default addressing
mode for CALL is
immediate .

 Th e RET instruction

 FIGURE 6 . 19
 Execution of the fi rst
CALL instruction in
Figure 6.18.

001CPC

FB8FSP

FB8D

FB8F

(a) Before execution of the first
 CALL.

0003PC

FB8DSP

FB8D

FB8F

001C

(b) After execution of the first
 CALL.

312 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 312 29/01/16 8:29 am

Figure 6.19

 As with the branch instructions, CALL usually executes in the
immediate addressing mode, in which case the operand is the operand
specifi er. If you do not specify the addressing mode, the Pep/9 assembler
will assume immediate addressing.

 Here is the RTL specifi cation of RET :

 PC ← Mem[SP] ; SP ← SP + 2

 Th e instruction moves the return address from the top of the stack into the
program counter. Th en it adds 2 to the stack pointer, which completes the
pop operation.

 In Figure 6 . 18 ,

 0000 120019 BR main

 puts 0019 into the program counter. Th e next statement to execute is,
therefore, the one at 0019, which is the fi rst CALL instruction. Th e discussion
of the program in Figure 6 . 1 explains how the stack pointer is initialized to
FB8F. FIGURE 6.19 shows the run-time stack before and aft er execution of the
fi rst CALL statement. As usual, the initial value of the stack pointer is FB8F.

 Th e operations of CALL and RET crucially depend on the von Neumann
execution cycle: fetch, decode, increment, execute, repeat. In particular,
the increment step happens before the execute step. As a consequence, the
statement that is executing is not the statement whose address is in the
program counter. It is the statement that was fetched before the program
counter was incremented and that is now contained in the instruction
register. Why is that so important in the execution of CALL and RET ?

 Figure 6 . 19 (a) shows the content of the program counter as 001C before
execution of the fi rst CALL instruction. It is not the address of the fi rst CALL
instruction, which is 0019. Why not? Because the program counter was incre-
mented to 001C before execution of the CALL . Th erefore, during execution
of the fi rst CALL instruction, the program counter contains the address of the
instruction in main memory located just aft er the fi rst CALL instruction.

 What happens when the fi rst CALL executes? First, SP ← SP – 2 subtracts
two from SP, giving it the value FB8D. Th en, Mem[SP] ← PC puts the value
of the program counter, 001C, into main memory at address FB8D—that
is, on top of the run-time stack. Finally, PC ← Oprnd puts 0003 into the
program counter, because the operand specifi er is 0003 and the addressing
mode is immediate. Th e result is Figure 6 . 19 (b).

 Th e von Neumann cycle continues with the next fetch. But now the
program counter contains 0003. So, the next instruction to be fetched is
the one at address 0003, which is the fi rst instruction of the printTri
procedure. Th e output instructions of the procedure execute, producing the
pattern of a triangle of asterisks.

 Th e default addressing
mode for CALL is
immediate .

 Th e RET instruction

 FIGURE 6 . 19
 Execution of the fi rst
CALL instruction in
Figure 6.18.

001CPC

FB8FSP

FB8D

FB8F

(a) Before execution of the first
 CALL.

0003PC

FB8DSP

FB8D

FB8F

001C

(b) After execution of the first
 CALL.

312 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 312 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Eventually the RET instruction at 000C executes. FIGURE 6.20(a) shows
the content of the program counter as 000D just before execution of RET . Th is
might seem strange, because 000D is not even the address of an instruction. It
is the address of the string "*\x00" . Why? Because RET is a unary instruction
and the CPU incremented the program counter by one. Th e fi rst step in the
execution of RET is PC ← Mem[SP], which puts 001C into the program
counter. Th en SP ← SP + 2 changes the stack pointer back to FB8F.

 Th e von Neumann cycle continues with the next fetch. But now the
program counter contains the address of the second CALL instruction. Th e
same sequence of events happens as with the fi rst call, producing another
triangle of asterisks in the output stream. Th e third call does the same
thing, aft er which the STOP instruction executes. Note that the value of the
program counter aft er the STOP instruction executes is 0023 and not 0022,
which is the address of the STOP instruction.

 Now you should see why increment comes before execute in the von
Neumann execution cycle. To store the return address on the run-time stack,
the CALL instruction needs to store the address of the instruction following
the CALL . It can do that only if the program counter has been incremented
before the CALL statement executes.

 Translating Call-by-Value Parameters
with Global Variables
 Th e allocation process when you call a void function in C is

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

 At Level HOL6, the instructions that perform these operations on the stack
are hidden. Th e programmer simply writes the function call, and during
execution the stack pushes occur automatically.

 At the assembly level, however, the translated program must contain
explicit instructions for the pushes. Th e program in FIGURE 6.21 , which is
identical to the program in Figure 2 . 16, is a Level-HOL6 program that prints
a bar chart and the program’s corresponding Level-Asmb5 translation. It
shows the Level-Asmb5 statements, not explicit at Level HOL6, that are
required to push the parameters.

 Th e caller in main() is responsible for pushing the actual parameters
and executing CALL , which pushes the return address onto the stack. Th e
callee in printBar() is responsible for pushing storage on the stack for
its local variables. Aft er the callee executes, it must pop the storage for the

 Th e reason increment
must come before execute
in the von Neumann
execution cycle

 FIGURE 6 . 20
 The fi rst execution of
the RET instruction in
Figure 6.18.

(a) Before the first execution
 of RET.

000DPC

FB8DSP

FB8D

FB8F

001C

(b) After the first execution
 of RET.

001CPC

FB8FSP

FB8D

FB8F

001C

3136.3 Function Calls and Parameters

9781284079630_CH06_287_390.indd 313 29/01/16 8:29 am

Figure 6.20

 Eventually the RET instruction at 000C executes. FIGURE 6.20(a) shows
the content of the program counter as 000D just before execution of RET . Th is
might seem strange, because 000D is not even the address of an instruction. It
is the address of the string "*\x00" . Why? Because RET is a unary instruction
and the CPU incremented the program counter by one. Th e fi rst step in the
execution of RET is PC ← Mem[SP], which puts 001C into the program
counter. Th en SP ← SP + 2 changes the stack pointer back to FB8F.

 Th e von Neumann cycle continues with the next fetch. But now the
program counter contains the address of the second CALL instruction. Th e
same sequence of events happens as with the fi rst call, producing another
triangle of asterisks in the output stream. Th e third call does the same
thing, aft er which the STOP instruction executes. Note that the value of the
program counter aft er the STOP instruction executes is 0023 and not 0022,
which is the address of the STOP instruction.

 Now you should see why increment comes before execute in the von
Neumann execution cycle. To store the return address on the run-time stack,
the CALL instruction needs to store the address of the instruction following
the CALL . It can do that only if the program counter has been incremented
before the CALL statement executes.

 Translating Call-by-Value Parameters
with Global Variables
 Th e allocation process when you call a void function in C is

 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

 At Level HOL6, the instructions that perform these operations on the stack
are hidden. Th e programmer simply writes the function call, and during
execution the stack pushes occur automatically.

 At the assembly level, however, the translated program must contain
explicit instructions for the pushes. Th e program in FIGURE 6.21 , which is
identical to the program in Figure 2 . 16, is a Level-HOL6 program that prints
a bar chart and the program’s corresponding Level-Asmb5 translation. It
shows the Level-Asmb5 statements, not explicit at Level HOL6, that are
required to push the parameters.

 Th e caller in main() is responsible for pushing the actual parameters
and executing CALL , which pushes the return address onto the stack. Th e
callee in printBar() is responsible for pushing storage on the stack for
its local variables. Aft er the callee executes, it must pop the storage for the

 Th e reason increment
must come before execute
in the von Neumann
execution cycle

 FIGURE 6 . 20
 The fi rst execution of
the RET instruction in
Figure 6.18.

(a) Before the first execution
 of RET.

000DPC

FB8DSP

FB8D

FB8F

001C

(b) After the first execution
 of RET.

001CPC

FB8FSP

FB8D

FB8F

001C

3136.3 Function Calls and Parameters

9781284079630_CH06_287_390.indd 313 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Push the actual parameters

• Push the return address

• Push storage for the local variables

To call a void function
in C

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Caller pushes actual parameters (executes SUBSP)

• Caller pushes return address (executes CALL)

• Callee allocates local variables (executes SUBSP)

• Callee executes its body.

• Callee pops local variables (executes ADDSP)

• Callee pops return address (executes RET)

• Caller pops actual parameters (executes ADDSP)

In assembly language

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Call-by-value with global
variables

• To get the actual parameter in the caller, generate
load with direct addressing (d)

• To get the formal parameter in the callee, generate
load with stack-relative addressing (s)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int numPts;
int value;
int j;

void printBar(int n) {
 int k;
 for (k = 1; k <= n; k++) {
 printf("*");
 }
 printf("\n");
}

int main() {
 scanf("%d", &numPts);
 for (j = 1; j <= numPts; j++) {
 scanf("%d", &value);
 printBar(value);
 }
 return 0;
}

Figure 6.21

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120034 BR main
0003 0000 numPts: .BLOCK 2 ;global variable #2d
0005 0000 value: .BLOCK 2 ;global variable #2d
0007 0000 j: .BLOCK 2 ;global variable #2d
 ;
 ;******* void printBar(int n)
 n: .EQUATE 4 ;formal parameter #2d
 k: .EQUATE 0 ;local variable #2d
0009 580002 printBar:SUBSP 2,i ;push #k
000C C00001 LDWA 1,i ;for (k = 1
000F E30000 STWA k,s
0012 A30004 for1: CPWA n,s ;k <= n
0015 1E002A BRGT endFor1
0018 D0002A LDBA '*',i ;printf("*")
001B F1FC16 STBA charOut,d
001E C30000 LDWA k,s ;k++)
0021 600001 ADDA 1,i
0024 E30000 STWA k,s
0027 120012 BR for1
002A D0000A endFor1: LDBA '\n',i ;printf("\n")
002D F1FC16 STBA charOut,d
0030 500002 ADDSP 2,i ;pop #k
0033 01 RET

Figure 6.21
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* main()
0034 310003 main: DECI numPts,d ;scanf("%d", &numPts)
0037 C00001 LDWA 1,i ;for (j = 1
003A E10007 STWA j,d
003D A10003 for2: CPWA numPts,d ;j <= numPts
0040 1E0061 BRGT endFor2
0043 310005 DECI value,d ;scanf("%d", &value)
0046 C10005 LDWA value,d ;move value
0049 E3FFFE STWA -2,s
004C 580002 SUBSP 2,i ;push #n
004F 240009 CALL printBar ;printBar(value)
0052 500002 ADDSP 2,i ;pop #n
0055 C10007 LDWA j,d ;j++)
0058 600001 ADDA 1,i
005B E10007 STWA j,d
005E 12003D BR for2
0061 00 endFor2: STOP
0062 .END

Figure 6.21
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Note the symmetry of the operations. Th e last three operations undo the
fi rst three operations in reverse order. Th at order is a consequence of the
last-in, fi rst-out property of the stack.

 Th e global variables in the Level-HOL6 main program— numPts ,
value , and j —correspond to the identical Level-Asmb5 symbols, whose
symbol values are 0003, 0005, and 0007, respectively. Th ese are the addresses
of the memory cells that will hold the run-time values of the global variables.

FIGURE 6.22(a) shows the global variables on the left with their symbols in
place of their addresses. Th e values for the global variables are the ones aft er

 scanf("%d", &value);

 executes for the fi rst time.
 What do the formal parameter, n , and the local variable, k , correspond

to at Level Asmb5? Not absolute addresses, but stack-relative addresses.
Procedure printBar defi nes them with

 n: .EQUATE 4 ;formal parameter #2d
 k: .EQUATE 0 ;local variable #2d

 Remember that .EQUATE does not generate object code. Th e assembler does
not reserve storage for them at translation time. Instead, storage for n and
k is allocated on the stack at run time. Th e decimal numbers 4 and 0 are
the stack off sets appropriate for n and k during execution of the procedure,
as Figure 6 . 22 (b) shows. Th e procedure refers to them with stack-relative
addressing.

 Th e statements that correspond to the procedure call in the caller are

0046 C10005 LDWA value,d
0049 E3FFFE STWA -2,s
004C 580002 SUBSP 2,i ;push #n
004F 240009 CALL printBar ;printBar(value)
0052 500002 ADDSP 2,i ;pop #n

 FIGURE 6 . 22
 Call-by-value parameters with global variables.

(a) After scanf("%d", &value). (b) After printBar(value).

12numPts

3value

1

0

2

4j

k

0052 retAddr

3 n

SP
12numPts

3value

1j n–2
SP

3value3value

316 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 316 29/01/16 8:29 am

Figure 6.22

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Call-by-value with local
variables

• To get the actual parameter in the caller, generate
load with stack-relative addressing (s)

• To get the formal parameter in the callee, generate
load with stack-relative addressing (s)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

void printBar(int n) {
 int k;
 for (k = 1; k <= n; k++) {
 printf("*");
 }
 printf("\n");
}

int main() {
 int numPts;
 int value;
 int j;
 scanf("%d", &numPts);
 for (j = 1; j <= numPts; j++) {
 scanf("%d", &value);
 printBar(value);
 }
 return 0;
}

Figure 6.23

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 12002E BR main
 ;
 ;******* void printBar(int n)
 n: .EQUATE 4 ;formal parameter #2d
 k: .EQUATE 0 ;local variable #2d
0003 580002 printBar:SUBSP 2,i ;push #k
0006 C00001 LDWA 1,i ;for (k = 1
0009 E30000 STWA k,s
000C A30004 for1: CPWA n,s ;k <= n
000F 1E0024 BRGT endFor1
0012 D0002A LDBA '*',i ;printf("*")
0015 F1FC16 STBA charOut,d
0018 C30000 LDWA k,s ;k++)
001B 600001 ADDA 1,i
001E E30000 STWA k,s
0021 12000C BR for1
0024 D0000A endFor1: LDBA '\n',i ;printf("\n")
0027 F1FC16 STBA charOut,d
002A 500002 ADDSP 2,i ;pop #k
002D 01 RET

Figure 6.23
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* main()
 numPts: .EQUATE 4 ;local variable #2d
 value: .EQUATE 2 ;local variable #2d
 j: .EQUATE 0 ;local variable #2d
002E 580006 main: SUBSP 6,i ;push #numPts #value #j
0031 330004 DECI numPts,s ;scanf("%d", &numPts)
0034 C00001 LDWA 1,i ;for (j = 1
0037 E30000 STWA j,s
003A A30004 for2: CPWA numPts,s ;j <= numPts
003D 1E005E BRGT endFor2
0040 330002 DECI value,s ;scanf("%d", &value)
0043 C30002 LDWA value,s ;move value
0046 E3FFFE STWA -2,s
0049 580002 SUBSP 2,i ;push #n
004C 240003 CALL printBar ;printBar(value)
004F 500002 ADDSP 2,i ;pop #n
0052 C30000 LDWA j,s ;j++)
0055 600001 ADDA 1,i
0058 E30000 STWA j,s
005B 12003A BR for2
005E 500006 endFor2: ADDSP 6,i ;pop #j #value #numPts
0061 00 STOP
0062 .END

Figure 6.23
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 In summary, to translate call-by-value parameters with local variables,
the compiler generates code as follows:

 ❯ To get the actual parameter in the caller, it generates a load instruction
with stack-relative addressing.

 ❯ To get the formal parameter in the callee, it generates a load
instruction with stack-relative addressing.

 Translating Non-void Function Calls
 Th e allocation process when you call a function is

 ❯ Push storage for the return value.
 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

 Allocation for a non-void function call diff ers from that for a procedure
(void function) call by the extra value that you must allocate for the returned
function value.

FIGURE 6.25 shows a program that computes a binomial coeffi cient
recursively and is identical to the one in Figure 2 . 28 . It is based on Pascal’s
triangle of coeffi cients (shown in Figure 2 . 27). Th e recursive defi nition of
the binomial coeffi cient is

 Th e translation rules for
call-by-value parameters
with local variables

1 if k = 0,
1 if n = k,
b(n − 1, k) + b(n − 1, k − 1) if 0 < k < n.
{b(n, k) =

 FIGURE 6 . 24
 The fi rst execution
of the function call in
Figure 6.23.

0 1 j

2 3 value

–2 n

4 12 numPts

(a) After scanf("%d", &value).

SP

(b) After printBar(value).

1 j

3 value

4 3 n

2 004F retAddr

0 k

12 numPts

SP

–2 n

FIGURE 6.25
A recursive nonvoid function at Level HOL6 and Level Asmb5. The C program is from Figure 2.28.

High-Order Language
#include <stdio.h>

int binCoeff(int n, int k) {
 int y1, y2;
 if ((k == 0) || (n == k)) {
 return 1;
 }

#include <stdio.h>

320 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 320 29/01/16 8:29 am

Figure 6.24

 In summary, to translate call-by-value parameters with local variables,
the compiler generates code as follows:

 ❯ To get the actual parameter in the caller, it generates a load instruction
with stack-relative addressing.

 ❯ To get the formal parameter in the callee, it generates a load
instruction with stack-relative addressing.

 Translating Non-void Function Calls
 Th e allocation process when you call a function is

 ❯ Push storage for the return value.
 ❯ Push the actual parameters.
 ❯ Push the return address.
 ❯ Push storage for the local variables.

 Allocation for a non-void function call diff ers from that for a procedure
(void function) call by the extra value that you must allocate for the returned
function value.

FIGURE 6.25 shows a program that computes a binomial coeffi cient
recursively and is identical to the one in Figure 2 . 28 . It is based on Pascal’s
triangle of coeffi cients (shown in Figure 2 . 27). Th e recursive defi nition of
the binomial coeffi cient is

 Th e translation rules for
call-by-value parameters
with local variables

1 if k = 0,
1 if n = k,
b(n − 1, k) + b(n − 1, k − 1) if 0 < k < n.
{b(n, k) =

 FIGURE 6 . 24
 The fi rst execution
of the function call in
Figure 6.23.

0 1 j

2 3 value

–2 n

4 12 numPts

(a) After scanf("%d", &value).

SP

(b) After printBar(value).

1 j

3 value

4 3 n

2 004F retAddr

0 k

12 numPts

SP

–2 n

FIGURE 6.25
A recursive nonvoid function at Level HOL6 and Level Asmb5. The C program is from Figure 2.28.

High-Order Language
#include <stdio.h>

int binCoeff(int n, int k) {
 int y1, y2;
 if ((k == 0) || (n == k)) {
 return 1;
 }

#include <stdio.h>

320 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 320 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Push storage for the return value

• Push the actual parameters

• Push the return address

• Push storage for the local variables

To call a non-void
function in C

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int binCoeff(int n, int k) {
 int y1, y2;
 if ((k == 0) || (n == k)) {
 return 1;
 }
 else {
 y1 = binCoeff(n - 1, k); // ra2
 y2 = binCoeff(n - 1, k - 1); // ra3
 return y1 + y2;
 }
}

int main() {
 printf("binCoeff(3, 1) = %d\n", binCoeff(3, 1)); // ra1
 return 0;
}

Figure 6.25

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 12006B BR main
 ;
 ;******* int binomCoeff(int n, int k)
 retVal: .EQUATE 10 ;return value #2d
 n: .EQUATE 8 ;formal parameter #2d
 k: .EQUATE 6 ;formal parameter #2d
 y1: .EQUATE 2 ;local variable #2d
 y2: .EQUATE 0 ;local variable #2d
0003 580004 binCoeff:SUBSP 4,i ;push #y1 #y2
0006 C30006 if: LDWA k,s ;if ((k == 0)
0009 180015 BREQ then
000C C30008 LDWA n,s ;|| (n == k))
000F A30006 CPWA k,s
0012 1A001F BRNE else
0015 C00001 then: LDWA 1,i ;return 1
0018 E3000A STWA retVal,s
001B 500004 ADDSP 4,i ;pop #y2 #y1
001E 01 RET

Figure 6.25
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

001F C30008 else: LDWA n,s ;move n - 1
0022 700001 SUBA 1,i
0025 E3FFFC STWA -4,s
0028 C30006 LDWA k,s ;move k
002B E3FFFA STWA -6,s
002E 580006 SUBSP 6,i ;push #retVal #n #k
0031 240003 CALL binCoeff ;binCoeff(n - 1, k)
0034 500006 ra2: ADDSP 6,i ;pop #k #n #retVal
0037 C3FFFE LDWA -2,s ;y1 = binomCoeff(n - 1, k)
003A E30002 STWA y1,s
003D C30008 LDWA n,s ;move n - 1
0040 700001 SUBA 1,i
0043 E3FFFC STWA -4,s
0046 C30006 LDWA k,s ;move k - 1
0049 700001 SUBA 1,i
004C E3FFFA STWA -6,s
004F 580006 SUBSP 6,i ;push #retVal #n #k
0052 240003 CALL binCoeff ;binomCoeff(n - 1, k - 1)
0055 500006 ra3: ADDSP 6,i ;pop #k #n #retVal
0058 C3FFFE LDWA -2,s ;y2 = binomCoeff(n - 1, k - 1)
005B E30000 STWA y2,s
005E C30002 LDWA y1,s ;return y1 + y2
0061 630000 ADDA y2,s
0064 E3000A STWA retVal,s
0067 500004 endIf: ADDSP 4,i ;pop #y2 #y1
006A 01 RET

Figure 6.25
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* main()
006B 49008D main: STRO msg,d ;printf("binCoeff(3, 1) = %d\n",
006E C00003 LDWA 3,i ;move 3
0071 E3FFFC STWA -4,s
0074 C00001 LDWA 1,i ;move 1
0077 E3FFFA STWA -6,s
007A 580006 SUBSP 6,i ;push #retVal #n #k
007D 240003 CALL binCoeff ;binCoeff(3, 1)
0080 500006 ra1: ADDSP 6,i ;pop #k #n #retVal
0083 3BFFFE DECO -2,s
0086 D0000A LDBA '\n',i
0089 F1FC16 STBA charOut,d
008C 00 STOP
008D 62696E msg: .ASCII "binCoeff(3, 1) = \x00"
 436F65
 666628
 332C20
 312920
 3D2000
009F .END

Figure 6.25
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e function tests for the base cases with an if statement, using the
OR Boolean operator. If neither base case is satisfi ed, it calls itself recursively
twice—once to compute b (n – 1, k) and once to compute b (n – 1, k – 1).
 Figure 2 . 29 shows the run-time stack produced by a call from the main
program with actual parameters (3, 1). Th e function is called twice more with
parameters (2, 1) and (1, 1), followed by a return. Th en a call with parameters
(1, 0) is executed, followed by a second return, and so on. FIGURE 6.26
shows the run-time stack at the assembly level immediately aft er the second
return. It corresponds directly to the Level-HOL6 diagram of Figure 2 . 29 (g).
Th e return address labeled ra2 in Figure 2 . 29 (g) is 0034 in Figure 6 . 26 , the
address of the instruction aft er the fi rst CALL in the function. Similarly, the
address labeled ra1 in Figure 2 . 29(g) is 0080 in Figure 6 . 26 .

 At the start of the main program when the stack pointer has its initial
value, the fi rst actual parameter has a stack off set of –4, and the second has
a stack off set of –6. In a procedure call (a void function), these off sets would
be –2 and –4, respectively. Th eir magnitudes are greater by 2 because of the
two-byte value returned on the stack by the function. Th e SUBSP instruction
at 007A allocates six bytes, two for the return value and two each for the
actual parameters.

 When the function returns control to ADDSP at 0080, the value it
returns will be on the stack below the two actual parameters. ADDSP pops
the parameters and return value by adding 6 to the stack pointer, aft er which
it points to the cell directly below the returned value. So DECO outputs the
value with stack-relative addressing and an off set of –2.

 Th e function calls itself by allocating actual parameters according to the
standard technique. For the fi rst recursive call, it computes n − 1 and k and
pushes those values onto the stack along with storage for the returned value.
Aft er the return, the sequence

0034 500006 ra2: ADDSP 6,i ;pop #k #n #retVal
0037 C3FFFE LDWA -2,s ;y1 = binomCoeff(n - 1, k)
003A E30002 STWA y1,s

 pops the two actual parameters and return value and assigns the return
value to y1. For the second call, it pushes n – 1 and k – 1 and assigns the
return value to y2 similarly.

 Translating Call-by-Reference Parameters
with Global Variables
 C provides call-by-reference parameters so that the called procedure can
change the value of the actual parameter in the calling procedure. Figure 2 . 20
shows a program at Level HOL6 that uses call by reference to put two global

 FIGURE 6 . 26
 The run-time stack
of Figure 6.25
immediately after
the second return.

1

1

0034

1

2

2

0080

1

3

SP 0

2

4

6

8

10

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

3236.3 Function Calls and Parameters

9781284079630_CH06_287_390.indd 323 29/01/16 8:29 am

Figure 6.26

Figure 2.29(g)

(a) Begin (b) Call BC (3, 1) (c) Call BC (2, 1) (d) Call BC (1, 1)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

2

1

3

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

1

1

2

1

3

y2

y1

retAddr

k

n

retVal

1

3

ra1

ra2

ra1

ra2

ra2

ra1

(e) Return

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

2

1

3

ra2

ra1

(f) Call BC (1, 0)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

0

1

1

1

1

2

1

3

(g) Return (h) Return

y2

y1

retAddr

k

n

retVal

2

1

3

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

1

1

1

2

2

1

3

ra3

ra2

ra1

ra2

ra1 ra1

(i) Call BC (2, 0)

y2

y1

retAddr

k

n

retVal

y2

y1

retAddr

k

n

retVal

0

2

1

2

1

3

(j) Return

y2

y1

retAddr

k

n

retVal

1

2

1

3

3

(k) Return

ra3

ra1 ra1

 FIGURE 2 . 29
 The run-time stack for Figure 2.28.

k1

912.4 Recursion

9781284079630_CH02_053_114.indd 91 29/01/16 8:30 am

Figure 6.26

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Stack-relative deferred
addressing

• Oprnd = Mem[Mem[SP + OprndSpec]]

• Asmb5 letters: sf

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Call-by-reference with
global variables

• To get the actual parameter in the caller, generate
load with immediate addressing (i)

• To get the formal parameter x in the callee,
generate load with stack-relative addressing (s)

• To get the dereferenced formal parameter *x in the
callee, generate load with stack-relative deferred
addressing (sf)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int a, b;  

void swap(int *r, int *s) {
 int temp;
 temp = *r;
 *r = *s;
 *s = temp;
}

void order(int *x, int *y) {
 if (*x > *y) {
 swap(x, y);
 } // ra2
}

Figure 6.27

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
int main() {
 printf("Enter an integer: ");
 scanf("%d", &a);
 printf("Enter an integer: ");
 scanf("%d", &b);
 order (&a, &b);
 printf("Ordered they are: %d, %d\n", a, b); // ra1
 return 0;
}
 

Figure 6.27
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 12003F BR main
0003 0000 a: .BLOCK 2 ;global variable #2d
0005 0000 b: .BLOCK 2 ;global variable #2d
 ;
 ;******* void swap(int *r, int *s)
 r: .EQUATE 6 ;formal parameter #2h
 s: .EQUATE 4 ;formal parameter #2h
 temp: .EQUATE 0 ;local variable #2d
0007 580002 swap: SUBSP 2,i ;push #temp
000A C40006 LDWA r,sf ;temp = *r
000D E30000 STWA temp,s
0010 C40004 LDWA s,sf ;*r = *s
0013 E40006 STWA r,sf
0016 C30000 LDWA temp,s ;*s = temp
0019 E40004 STWA s,sf
001C 500002 ADDSP 2,i ;pop #temp
001F 01 RET
 

Figure 6.27
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* void order(int *x, int *y)
 x: .EQUATE 4 ;formal parameter #2h
 y: .EQUATE 2 ;formal parameter #2h
0020 C40004 order: LDWA x,sf ;if (*x > *y)
0023 A40002 CPWA y,sf
0026 14003E BRLE endIf
0029 C30004 LDWA x,s ;move x
002C E3FFFE STWA -2,s
002F C30002 LDWA y,s ;move y
0032 E3FFFC STWA -4,s
0035 580004 SUBSP 4,i ;push #r #s
0038 240007 CALL swap ;swap(x, y)
003B 500004 ADDSP 4,i ;pop #s #r
003E 01 endIf: RET
 

Figure 6.27
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* main()
003F 490073 main: STRO msg1,d ;printf("Enter an integer: ")
0042 310003 DECI a,d ;scanf("%d", &a)
0045 490073 STRO msg1,d ;printf("Enter an integer: ")
0048 310005 DECI b,d ;scanf("%d", &b)
004B C00003 LDWA a,i ;move &a
004E E3FFFE STWA -2,s
0051 C00005 LDWA b,i ;move &b
0054 E3FFFC STWA -4,s
0057 580004 SUBSP 4,i ;push #x #y
005A 240020 CALL order ;order(&a, &b)
005D 500004 ra1: ADDSP 4,i ;pop #y #x
0060 490086 STRO msg2,d ;printf("Ordered they are: %d, %d\n"
0063 390003 DECO a,d ;, a
0066 490099 STRO msg3,d
0069 390005 DECO b,d ;, b)
006C D0000A LDBA '\n',i
006F F1FC16 STBA charOut,d
0072 00 STOP
0073 456E74 msg1: .ASCII "Enter an integer: \x00"
 ...
0086 4F7264 msg2: .ASCII "Ordered they are: \x00"
 ...
0099 2C2000 msg3: .ASCII ", \x00"
009C .END

Figure 6.27
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 It must load the value of *r into the accumulator and then store it in
temp. Because it is loading *r instead of r, it uses stack-relative deferred
addressing instead of stack-relative addressing. Th e compiler generates the
following object code to translate the assignment statement:

 000A C40006 LDWA r,sf ;temp = *r
000D E30000 STWA temp,s

 Th e next assignment statement in procedure swap()

 *r = *s;

 has the * dereference operator on both variables. Consequently, the compiler
generates LDWA and STWA both with stack-relative deferred addressing.

0010 C40004 LDWA s,sf ;*r = *s
0013 E40006 STWA r,sf

FIGURE 6.28 shows the run-time stack at Level HOL6 and Level Asmb5.
Th e address of a is 0003, which main() pushes onto the run-time stack for
formal parameter x when it calls order() . Procedure order() pushes the
same address onto the run-time stack when it calls procedure swap() .

 In summary, to translate call-by-reference parameters with global
variables, the compiler generates code as follows:

 ❯ To get the actual parameter in the caller, it generates a load instruction
with immediate addressing.

 ❯ To get the formal parameter x in the callee, it generates a load
instruction with stack-relative addressing.

 ❯ To get the dereferenced formal parameter *x in the callee, it generates
a load instruction with stack-relative deferred addressing.

 Th e translation rules
for call-by-reference
 parameters with global
variables

 FIGURE 6 . 28
 The run-time stack for Figure 6.27 at Level HOL6 and Level Asmb5.

(a) The run-time stack at Level HOL6.

ra1 retAddr

yb 4

r

s

ra2 retAddr

temp

xa 7

(b) The run-time stack at Level Asmb5.

005D

0005

0003

retAddr

yb 4

r

s

003B

0005

0003

retAddr

temp

xa 7

0005

0003

SP 0

2

4

6

328 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 328 29/01/16 8:29 am

Figure 6.28

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Instruction specifier: 0000 0011

• Mnemonic: MOVSPA

• Accumulator gets the stack pointer

The move-SP-to-
accumulator instruction

A SP

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Call-by-reference with
local variables

• To get the actual parameter in the caller, generate
the unary MOVSPA followed by ADDA with
immediate addressing (i)

• To get the formal parameter x in the callee,
generate load with stack-relative addressing (s)

• To get the dereferenced formal parameter *x in the
callee, generate load with stack-relative deferred
addressing (sf)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

void rect(int *p, int w, int h) {
 *p = (w + h) * 2;
}

int main() {
 int perim, width, height;
 printf("Enter width: ");
 scanf("%d", &width);
 printf("Enter height: ");
 scanf("%d", &height);
 rect(&perim, width, height);
 // ra1
 printf("Perimeter = %d\n", perim);
 return 0;
}

Figure 6.29

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 12000E BR main
 ;
 ;******* void rect(int *p, int w, int h)
 p: .EQUATE 6 ;formal parameter #2h
 w: .EQUATE 4 ;formal parameter #2d
 h: .EQUATE 2 ;formal parameter #2d
0003 C30004 rect: LDWA w,s ;*p = (w + h) * 2
0006 630002 ADDA h,s
0009 0A ASLA
000A E40006 STWA p,sf
000D 01 RET
 

Figure 6.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* main()
 perim: .EQUATE 4 ;local variable #2d
 width: .EQUATE 2 ;local variable #2d
 height: .EQUATE 0 ;local variable #2d
000E 580006 main: SUBSP 6,i ;push #perim #width #height
0011 490049 STRO msg1,d ;printf("Enter width: ")
0014 330002 DECI width,s ;scanf("%d", &width)
0017 490057 STRO msg2,d ;printf("Enter height: ")
001A 330000 DECI height,s ;scanf("%d", &height)
001D 03 MOVSPA ;move &perim
001E 600004 ADDA perim,i
0021 E3FFFE STWA -2,s
0024 C30002 LDWA width,s ;move width
0027 E3FFFC STWA -4,s
002A C30000 LDWA height,s ;move height
002D E3FFFA STWA -6,s
0030 580006 SUBSP 6,i ;push #p #w #h
0033 240003 CALL rect ;rect(&perim, width, height)
0036 500006 ra1: ADDSP 6,i ;pop #h #w #p
0039 490066 STRO msg3,d ;printf("Perimeter = %d\n", perim);
003C 3B0004 DECO perim,s
003F D0000A LDBA '\n',i
0042 F1FC16 STBA charOut,d
0045 500006 ADDSP 6,i ;pop #height #width #perim
0048 00 STOP

Figure 6.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0049 456E74 msg1: .ASCII "Enter width: \x00"
 657220
 776964
 74683A
 2000
0057 456E74 msg2: .ASCII "Enter height: \x00"
 657220
 686569
 676874
 3A2000
0066 506572 msg3: .ASCII "Perimeter = \x00"
 696D65
 746572
 203D20
 00
0073 .END

Figure 6.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

a procedure (a void function) named rect(), passing width and height
by value and perim by reference. Th e fi gure shows the input and output
when the user enters 8 for the width and 5 for the height.

 FIGURE 6.30 shows the run-time stack at Level HOL6 for the program.
Compare it to Figure 6 . 28 (a) for a program with global variables that are
called by reference. In that program, formal parameters x , y , r , and s refer to
global variables a and b . At Level Asmb5, a and b are allocated at translation
time with the .EQUATE dot command. Th eir symbols are their addresses.
However, Figure 6 . 30 shows perim to be allocated on the run-time stack.
Th e statement

 000E 580006 main: SUBSP 6,i

 allocates storage for perim, whose symbol is defi ned by

 perim: .EQUATE 4 ;local variable #2d

 Its symbol is not its absolute address. Its symbol is its address relative to the
top of the run-time stack, as FIGURE 6.31(a) shows. Its absolute address is
FB8D. Why? Because that is the location of the bottom of the application
run-time stack, as the memory map in Figure 4 . 41 shows.

 So, the compiler cannot generate code to push parameter perim with

 LDWA perim,i
 STWA -2,s

 as it does for global variables. If it generated those instructions, procedure
rect() would modify the content of Mem[0004], and 0004 is not where
perim is located.

 FIGURE 6 . 30
 The run-time stack
for Figure 6.29 at
Level HOL6.

5

8

height

width

p

w

5

ra1

8

h

retAddr

perim

 FIGURE 6 . 31
 The run-time stack for Figure 6.29 at Level Asmb5.

SP 0 5 height

2 8 width

–2 p

–4 w

–6 h

4

FB89

FB8B

FB8D perim

(a) Before the procedure call.

5 height

8 width

FB89

6 FB8D pFB87

4 8 wFB85

2 5 hFB83

SP 0 0036 retAddrFB81

FB8B

FB8D perim

(b) After the procedure call.

3316.3 Function Calls and Parameters

9781284079630_CH06_287_390.indd 331 29/01/16 8:29 am

Figure 6.30

Stack at level HOL6

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

a procedure (a void function) named rect(), passing width and height
by value and perim by reference. Th e fi gure shows the input and output
when the user enters 8 for the width and 5 for the height.

 FIGURE 6.30 shows the run-time stack at Level HOL6 for the program.
Compare it to Figure 6 . 28 (a) for a program with global variables that are
called by reference. In that program, formal parameters x , y , r , and s refer to
global variables a and b . At Level Asmb5, a and b are allocated at translation
time with the .EQUATE dot command. Th eir symbols are their addresses.
However, Figure 6 . 30 shows perim to be allocated on the run-time stack.
Th e statement

 000E 580006 main: SUBSP 6,i

 allocates storage for perim, whose symbol is defi ned by

 perim: .EQUATE 4 ;local variable #2d

 Its symbol is not its absolute address. Its symbol is its address relative to the
top of the run-time stack, as FIGURE 6.31(a) shows. Its absolute address is
FB8D. Why? Because that is the location of the bottom of the application
run-time stack, as the memory map in Figure 4 . 41 shows.

 So, the compiler cannot generate code to push parameter perim with

 LDWA perim,i
 STWA -2,s

 as it does for global variables. If it generated those instructions, procedure
rect() would modify the content of Mem[0004], and 0004 is not where
perim is located.

 FIGURE 6 . 30
 The run-time stack
for Figure 6.29 at
Level HOL6.

5

8

height

width

p

w

5

ra1

8

h

retAddr

perim

 FIGURE 6 . 31
 The run-time stack for Figure 6.29 at Level Asmb5.

SP 0 5 height

2 8 width

–2 p

–4 w

–6 h

4

FB89

FB8B

FB8D perim

(a) Before the procedure call.

5 height

8 width

FB89

6 FB8D pFB87

4 8 wFB85

2 5 hFB83

SP 0 0036 retAddrFB81

FB8B

FB8D perim

(b) After the procedure call.

3316.3 Function Calls and Parameters

9781284079630_CH06_287_390.indd 331 29/01/16 8:29 am

Figure 6.31

Stack at level Asmb5

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

true: .EQUATE 1

false: .EQUATE 0

Boolean types

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
#include <stdbool.h>

const int LOWER = 21;
const int UPPER = 65;

bool inRange(int a) {
 if ((LOWER <= a) && (a <= UPPER)) {
 return true;
 }
 else {
 return false;
 }
}

int main() {
 int age;
 scanf("%d", &age);
 if (inRange(age)) {
 printf("Qualified\n");
 }
 else {
 printf("Unqualified\n");
 }
 return 0;
}

Figure 6.32

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120023 BR main
 true: .EQUATE 1
 false: .EQUATE 0
 ;
 LOWER: .EQUATE 21 ;const int
 UPPER: .EQUATE 65 ;const int
 ;
 ;******* bool inRange(int a)
 retVal: .EQUATE 4 ;returned value #2d
 a: .EQUATE 2 ;formal parameter #2d
0003 C00015 inRange: LDWA LOWER,i ;if ((LOWER <= a)
0006 A30002 if: CPWA a,s
0009 1E001C BRGT else
000C C30002 LDWA a,s ;&& (a <= UPPER))
000F A00041 CPWA UPPER,i
0012 1E001C BRGT else
0015 C00001 then: LDWA true,i ;return true
0018 E30004 STWA retVal,s
001B 01 RET
001C C00000 else: LDWA false,i ;return false
001F E30004 STWA retVal,s
0022 01 RET

Figure 6.32
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* main()
 age: .EQUATE 0 ;local variable #2d
0023 580002 main: SUBSP 2,i ;push #age
0026 330000 DECI age,s ;scanf("%d", &age)
0029 C30000 LDWA age,s ;move age
002C E3FFFC STWA -4,s
002F 580004 SUBSP 4,i ;push #retVal #a
0032 240003 CALL inRange ;inRange(age)
0035 500004 ADDSP 4,i ;pop #a #retVal
0038 C3FFFE LDWA -2,s ;if (inRange(age))
003B 180044 BREQ else2
003E 49004B then2: STRO msg1,d ;printf("Qualified\n")
0041 120047 BR endif2
0044 490056 else2: STRO msg2,d ;printf("Unqualified\n");
0047 500002 endif2: ADDSP 2,i ;pop #age
004A 00 STOP
004B 517561 msg1: .ASCII "Qualified\n\x00"
 ...
0056 556E71 msg2: .ASCII "Unqualified\n\x00"
 ...
0063 .END

Figure 6.32
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 If q is false, it has the representation 0000 (hex), and 0000 XOR 0001 equals
0001, as desired. Also, if q is true, it has the representation 0001 (hex), and
0001 XOR 0001 equals 0000.

 Th e type bool was not included in the C-language standard library
until 1999. Older compilers use the convention that the Boolean operators
operate on integers. Th ey interpret the integer value 0 as false and any
nonzero integer value as true. To preserve backward compatibility, current
C compilers maintain this convention.

6.4 Indexed Addressing and Arrays
 A variable at Level HOL6 is a memory cell at Level ISA3. A variable at Level
HOL6 is referred to by its name; at Level ISA3, by its address. A variable at
Level Asmb5 can be referred to by its symbolic name, but the value of that
symbol is the address of the cell in memory.

 What about an array of values? An array contains many elements, and
so consists of many memory cells. Th e memory cells of the elements are
contiguous; that is, they are adjacent to one another. An array at Level HOL6
has a name. At Level Asmb5, the corresponding symbol is the address of the
fi rst cell of the array. Th is section shows how the compiler translates source
programs that allocate and access elements of one-dimensional arrays. It
does so with several forms of indexed addressing.

FIGURE 6.33 summarizes all the Pep/9 addressing modes. Previous
programs illustrate immediate, direct, stack-relative, and stack-relative

 At Level Asmb5, the value
of the symbol of an array is
the address of the fi rst cell
of the array.

FIGURE 6.33
The Pep/9 addressing modes.

Addressing Mode aaa Letters Operand

Immediate 000 i OprndSpec

Direct 001 d Mem[OprndSpec]

Indirect 010 n Mem[Mem[OprndSpec]]

Stack-relative 011 s Mem[SP + OprndSpec]

Stack-relative deferred 100 sf Mem[Mem[SP + OprndSpec]]

Indexed 101 x Mem[OprndSpec + X]

Stack-indexed 110 sx Mem[SP + OprndSpec + X]

Stack-deferred indexed 111 sfx Mem[Mem[SP + OprndSpec] + X]

Immediate 000 i OprndSpec

336 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 336 29/01/16 8:29 am

Figure 6.33

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = Mem[OprndSpec + X]

• Asmb5 letter: x

Indexed addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Allocate number of bytes with .BLOCK tot,
where tot is the total number of bytes
occupied by the array

• To get element v[i], load i into index
register, multiply i by number of bytes per
cell, (ASLX in the case of an array of
integers), and use indexed addressing (x)

Global arrays

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int vector[4];
int j;

int main() {
 for (j = 0; j < 4; j++) {
 scanf("%d", &vector[j]);
 }
 for (j = 3; j >= 0; j--) {
 printf("%d %d\n", j, vector[j]);
 }
 return 0;
}

Figure 6.34

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 12000D BR main
0003 000000 vector: .BLOCK 8 ;global variable #2d4a
 000000
 0000
000B 0000 j: .BLOCK 2 ;global variable #2d
 ;
 ;******* main()
000D C80000 main: LDWX 0,i ;for (j = 0
0010 E9000B STWX j,d
0013 A80004 for1: CPWX 4,i ;j < 4
0016 1C0029 BRGE endFor1
0019 0B ASLX ;two bytes per integer
001A 350003 DECI vector,x ;scanf("%d", &vector[j])
001D C9000B LDWX j,d ;j++)
0020 680001 ADDX 1,i
0023 E9000B STWX j,d
0026 120013 BR for1

Figure 6.34
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0029 C80003 endFor1: LDWX 3,i ;for (j = 3
002C E9000B STWX j,d
002F A80000 for2: CPWX 0,i ;j >= 0
0032 160054 BRLT endFor2
0035 39000B DECO j,d ;printf("%d %d\n", j, vector[j])
0038 D00020 LDBA ' ',i
003B F1FC16 STBA charOut,d
003E 0B ASLX ;two bytes per integer
003F 3D0003 DECO vector,x
0042 D0000A LDBA '\n',i
0045 F1FC16 STBA charOut,d
0048 C9000B LDWX j,d ;j--)
004B 780001 SUBX 1,i
004E E9000B STWX j,d
0051 12002F BR for2
0054 00 endFor2: STOP
0055 .END
 

Figure 6.34
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 6.35 shows the memory allocation for integer j and array
 vector . As with all global integers, the compiler translates

 int j;

 at Level HOL6 as the following statement at Level Asmb5:

 000B 0000 j: .BLOCK 2 ;global variable #2d

 Th e compiler translates

 int vector[4];

 at Level HOL6 as the following statement at Level Asmb5:

 0003 000000 vector: .BLOCK 8 ;global variable #2d4a
 000000
 0000

 It allocates eight bytes because the array contains four integers, each of
which is two bytes. Figure 6 . 35 shows that 0003 is the address of the fi rst
element of the array. Th e second element is at 0005, and each element is at
an address two bytes greater than the previous element.

 Format trace tags for arrays specify how many cells are in the array as
well as the number of bytes. You should read the format trace tag #2d4a
as “two byte decimal, four cell array.” With this specifi cation, the Pep/9
debugger will produce a fi gure similar to that of Figure 6 . 35 with each array
cell individually labeled.

 Th e compiler translates the fi rst for statement

 for (j = 0; j < 4; j++)

 as usual. It accesses j with direct addressing because j is a global variable. But
how does it access vector[j]? It cannot simply use direct addressing, because
the value of symbol vector is the address of the fi rst element of the array. If
the value of j is 2, it should access the third element of the array, not the fi rst.

 Th e answer is that it uses indexed addressing. With indexed addressing,
the CPU computes the operand as

 Oprnd = Mem[OprndSpec + X]

 It adds the operand specifi er and the index register and uses the sum as the
address in main memory from which it fetches the operand.

 In Figure 6 . 34 , the compiler translates

 scanf("%d", &vector[j]);

 Format trace tags for arrays

 Indexed addressing

 FIGURE 6 . 35
 Memory allocation
for the global array
of Figure 6.34.

0003 vector[0]

0005 vector[1]

0007 vector[2]

0009 vector[3]

000B j

0003 vector[0]

3396.4 Indexed Addressing and Arrays

9781284079630_CH06_287_390.indd 339 29/01/16 8:29 am

Figure 6.35

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = Mem[SP + OprndSpec + X]

• Asmb5 letters: sx

Stack-indexed
addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Allocate number of bytes with SUBSP tot,
with immediate addressing, where tot is the
total number of bytes occupied by the array

• To get element v[i], load i into index
register, multiply i by number of bytes per
cell, (ASLX in the case of an an array of
integers), and use stack-indexed addressing
(sx)

Local arrays

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int main() {
 int vector[4];
 int j;
 for (j = 0; j < 4; j++) {
 scanf("%d", &vector[j]);
 }
 for (j = 3; j >= 0; j--) {
 printf("%d %d\n", j, vector[j]);
 }
 return 0;
}

Figure 6.36

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120003 BR main
 ;
 ;******* main ()
 vector: .EQUATE 2 ;local variable #2d4a
 j: .EQUATE 0 ;local variable #2d
0003 58000A main: SUBSP 10,i ;push #vector #j
0006 C80000 LDWX 0,i ;for (j = 0
0009 EB0000 STWX j,s
000C A80004 for1: CPWX 4,i ;j < 4
000F 1C0022 BRGE endFor1
0012 0B ASLX ;two bytes per integer
0013 360002 DECI vector,sx ;scanf("%d", &vector[j])
0016 CB0000 LDWX j,s ;j++)
0019 680001 ADDX 1,i
001C EB0000 STWX j,s
001F 12000C BR for1

Figure 6.36
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0022 C80003 endFor1: LDWX 3,i ;for (j = 3
0025 EB0000 STWX j,s
0028 A80000 for2: CPWX 0,i ;j >= 0
002B 16004D BRLT endFor2
002E 3B0000 DECO j,s ;printf("%d %d\n", j, vector[j])
0031 D00020 LDBA ' ',i
0034 F1FC16 STBA charOut,d
0037 0B ASLX ;two bytes per integer
0038 3E0002 DECO vector,sx
003B D0000A LDBA '\n',i
003E F1FC16 STBA charOut,d
0041 CB0000 LDWX j,s ;j--)
0044 780001 SUBX 1,i
0047 EB0000 STWX j,s
004A 120028 BR for2
004D 50000A endFor2: ADDSP 10,i ;pop #j #vector
0050 00 STOP
0051 .END

Figure 6.36
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company
 where 2 is the stack-relative address of the fi rst cell of vector and 0 is the
stack-relative address of j as Figure 6 . 37 shows.

 How does the compiler access vector[j] ? It cannot use indexed
addressing, because the value of symbol vector is not the address of the
fi rst element of the array. It uses stack-indexed addressing. With stack-
indexed addressing, the CPU computes the operand as

 Oprnd = Mem[SP + OprndSpec + X]

 It adds the stack pointer plus the operand specifi er plus the index register
and uses the sum as the address in main memory from which it fetches the
operand.

 In Figure 6 . 36 , the compiler translates

 scanf("%d", &vector[j]);

 at Level HOL6 as

0012 0B ASLX ;two bytes per integer
0013 360002 DECI vector,sx ;scanf("%d", &vector[j])

 at Level Asmb5. As in the previous program, this is an optimized translation.
A nonoptimizing compiler would generate the following code:

 LDWX j,d
 ASLX
 DECI vector,sx

 Suppose the value of j is 2. LDWX puts the value of j in the index register.
ASLX multiplies the 2 times 2, leaving 4 in the index register. DECI uses
stack-indexed addressing. So, the operand is computed as

 Mem[SP + OprndSpec + X]
 Mem[FB85 + 2 + 4]
 Mem[FB8B]

 Stack-indexed addressing

 FIGURE 6 . 37
 Memory allocation for the local array of Figure 6.36.

FB85 j

vector[0]

vector[1]

vector[2]

vector[3]

SP 0

FB872

FB894

FB8B6

FB8D8

3436.4 Indexed Addressing and Arrays

9781284079630_CH06_287_390.indd 343 29/01/16 8:29 am

Figure 6.37

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = Mem [Mem[SP + OprndSpec] + X]

• Asmb5 letters: sfx

Stack-deferred indexed
addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• To get the actual parameter in the caller,
generate the unary MOVSPA followed by
ADDA with immediate addressing (i)

• To get element v[i] in the callee, load i
into index register, multiply i by number of
bytes per cell, (ASLX in the case of an an
array of integers), and use stack-deferred
indexed addressing (sfx)

Passing a local array as a
parameter

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

void getVect(int v[], int *n) {
 int j;
 scanf("%d", n);
 for (j = 0; j < *n; j++) {
 scanf("%d", &v[j]);
 }
}

void putVect(int v[], int n) {
 int j;
 for (j = 0; j < n; j++) {
 printf("%d ", v[j]);
 }
 printf("\n");
}

int main() {
 int vector[8];
 int numItms;
 getVect(vector, &numItms);
 putVect(vector, numItms);
 return 0;
}

Figure 6.38

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120058 BR main
 ;
 ;******* getVect(int v[], int *n)
 v: .EQUATE 6 ;formal parameter #2h
 n: .EQUATE 4 ;formal parameter #2h
 j: .EQUATE 0 ;local variable #2d
0003 580002 getVect: SUBSP 2,i ;push #j
0006 340004 DECI n,sf ;scanf("%d", n)
0009 C80000 LDWX 0,i ;for (j = 0
000C EB0000 STWX j,s
000F AC0004 for1: CPWX n,sf ;j < *n
0012 1C0025 BRGE endFor1
0015 0B ASLX ;two bytes per integer
0016 370006 DECI v,sfx ;scanf("%d", &v[j])
0019 CB0000 LDWX j,s ;j++)
001C 680001 ADDX 1,i
001F EB0000 STWX j,s
0022 12000F BR for1
0025 500002 endFor1: ADDSP 2,i ;pop #j
0028 01 RET

Figure 6.38
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* putVect(int v[], int n)
 v2: .EQUATE 6 ;formal parameter #2h
 n2: .EQUATE 4 ;formal parameter #2d
 j2: .EQUATE 0 ;local variable #2d
0029 580002 putVect: SUBSP 2,i ;push #j2
002C C80000 LDWX 0,i ;for (j = 0
002F EB0000 STWX j2,s
0032 AB0004 for2: CPWX n2,s ;j < n
0035 1C004E BRGE endFor2
0038 0B ASLX ;two bytes per integer
0039 3F0006 DECO v2,sfx ;printf("%d ", v[j])
003C D00020 LDBA ' ',i
003F F1FC16 STBA charOut,d
0042 CB0000 LDWX j2,s ;j++)
0045 680001 ADDX 1,i
0048 EB0000 STWX j2,s
004B 120032 BR for2
004E D0000A endFor2: LDBA '\n',i ;printf("\n")
0051 F1FC16 STBA charOut,d
0054 500002 ADDSP 2,i ;pop #j2
0057 01 RET

Figure 6.38
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* main()
 vector: .EQUATE 2 ;local variable #2d8a
 numItms: .EQUATE 0 ;local variable #2d
0058 580012 main: SUBSP 18,i ;push #vector #numItms
005B 03 MOVSPA ;move (&)vector
005C 600002 ADDA vector,i
005F E3FFFE STWA -2,s
0062 03 MOVSPA ;move &numItms
0063 600000 ADDA numItms,i
0066 E3FFFC STWA -4,s
0069 580004 SUBSP 4,i ;push #v #n
006C 240003 CALL getVect ;getVect(vector, &numItms)
006F 500004 ADDSP 4,i ;pop #n #v
0072 03 MOVSPA ;move (&)vector
0073 600002 ADDA vector,i
0076 E3FFFE STWA -2,s
0079 C30000 LDWA numItms,s ;move numItms
007C E3FFFC STWA -4,s
007F 580004 SUBSP 4,i ;push #v2 #n2
0082 240029 CALL putVect ;putVect(vector, numItms)
0085 500004 ADDSP 4,i ;pop #n2 #v2
0088 500012 ADDSP 18,i ;pop #numItms #vector
008B 00 STOP
008C .END

Figure 6.38
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Even though the fi rst actual parameter in C is vector and not &vector,
the compiler nevertheless writes code to push the address of v with the
MOVSPA and ADDA instructions. As usual, the second actual parameter
&numItms has the address operator & prefi xed so the compiler will push
its address the same way. Remember that arrays in C are a special case and
are called by reference by default without using the & addressing operator in
the actual parameter list. Figure 6 . 39 (b) shows v with FB7F, the address of
vector[0], as well as n with FB79, the address of numItms.

 Figure 6 . 39 (b) also shows the stack off sets for the parameters and local
variables in getVect() . Th e compiler defi nes the symbols

 v: .EQUATE 6 ;formal parameter #2h
 n: .EQUATE 4 ;formal parameter #2h
 j: .EQUATE 0 ;local variable #2d

 accordingly. It translates the input statement as

 0006 340004 DECI n,sf ;scanf("%d", n)

 where stack-relative deferred addressing is used because n is called by
reference and the address of n is on the stack.

 But how does the compiler translate

 scanf("%d", &v[j]);

 FIGURE 6 . 39
 The run-time stack for the program of Figure 6.38.

vector[7]16

vector[6]14

vector[5]12

vector[4]10

vector[3]8

vector[2]6

vector[1]4

vector[0]2

numItms0

v–2

nFB79

FB7B

FB7D

FB7F

FB81

FB83

FB85

FB87

FB89

FB8B

FB8D

–4

vector[7]

vector[6]

vector[5]

vector[4]

vector[3]

vector[2]

vector[1]

vector[0]

numItms

v6

n4

retAddr006F

FB7D

FB7F

2

jFB75

FB77

FB79

FB7B

FB7D

FB7F

FB81

FB83

FB85

FB87

FB89

FB8B

FB8D

0

(a) Before calling getVect(). (b) After calling getVect().

SP

SP

348 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 348 29/01/16 8:29 am

Figure 6.39

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• To get the actual parameter in the caller,
generate the LDWA with immediate
addressing (i)

• To get element v[i] in the callee, load i
into index register, multiply i by number of
bytes per cell, (ASLX in the case of an an
array of integers), and use stack-deferred
indexed addressing (sfx)

Passing a global array as
a parameter

(No example program)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Every .ADDRSS command must be
followed by a symbol

• The code generated by .ADDRSS is the
value of the symbol

.ADDRSS

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Set up a jump table with .ADDRSS

• Use LDWX to load the index register with
the switch value

• Execute ASLX once, because an address
occupies two bytes

• Execute BR with indexed addressing (x)

The switch statement

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

int main() {
 int guess;
 printf("Pick a number 0..3: ");
 scanf("%d", &guess);
 switch (guess) {
 case 0: printf("Not close\n"); break;
 case 1: printf("Close\n"); break;
 case 2: printf("Right on\n"); break;
 case 3: printf("Too high\n");
 }
 return 0;
}

Figure 6.40

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120003 BR main
 ;
 ;******* main()
 guess: .EQUATE 0 ;local variable #2d
0003 580002 main: SUBSP 2,i ;push #guess
0006 490034 STRO msgIn,d ;printf("Pick a number 0..3: ")
0009 330000 DECI guess,s ;scanf("%d", &guess)
000C CB0000 LDWX guess,s ;switch (guess)
000F 0B ASLX ;two bytes per address
0010 130013 BR guessJT,x
0013 001B guessJT: .ADDRSS case0
0015 0021 .ADDRSS case1
0017 0027 .ADDRSS case2
0019 002D .ADDRSS case3
001B 490049 case0: STRO msg0,d ;printf("Not close\n")
001E 120030 BR endCase ;break
0021 490054 case1: STRO msg1,d ;printf("Close\n")
0024 120030 BR endCase ;break
0027 49005B case2: STRO msg2,d ;printf("Right on\n")
002A 120030 BR endCase ;break
002D 490065 case3: STRO msg3,d ;printf("Too high\n")
0030 500002 endCase: ADDSP 2,i ;pop #guess
0033 00 STOP

Figure 6.40
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0034 506963 msgIn: .ASCII "Pick a number 0..3: \x00"
 ...
0049 4E6F74 msg0: .ASCII "Not close\n\x00"
 ...
0054 436C6F msg1: .ASCII "Close\n\x00"
 ...
005B 526967 msg2: .ASCII "Right on\n\x00"
 ...
0065 546F6F msg3: .ASCII "Too high\n\x00"
 ...
006F .END

Symbol table

Symbol Value Symbol Value

case0 001B case1 0021
case2 0027 case3 002D
endCase 0030 guess 0000
guessJT 0013 main 0003
msg0 0049 msg1 0054
msg2 005B msg3 0065
msgIn 0034

Figure 6.40
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Register

• Immediate

• Direct

• Base

Intel x86 addressing
modes

• Base + Displacement

• Index + Displacement

• Scaled Index + Displacement

• Based Index

• Based Scaled Index

• Based Index + Displacement

• Based Scaled Index + Displacement

• PC Relative

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 6.41

the content of the EAX register with 42 (dec), which is
2A (hex), which is the ASCII character *. As with Pep/9,
a semicolon is the beginning of a comment, which
the compiler produced for the listing. Hexadecimal
constants terminate with the letter H. Th e je instruction
is jump if equal, which is equivalent to the Pep/9 BREQ
instruction. Th e compiler generates the symbol $LN3@
main as the target of the branch, which it defi nes later
in the program.

The code fragment in Figure 6.41(b) is an
example of MASM assembly code generated by the
function call

printBar(value)

in the C program of Figure 6.21.
Th e push instruction automatically subtracts 4

from the stack pointer ESP when it pushes _value onto
the run-time stack. Th e add instruction pops the bytes
off the stack.

Although the preceding code fragment is close
to the equivalent Pep/9 translation, the code fragment
for the setup code at the beginning of printBar()
is more complex. In addition to the stack pointer,
there is a base pointer for the stack frame that must
be managed. The compiler sets up values for formal

0001e c7 45 f8 01 00 ; k = 1
 00 00 mov DWORD PTR _k$[ebp], 1
00025 eb 09 jmp SHORT $LN3@printBar
$LN2@printBar: ; k++
00027 8b 45 f8 mov eax, DWORD PTR _k$[ebp]
0002a 83 c0 01 add eax, 1
0002d 89 45 f8 mov DWORD PTR _k$[ebp], eax
$LN3@printBar: ; k <= n
00030 8b 45 f8 mov eax, DWORD PTR _k$[ebp]
00033 3b 45 08 cmp eax, DWORD PTR _n$[ebp]
00036 7f 19 jg SHORT $LN1@printBar

(c) Translation of the for loop.

0007c a1 00 00 00 00 mov eax, DWORD PTR _value
00081 50 push eax
00082 e8 00 00 00 00 call _printBar
00087 83 c4 04 add esp, 4

(b) Translation of the printBar()function call.

FIGURE 6.41
MASM translations from C.

0003a 0f be 05 00 00
 00 00 00 movsx eax, BYTE PTR _letter
00041 83 f8 2a cmp eax, 42 ; 0000002aH
00044 74 62 je SHORT $LN3@main

0004f eb d6 jmp SHORT $LN2@printBar
$LN1@printBar:

(d) The branch to the top of the loop.

(a) Translation of the while loop test.

3556.4 Indexed Addressing and Arrays

9781284079630_CH06_287_390.indd 355 29/01/16 8:29 am

while (letter !=’*’)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 6.41
(continued)

the content of the EAX register with 42 (dec), which is
2A (hex), which is the ASCII character *. As with Pep/9,
a semicolon is the beginning of a comment, which
the compiler produced for the listing. Hexadecimal
constants terminate with the letter H. Th e je instruction
is jump if equal, which is equivalent to the Pep/9 BREQ
instruction. Th e compiler generates the symbol $LN3@
main as the target of the branch, which it defi nes later
in the program.

The code fragment in Figure 6.41(b) is an
example of MASM assembly code generated by the
function call

printBar(value)

in the C program of Figure 6.21.
Th e push instruction automatically subtracts 4

from the stack pointer ESP when it pushes _value onto
the run-time stack. Th e add instruction pops the bytes
off the stack.

Although the preceding code fragment is close
to the equivalent Pep/9 translation, the code fragment
for the setup code at the beginning of printBar()
is more complex. In addition to the stack pointer,
there is a base pointer for the stack frame that must
be managed. The compiler sets up values for formal

0001e c7 45 f8 01 00 ; k = 1
 00 00 mov DWORD PTR _k$[ebp], 1
00025 eb 09 jmp SHORT $LN3@printBar
$LN2@printBar: ; k++
00027 8b 45 f8 mov eax, DWORD PTR _k$[ebp]
0002a 83 c0 01 add eax, 1
0002d 89 45 f8 mov DWORD PTR _k$[ebp], eax
$LN3@printBar: ; k <= n
00030 8b 45 f8 mov eax, DWORD PTR _k$[ebp]
00033 3b 45 08 cmp eax, DWORD PTR _n$[ebp]
00036 7f 19 jg SHORT $LN1@printBar

(c) Translation of the for loop.

0007c a1 00 00 00 00 mov eax, DWORD PTR _value
00081 50 push eax
00082 e8 00 00 00 00 call _printBar
00087 83 c4 04 add esp, 4

(b) Translation of the printBar()function call.

FIGURE 6.41
MASM translations from C.

0003a 0f be 05 00 00
 00 00 00 movsx eax, BYTE PTR _letter
00041 83 f8 2a cmp eax, 42 ; 0000002aH
00044 74 62 je SHORT $LN3@main

0004f eb d6 jmp SHORT $LN2@printBar
$LN1@printBar:

(d) The branch to the top of the loop.

(a) Translation of the while loop test.

3556.4 Indexed Addressing and Arrays

9781284079630_CH06_287_390.indd 355 29/01/16 8:29 am

printBar(value)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 6.41
(continued)

the content of the EAX register with 42 (dec), which is
2A (hex), which is the ASCII character *. As with Pep/9,
a semicolon is the beginning of a comment, which
the compiler produced for the listing. Hexadecimal
constants terminate with the letter H. Th e je instruction
is jump if equal, which is equivalent to the Pep/9 BREQ
instruction. Th e compiler generates the symbol $LN3@
main as the target of the branch, which it defi nes later
in the program.

The code fragment in Figure 6.41(b) is an
example of MASM assembly code generated by the
function call

printBar(value)

in the C program of Figure 6.21.
Th e push instruction automatically subtracts 4

from the stack pointer ESP when it pushes _value onto
the run-time stack. Th e add instruction pops the bytes
off the stack.

Although the preceding code fragment is close
to the equivalent Pep/9 translation, the code fragment
for the setup code at the beginning of printBar()
is more complex. In addition to the stack pointer,
there is a base pointer for the stack frame that must
be managed. The compiler sets up values for formal

0001e c7 45 f8 01 00 ; k = 1
 00 00 mov DWORD PTR _k$[ebp], 1
00025 eb 09 jmp SHORT $LN3@printBar
$LN2@printBar: ; k++
00027 8b 45 f8 mov eax, DWORD PTR _k$[ebp]
0002a 83 c0 01 add eax, 1
0002d 89 45 f8 mov DWORD PTR _k$[ebp], eax
$LN3@printBar: ; k <= n
00030 8b 45 f8 mov eax, DWORD PTR _k$[ebp]
00033 3b 45 08 cmp eax, DWORD PTR _n$[ebp]
00036 7f 19 jg SHORT $LN1@printBar

(c) Translation of the for loop.

0007c a1 00 00 00 00 mov eax, DWORD PTR _value
00081 50 push eax
00082 e8 00 00 00 00 call _printBar
00087 83 c4 04 add esp, 4

(b) Translation of the printBar()function call.

FIGURE 6.41
MASM translations from C.

0003a 0f be 05 00 00
 00 00 00 movsx eax, BYTE PTR _letter
00041 83 f8 2a cmp eax, 42 ; 0000002aH
00044 74 62 je SHORT $LN3@main

0004f eb d6 jmp SHORT $LN2@printBar
$LN1@printBar:

(d) The branch to the top of the loop.

(a) Translation of the while loop test.

3556.4 Indexed Addressing and Arrays

9781284079630_CH06_287_390.indd 355 29/01/16 8:29 am

for (k = 1; k<= n; k++)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 6.41
(continued)

the content of the EAX register with 42 (dec), which is
2A (hex), which is the ASCII character *. As with Pep/9,
a semicolon is the beginning of a comment, which
the compiler produced for the listing. Hexadecimal
constants terminate with the letter H. Th e je instruction
is jump if equal, which is equivalent to the Pep/9 BREQ
instruction. Th e compiler generates the symbol $LN3@
main as the target of the branch, which it defi nes later
in the program.

The code fragment in Figure 6.41(b) is an
example of MASM assembly code generated by the
function call

printBar(value)

in the C program of Figure 6.21.
Th e push instruction automatically subtracts 4

from the stack pointer ESP when it pushes _value onto
the run-time stack. Th e add instruction pops the bytes
off the stack.

Although the preceding code fragment is close
to the equivalent Pep/9 translation, the code fragment
for the setup code at the beginning of printBar()
is more complex. In addition to the stack pointer,
there is a base pointer for the stack frame that must
be managed. The compiler sets up values for formal

0001e c7 45 f8 01 00 ; k = 1
 00 00 mov DWORD PTR _k$[ebp], 1
00025 eb 09 jmp SHORT $LN3@printBar
$LN2@printBar: ; k++
00027 8b 45 f8 mov eax, DWORD PTR _k$[ebp]
0002a 83 c0 01 add eax, 1
0002d 89 45 f8 mov DWORD PTR _k$[ebp], eax
$LN3@printBar: ; k <= n
00030 8b 45 f8 mov eax, DWORD PTR _k$[ebp]
00033 3b 45 08 cmp eax, DWORD PTR _n$[ebp]
00036 7f 19 jg SHORT $LN1@printBar

(c) Translation of the for loop.

0007c a1 00 00 00 00 mov eax, DWORD PTR _value
00081 50 push eax
00082 e8 00 00 00 00 call _printBar
00087 83 c4 04 add esp, 4

(b) Translation of the printBar()function call.

FIGURE 6.41
MASM translations from C.

0003a 0f be 05 00 00
 00 00 00 movsx eax, BYTE PTR _letter
00041 83 f8 2a cmp eax, 42 ; 0000002aH
00044 74 62 je SHORT $LN3@main

0004f eb d6 jmp SHORT $LN2@printBar
$LN1@printBar:

(d) The branch to the top of the loop.

(a) Translation of the while loop test.

3556.4 Indexed Addressing and Arrays

9781284079630_CH06_287_390.indd 355 29/01/16 8:29 am

for (k = 1; k<= n; k++)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = OprndSpec

• Asmb5 letter: i

• The operand specifier is the operand.

Immediate addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = Mem[OprndSpec]

• Asmb5 letter: d

• The operand specifier is the address in
memory of the operand.

Direct addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Oprnd = Mem[Mem[OprndSpec]]

• Asmb5 letter: n

• The operand specifier is the address of the
address in memory of the operand.

Indirect addressing

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Allocate storage for the pointer
with .BLOCK 2 because an address
occupies two bytes

• To get the pointer, generate LDWA with
direct addressing (d)

• To get the content of the cell to which the
pointer points, generate LDWA or LDBA with
indirect addressing (n)

Global pointers

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Function malloc()
calling protocol

• Put number of bytes to be allocated in
accumulator

• CALL malloc

• The index register will contain a pointer to
the allocated bytes

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
#include <stdlib.h>  

int *a, *b, *c;

int main() {
 a = (int *) malloc(sizeof(int));
 *a = 5;
 b = (int *) malloc(sizeof(int));
 *b = 3;
 c = a;
 a = b;
 *a = 2 + *c;
 printf("*a = %d\n", *a);
 printf("*b = %d\n", *b);
 printf("*c = %d\n", *c);
 return 0;
}

Figure 6.42

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120009 BR main
0003 0000 a: .BLOCK 2 ;global variable #2h
0005 0000 b: .BLOCK 2 ;global variable #2h
0007 0000 c: .BLOCK 2 ;global variable #2h
 ;
 ;******* main ()
0009 C00002 main: LDWA 2,i ;a = (int *) malloc(sizeof(int))
000C 240073 CALL malloc ;allocate #2d
000F E90003 STWX a,d
0012 C00005 LDWA 5,i ;*a = 5
0015 E20003 STWA a,n
0018 C00002 LDWA 2,i ;b = (int *) malloc(sizeof(int))
001B 240073 CALL malloc ;allocate #2d
001E E90005 STWX b,d
0021 C00003 LDWA 3,i ;*b = 3
0024 E20005 STWA b,n
0027 C10003 LDWA a,d ;c = a
002A E10007 STWA c,d
002D C10005 LDWA b,d ;a = b
0030 E10003 STWA a,d
0033 C00002 LDWA 2,i ;*a = 2 + *c
0036 620007 ADDA c,n
0039 E20003 STWA a,n
 

Figure 6.42
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
003C 490061 STRO msg0,d ;printf("*a = %d\n", *a)
003F 3A0003 DECO a,n
0042 D0000A LDBA '\n',i
0045 F1FC16 STBA charOut,d
0048 490067 STRO msg1,d ;printf("*b = %d\n", *b)
004B 3A0005 DECO b,n
004E D0000A LDBA '\n',i
0051 F1FC16 STBA charOut,d
0054 49006D STRO msg2,d ;printf("*c = %d\n", *c)
0057 3A0007 DECO c,n
005A D0000A LDBA '\n',i
005D F1FC16 STBA charOut,d
0060 00 STOP
0061 2A6120 msg0: .ASCII "*a = \x00"
 3D2000
0067 2A6220 msg1: .ASCII "*b = \x00"
 3D2000
006D 2A6320 msg2: .ASCII "*c = \x00"
 3D2000

Figure 6.42
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* malloc()
 ; Precondition: A contains number of bytes
 ; Postcondition: X contains pointer to bytes
0073 C9007D malloc: LDWX hpPtr,d ;returned pointer
0076 61007D ADDA hpPtr,d ;allocate from heap
0079 E1007D STWA hpPtr,d ;update hpPtr
007C 01 RET
007D 007F hpPtr: .ADDRSS heap ;address of next free byte
007F 00 heap: .BLOCK 1 ;first byte in the heap
0080 .END
 

Figure 6.42
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 6.43

other function. Specifi cally, it makes no recursive calls. Th e calling protocol
for functions must be designed in general to allow for functions to call other
functions or to call themselves recursively. Th e run-time stack is essential
for such calls but unnecessary for malloc() .

 FIGURE 6.43(a) shows the memory allocation for the C program at
Level HOL6 just before the fi rst printf() statement. It corresponds to
 Figure 2 . 39 (h). Figure 6 . 43 (b) shows the same memory allocation at Level
Asmb5. Global pointers a , b , and c are stored at 0003, 0005, and 0007. As
with all global variables, they are allocated with .BLOCK by the statements

 0003 0000 a: .BLOCK 2 ;global variable #2h
 0005 0000 b: .BLOCK 2 ;global variable #2h
 0007 0000 c: .BLOCK 2 ;global variable #2h

 A pointer at Level HOL6 is an address at Level Asmb5. Addresses occupy
two bytes. Hence, each global pointer is allocated two bytes. Pointers have
format trace tags #2h because pointers are addresses, typically displayed in
hexadecimal.

 Th e compiler translates the statement

 a = (int *) malloc(sizeof(int));

 as

 0009 C00002 main: LDWA 2,i ;a = (int *) malloc …
000C 240073 CALL malloc ;allocate #2d
000F E90003 STWX a,d

 Th e LDWA instruction puts 2 in the accumulator. Th e CALL instruction
calls the malloc() function, which allocates two bytes of storage from
the heap and puts the pointer to the allocated storage in the index register.
Th e comment has format trace tag #2d because the cell pointed to by
a contains a two-byte decimal value. Th e STWX instruction stores the
returned pointer in the global variable a. Because a is a global variable,
STWX uses direct addressing. Aft er this sequence of statements executes,
a has the value 007F, and hpPtr has the value 0081 because it has been
incremented by two.

 How does the compiler translate

 *a = 5;

 At this point in the execution of the program, the global variable a has the
address of where the 5 should be stored. (Th is point does not correspond
to Figure 6 . 43 , which is later in the execution.) Th e store word instruction
cannot use direct addressing to put 5 in a, as that would replace the address

 Pointers are addresses.

 FIGURE 6 . 43
 Memory allocation
for Figure 6.42
just before the
fi rst printf()
statement.

(a) Global pointers at Level HOL6.

(b) The same global pointers at
 Level Asmb5.

5

7

c

b

0081

0081

007F

a0003

0005

0007

007F

0081

b

c

a
5

7

statement.

3616.5 Dynamic Memory Allocation

9781284079630_CH06_287_390.indd 361 29/01/16 8:29 am

other function. Specifi cally, it makes no recursive calls. Th e calling protocol
for functions must be designed in general to allow for functions to call other
functions or to call themselves recursively. Th e run-time stack is essential
for such calls but unnecessary for malloc() .

 FIGURE 6.43(a) shows the memory allocation for the C program at
Level HOL6 just before the fi rst printf() statement. It corresponds to
 Figure 2 . 39 (h). Figure 6 . 43 (b) shows the same memory allocation at Level
Asmb5. Global pointers a , b , and c are stored at 0003, 0005, and 0007. As
with all global variables, they are allocated with .BLOCK by the statements

 0003 0000 a: .BLOCK 2 ;global variable #2h
 0005 0000 b: .BLOCK 2 ;global variable #2h
 0007 0000 c: .BLOCK 2 ;global variable #2h

 A pointer at Level HOL6 is an address at Level Asmb5. Addresses occupy
two bytes. Hence, each global pointer is allocated two bytes. Pointers have
format trace tags #2h because pointers are addresses, typically displayed in
hexadecimal.

 Th e compiler translates the statement

 a = (int *) malloc(sizeof(int));

 as

 0009 C00002 main: LDWA 2,i ;a = (int *) malloc …
000C 240073 CALL malloc ;allocate #2d
000F E90003 STWX a,d

 Th e LDWA instruction puts 2 in the accumulator. Th e CALL instruction
calls the malloc() function, which allocates two bytes of storage from
the heap and puts the pointer to the allocated storage in the index register.
Th e comment has format trace tag #2d because the cell pointed to by
a contains a two-byte decimal value. Th e STWX instruction stores the
returned pointer in the global variable a. Because a is a global variable,
STWX uses direct addressing. Aft er this sequence of statements executes,
a has the value 007F, and hpPtr has the value 0081 because it has been
incremented by two.

 How does the compiler translate

 *a = 5;

 At this point in the execution of the program, the global variable a has the
address of where the 5 should be stored. (Th is point does not correspond
to Figure 6 . 43 , which is later in the execution.) Th e store word instruction
cannot use direct addressing to put 5 in a, as that would replace the address

 Pointers are addresses.

 FIGURE 6 . 43
 Memory allocation
for Figure 6.42
just before the
fi rst printf()
statement.

(a) Global pointers at Level HOL6.

(b) The same global pointers at
 Level Asmb5.

5

7

c

b

0081

0081

007F

a0003

0005

0007

007F

0081

b

c

a
5

7

statement.

3616.5 Dynamic Memory Allocation

9781284079630_CH06_287_390.indd 361 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Allocate storage for the pointer with
SUBSP with two bytes for each pointer

• To get the pointer, generate LDWA with
stack-relative addressing (s)

• To get the content of the cell to which the
pointer points, generate LDWA with stack-
relative deferred addressing (sf)

Local pointers

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
#include <stdlib.h>

int main() {
 int *a, *b, *c;
 a = (int *) malloc(sizeof(int));
 *a = 5;
 b = (int *) malloc(sizeof(int));
 *b = 3;
 c = a;
 a = b;
 *a = 2 + *c;
 printf("*a = %d\n", *a);
 printf("*b = %d\n", *b);
 printf("*c = %d\n", *c);
 return 0;
}

Figure 6.44

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120003 BR main
 ;
 ;******* main()
 a: .EQUATE 4 ;local variable #2h
 b: .EQUATE 2 ;local variable #2h
 c: .EQUATE 0 ;local variable #2h
0003 580006 main: SUBSP 6,i ;push #a #b #c
0006 C00002 LDWA 2,i ;a = (int *) malloc(sizeof(int))
0009 240073 CALL malloc ;allocate #2d
000C EB0004 STWX a,s
000F C00005 LDWA 5,i ;*a = 5
0012 E40004 STWA a,sf
0015 C00002 LDWA 2,i ;b = (int *) malloc(sizeof(int))
0018 240073 CALL malloc ;allocate #2d
001B EB0002 STWX b,s
001E C00003 LDWA 3,i ;*b = 3
0021 E40002 STWA b,sf
0024 C30004 LDWA a,s ;c = a
0027 E30000 STWA c,s
002A C30002 LDWA b,s ;a = b
002D E30004 STWA a,s
0030 C00002 LDWA 2,i ;*a = 2 + *c
0033 640000 ADDA c,sf
0036 E40004 STWA a,sf

Figure 6.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0039 490061 STRO msg0,d ;printf("*a = %d\n", *a)
003C 3C0004 DECO a,sf
003F D0000A LDBA '\n',i
0042 F1FC16 STBA charOut,d
0045 490067 STRO msg1,d ;printf("*b = %d\n", *b)
0048 3C0002 DECO b,sf
004B D0000A LDBA '\n',i
004E F1FC16 STBA charOut,d
0051 49006D STRO msg2,d ;printf("*c = %d\n", *c)
0054 3C0000 DECO c,sf
0057 D0000A LDBA '\n',i
005A F1FC16 STBA charOut,d
005D 500006 ADDSP 6,i ;pop #c #b #a
0060 00 STOP
0061 2A6120 msg0: .ASCII "*a = \x00"
 3D2000
0067 2A6220 msg1: .ASCII "*b = \x00"
 3D2000
006D 2A6320 msg2: .ASCII "*c = \x00"
 3D2000

Figure 6.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* malloc()
 ; Precondition: A contains number of bytes
 ; Postcondition: X contains pointer to bytes
0073 C9007D malloc: LDWX hpPtr,d ;returned pointer
0076 61007D ADDA hpPtr,d ;allocate from heap
0079 E1007D STWA hpPtr,d ;update hpPtr
007C 01 RET
007D 007F hpPtr: .ADDRSS heap ;address of next free byte
007F 00 heap: .BLOCK 1 ;first byte in the heap
0080 .END

Figure 6.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 6.45 FIGURE 6.45 shows the memory allocation for the program in
 Figure 6 . 44 just before execution of the fi rst printf() statement. As
with all local variables, a , b , and c are allocated on the run-time stack.
 Figure 6 . 44 (b) shows their off sets from the top of the stack as 4, 2, and 0.
Consequently, the compiler translates

 int *a, *b, *c;

 as

 a: .EQUATE 4 ;local variable #2h
 b: .EQUATE 2 ;local variable #2h
 c: .EQUATE 0 ;local variable #2h

 Because a, b, and c are local variables, the compiler generates code to
allocate storage for them with SUBSP and deallocates storage with ADDSP.

 Th e compiler translates

 a = (int *) malloc(sizeof(int));

 as

0006 C00002 LDWA 2,i ;a = (int *) malloc(sizeof(int))
 0009 240073 CALL malloc ;allocate #2d
 000C EB0004 STWX a,s

0060 00 STOP
0061 2A6120 msg0: .ASCII "*a = \x00"
 3D2000
0067 2A6220 msg1: .ASCII "*b = \x00"
 3D2000
006D 2A6320 msg2: .ASCII "*c = \x00"
 3D2000
 ;
 ;******* malloc()
 ; Precondition: A contains number of bytes
 ; Postcondition: X contains pointer to bytes
0073 C9007D malloc: LDWX hpPtr,d ;returned pointer
0076 61007D ADDA hpPtr,d ;allocate from heap
0079 E1007D STWA hpPtr,d ;update hpPtr
007C 01 RET
007D 007F hpPtr: .ADDRSS heap ;address of next free byte
007F 00 heap: .BLOCK 1 ;first byte in the heap
0080 .END

 FIGURE 6 . 45
 Memory allocation for
Figure 6.44 just before
the fi rst printf()
statement.

(a) Local pointers at Level HOL6.

5

7
b

a

c

(b) The same local pointers at
 Level Asmb5.

5

7

007F

0081

bFB8B 0081

007F

2

aFB8D 00814

cSP FB890

3656.5 Dynamic Memory Allocation

9781284079630_CH06_287_390.indd 365 29/01/16 8:29 am

 FIGURE 6.45 shows the memory allocation for the program in
 Figure 6 . 44 just before execution of the fi rst printf() statement. As
with all local variables, a , b , and c are allocated on the run-time stack.
 Figure 6 . 44 (b) shows their off sets from the top of the stack as 4, 2, and 0.
Consequently, the compiler translates

 int *a, *b, *c;

 as

 a: .EQUATE 4 ;local variable #2h
 b: .EQUATE 2 ;local variable #2h
 c: .EQUATE 0 ;local variable #2h

 Because a, b, and c are local variables, the compiler generates code to
allocate storage for them with SUBSP and deallocates storage with ADDSP.

 Th e compiler translates

 a = (int *) malloc(sizeof(int));

 as

0006 C00002 LDWA 2,i ;a = (int *) malloc(sizeof(int))
 0009 240073 CALL malloc ;allocate #2d
 000C EB0004 STWX a,s

0060 00 STOP
0061 2A6120 msg0: .ASCII "*a = \x00"
 3D2000
0067 2A6220 msg1: .ASCII "*b = \x00"
 3D2000
006D 2A6320 msg2: .ASCII "*c = \x00"
 3D2000
 ;
 ;******* malloc()
 ; Precondition: A contains number of bytes
 ; Postcondition: X contains pointer to bytes
0073 C9007D malloc: LDWX hpPtr,d ;returned pointer
0076 61007D ADDA hpPtr,d ;allocate from heap
0079 E1007D STWA hpPtr,d ;update hpPtr
007C 01 RET
007D 007F hpPtr: .ADDRSS heap ;address of next free byte
007F 00 heap: .BLOCK 1 ;first byte in the heap
0080 .END

 FIGURE 6 . 45
 Memory allocation for
Figure 6.44 just before
the fi rst printf()
statement.

(a) Local pointers at Level HOL6.

5

7
b

a

c

(b) The same local pointers at
 Level Asmb5.

5

7

007F

0081

bFB8B 0081

007F

2

aFB8D 00814

cSP FB890

3656.5 Dynamic Memory Allocation

9781284079630_CH06_287_390.indd 365 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Equate each field of the struct to its offset
from the first byte of the struct

• Allocate storage for struct with .BLOCK
tot, where tot is the total number of bytes
occupied by the structure

• To get a field, generate LDWX with
immediate addressing (i) to put the field
into the index register, followed by a load
with indexed addressing (x)

Global structures

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>

struct person {
 char first;
 char last;
 int age;
 char gender;
};
struct person bill;  

int main() {
 scanf("%c%c%d %c", &bill.first, &bill.last, &bill.age, &bill.gender);
 printf("Initials: %c%c\n", bill.first, bill.last);
 printf("Age: %d\n", bill.age);
 printf("Gender: ");
 if (bill.gender == 'm') {
 printf("male\n");
 }
 else {
 printf("female\n");
 }
 return 0;
}

Figure 6.46

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120008 BR main
 first: .EQUATE 0 ;struct field #1c
 last: .EQUATE 1 ;struct field #1c
 age: .EQUATE 2 ;struct field #2d
 gender: .EQUATE 4 ;struct field #1c
0003 000000 bill: .BLOCK 5 ;globals #first #last #age #gender
 0000
 ;
 ;******* main()
0008 C80000 main: LDWX first,i ;scanf("%c%c%d %c", &bill.first,
000B D1FC15 LDBA charIn,d
000E F50003 STBA bill,x
0011 C80001 LDWX last,i ;&bill.last,
0014 D1FC15 LDBA charIn,d
0017 F50003 STBA bill,x
001A C80002 LDWX age,i ;&bill.age,
001D 350003 DECI bill,x
0020 C80004 LDWX gender,i ;&bill.gender)
0023 D1FC15 LDBA charIn,d
0026 F50003 STBA bill,x

Figure 6.46
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0029 49006C STRO msg0,d ;printf("Initials: %c%c\n",
002C C80000 LDWX first,i ;bill.first,
002F D50003 LDBA bill,x
0032 F1FC16 STBA charOut,d
0035 C80001 LDWX last,i ;bill.last)
0038 D50003 LDBA bill,x
003B F1FC16 STBA charOut,d
003E D0000A LDBA '\n',i
0041 F1FC16 STBA charOut,d
0044 490077 STRO msg1,d ;printf("Age: %d\n",
0047 C80002 LDWX age,i ;bill.age)
004A 3D0003 DECO bill,x
004D D0000A LDBA '\n',i
0050 F1FC16 STBA charOut,d
0053 49007D STRO msg2,d ;printf("Gender: ")
0056 C80004 LDWX gender,i ;if (bill.gender == 'm')
0059 D50003 LDBA bill,x
005C B0006D CPBA 'm',i
005F 1A0068 BRNE else
0062 490086 STRO msg3,d ;printf("male\n")
0065 12006B BR endIf
0068 49008C else: STRO msg4,d ;printf("female\n")
006B 00 endIf: STOP

Figure 6.46
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
006C 496E69 msg0: .ASCII "Initials: \x00"
 746961
 6C733A
 2000
0077 416765 msg1: .ASCII "Age: \x00"
 3A2000
007D 47656E msg2: .ASCII "Gender: \x00"
 646572
 3A2000
0086 6D616C msg3: .ASCII "male\n\x00"
 650A00
008C 66656D msg4: .ASCII "female\n\x00"
 616C65
 0A00
0094 .END

Figure 6.46
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 6.47

Input
bj 32 m

Output
Initials: bj
Age: 32
Gender: male

 FIGURE 6 . 47
 Memory allocation
for Figure 6.46 just
after the scanf()
statement.

0005 32

j

2

0007 m4

00041

b00030

(b) The same global structure
 at Asmb5.

bill.age 32

j

bill.gender m

(a) A global structure at
 Level HOL6.

bill.last

bbill.first

 Th e compiler translates

struct person {
 char first;
 char last;
 int age;
 char gender;
};

 with equate dot commands as

 first: .EQUATE 0 ;struct field #1c
last: .EQUATE 1 ;struct field #1c
age: .EQUATE 2 ;struct field #2d
gender: .EQUATE 4 ;struct field #1c

 Th e name of a fi eld equates to the off set of that fi eld from the first
byte of the structure. first equates to 0 because it is the fi rst byte of the
structure. last equates to 1 because first occupies one byte. age equates
to 2 because first and last occupy a total of two bytes. And gender
equates to 4 because first, last, and age occupy a total of four bytes. Th e
compiler translates the global variable

 person bill;

 as

 0003 000000 bill: .BLOCK 5 ;globals #first #last …
 0000

 To access a fi eld of a global structure, the compiler generates code to
load the index register with the off set of the fi eld from the fi rst byte of the

FIGURE 6.46
Translation of a structure. The C program is from Figure 2.40. (continued)

bj 32 m

370 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 370 29/01/16 8:29 am

Input
bj 32 m

Output
Initials: bj
Age: 32
Gender: male

 FIGURE 6 . 47
 Memory allocation
for Figure 6.46 just
after the scanf()
statement.

0005 32

j

2

0007 m4

00041

b00030

(b) The same global structure
 at Asmb5.

bill.age 32

j

bill.gender m

(a) A global structure at
 Level HOL6.

bill.last

bbill.first

 Th e compiler translates

struct person {
 char first;
 char last;
 int age;
 char gender;
};

 with equate dot commands as

 first: .EQUATE 0 ;struct field #1c
last: .EQUATE 1 ;struct field #1c
age: .EQUATE 2 ;struct field #2d
gender: .EQUATE 4 ;struct field #1c

 Th e name of a fi eld equates to the off set of that fi eld from the first
byte of the structure. first equates to 0 because it is the fi rst byte of the
structure. last equates to 1 because first occupies one byte. age equates
to 2 because first and last occupy a total of two bytes. And gender
equates to 4 because first, last, and age occupy a total of four bytes. Th e
compiler translates the global variable

 person bill;

 as

 0003 000000 bill: .BLOCK 5 ;globals #first #last …
 0000

 To access a fi eld of a global structure, the compiler generates code to
load the index register with the off set of the fi eld from the fi rst byte of the

FIGURE 6.46
Translation of a structure. The C program is from Figure 2.40. (continued)

bj 32 m

370 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 370 29/01/16 8:29 am

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Equate the pointer field to its offset from
the first byte of the node

• Allocate storage for the node with tot in the
accumulator and a call to malloc(),
where tot is the total number of bytes
occupied by the structure

Linked data structure
with a local pointer

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• To get the field pointed to by p, generate
LDWX with immediate addressing (i) to
move the value of the field into the index
register, followed by LDWA or LDBA from p,
depending on the type in the cell, with stack-
deferred indexed addressing (sfx).

Linked data structure
with a local pointer

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

High-Order Language
#include <stdio.h>
#include <stdlib.h>

struct node {
 int data;
 struct node *next;
};

int main() {
 struct node *first, *p;
 int value;
 first = 0;
 scanf("%d", &value);
 while (value != -9999) {
 p = first;
 first = (struct node *) malloc(sizeof(struct node));
 first->data = value;
 first->next = p;
 scanf("%d", &value);
 }
 for (p = first; p != 0; p = p->next) {
 printf("%d ", p->data);
 }
 return 0;
}

Figure 6.48

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0000 120003 BR main
 data: .EQUATE 0 ;struct field #2d
 next: .EQUATE 2 ;struct field #2h
 ;
 ;******* main ()
 first: .EQUATE 4 ;local variable #2h
 p: .EQUATE 2 ;local variable #2h
 value: .EQUATE 0 ;local variable #2d
0003 580006 main: SUBSP 6,i ;push #first #p #value
0006 C00000 LDWA 0,i ;first = 0
0009 E30004 STWA first,s
000C 330000 DECI value,s ;scanf("%d", &value);
000F C30000 while: LDWA value,s ;while (value != -9999)
0012 A0D8F1 CPWA -9999,i
0015 18003F BREQ endWh
0018 C30004 LDWA first,s ;p = first
001B E30002 STWA p,s
001E C00004 LDWA 4,i ;first = (struct node *)
 ; malloc(sizeof(struct node))
0021 24006A CALL malloc ;allocate #data #next
0024 EB0004 STWX first,s
0027 C30000 LDWA value,s ;first->data = value
002A C80000 LDWX data,i
002D E70004 STWA first,sfx

Figure 6.48
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
0030 C30002 LDWA p,s ;first->next = p
0033 C80002 LDWX next,i
0036 E70004 STWA first,sfx
0039 330000 DECI value,s ;scanf("%d", &value)
003C 12000F BR while
003F C30004 endWh: LDWA first,s ;for (p = first
0042 E30002 STWA p,s
0045 C30002 for: LDWA p,s ;p != 0
0048 A00000 CPWA 0,i
004B 180066 BREQ endFor
004E C80000 LDWX data,i ;printf("%d ", p->data)
0051 3F0002 DECO p,sfx
0054 D00020 LDBA ' ',i
0057 F1FC16 STBA charOut,d
005A C80002 LDWX next,i ;p = p->next)
005D C70002 LDWA p,sfx
0060 E30002 STWA p,s
0063 120045 BR for
0066 500006 endFor: ADDSP 6,i ;pop #value #p #first
0069 00 STOP

Figure 6.48
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Assembly Language
 ;******* malloc()
 ; Precondition: A contains number of bytes
 ; Postcondition: X contains pointer to bytes
006A C90074 malloc: LDWX hpPtr,d ;returned pointer
006D 610074 ADDA hpPtr,d ;allocate from heap
0070 E10074 STWA hpPtr,d ;update hpPtr
0073 01 RET
0074 0076 hpPtr: .ADDRSS heap ;address of next free byte
0076 00 heap: .BLOCK 1 ;first byte in the heap
0077 .END

Figure 6.48
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e compiler translates the local variables

 node *first, *p;
 int value;

 as it does all local variables. It equates the variable names with their off sets
from the top of the run-time stack. Th e translation is

 first: .EQUATE 4 ;local variable #2h
 p: .EQUATE 2 ;local variable #2h
 value: .EQUATE 0 ;local variable #2d

 FIGURE 6.49(b) shows the off sets for the local variables. Th e compiler
generates SUBSP at 0003 to allocate storage for the locals and ADDSP at 0066
to deallocate storage.

 When you use malloc() in C, the computer must allocate enough
memory from the heap to store the item to which the pointer points. In this
program, a node occupies four bytes. Th erefore, the compiler translates

 first = (struct node *) malloc(sizeof(struct node));

 by allocating four bytes in the code it generates to call malloc(). Th e
translation is

 001E C00004 LDWA 4,i ;first = (struct node *) …
 0021 24006A CALL malloc ;allocate #data #next
 0024 EB0004 STWX first,s

 FIGURE 6 . 49
 Memory allocation for Figure 6.48 just before scanning 40 from the input stream.

valueFB89

0080

007E

007C

007A

0078

0076

0

10

0

20

0076

30

007A

30

007A

007E

SP

pFB8B2

firstFB8D4

30

30

value

p

first

(b) The same linked list at Level Asmb5.(a) The linked list at Level HOL6.

20 10

3756.5 Dynamic Memory Allocation

9781284079630_CH06_287_390.indd 375 29/01/16 8:29 am

Figure 6.49

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• A problem for the student

• Exercise 6.10

• Problem 6.36

Linked data structure
with a global pointer

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 *prod = 0;
 while (mpr != 0) {
 if (mpr % 2 == 1) {
 *prod = *prod + mcand;
 }
 mpr /= 2;
 mcand *= 2;
 }
}

int main () {
 scanf("%d %d", &n, &m);
 times(&product, n, m);
 printf("Product: %d\n", product);
 return 0;
}

25. Translate the C program in Problem 24 to Pep/9 assembly language, but
declare product , n , and m to be local variables in main() .

26. (a) Rewrite the C program of Figure 2 . 22 to compute the factorial
recursively, but use procedure times() in Problem 24 to do the
multiplication. Use one extra local variable in fact() to store the
product. (b) Translate your C program to Pep/9 assembly language.

 Section 6.4

27. Translate the following C program to Pep/9 assembly language:

#include <stdio.h>

int list[16];

 FIGURE 6 . 50
 Trace of the run-time stack for Figure 6.25.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

384 CHAPTER 6 Compiling to the Assembly Level

9781284079630_CH06_287_390.indd 384 29/01/16 8:29 am

Figure 6.50

Problem 6.23

program with a global variable for the actual parameter. Translate your
C program to Pep/9 assembly language. (b) Write your program with
a local variable for the actual parameter. Translate your C program to
Pep/9 assembly language.

20. Write a C program that defi nes

 int minimum(int j1, int j2)

 which returns the smaller of j1 and j2 . (a) Write your program with
a global variable for the actual parameter. Translate your C program to
Pep/9 assembly language. (b) Write your program with a local variable
for the actual parameter. Translate your C program to Pep/9 assembly
language .

21. Translate to Pep/9 assembly language your C solution from Problem
2.13 that computes a Fibonacci term using a recursive function.

22. Translate to Pep/9 assembly language your C solution from Problem
2.14 that outputs the instructions for the Towers of Hanoi puzzle.

23. Th e recursive binomial coeffi cient function in Figure 6 . 25 can be
simplifi ed by omitting y1 and y2 as follows:

int binCoeff(int n, int k) {

 if ((k == 0) || (n == k)) {

 return 1;

 }

 else {

 return binCoeff(n - 1, k) + binCoeff(n - 1, k - 1);

 }

}

 Write a Pep/9 assembly language program that calls this function. Keep
the value returned from the binCoeff(n - 1, k) call on the stack, and
push the actual parameters for the call to binCoeff(n - 1, k - 1)
on top of it. FIGURE 6.50 shows a trace of the run-time stack where the
stack frame contains four words (for retVal , n , k , and retAddr) and the
shaded word is the value returned by a function call. Th e trace is for a call
of binCoeff(3,1) from the main program.

24. Translate the following C program to Pep/9 assembly language. It
multiplies two integers using an iterative shift -and-add algorithm.

#include <stdio.h>

int product, n, m;

void times(int *prod, int mpr, int mcand) {

 An iterative integer
 multiplication algorithm

383Problems

9781284079630_CH06_287_390.indd 383 29/01/16 8:29 am

