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• The fundamental question of computer 
science:

“What can be automated?”

• One answer – Translation from one 
programming language to another.
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• Alphabet – A nonempty set of characters.

• Concatenation – joining characters to form 
a string.

• The empty string – The identity element for 
concatenation.
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{a,b,c,d,e,f,g,h,i,j,k,l,m,n,
o,p,q,r,s,t,u,v,w,x,y,z,A,B,
C,D,E,F,G,H,I,J,K,L,M,N,O,P,
Q,R,S,T,U,V,W,X,Y,Z,0,1,2,3,
4,5,6,7,8,9,+,-,*,/,=,<,>,[,
],(,),{,},.,,,:,;,&,!,%,', "
_,\,#,?,},|, ~ }

The C alphabet
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{a,b,c,d,e,f,g,h,i,j,k,l,m,n,
o,p,q,r,s,t,u,v,w,x,y,z,A,B,
C,D,E,F,G,H,I,J,K,L,M,N,O,P,
Q,R,S,T,U,V,W,X,Y,Z,0,1,2,3,
4,5,6,7,8,9,\,.,,,:,;,‘, “ }

The Pep/9 assembly 
language  alphabet
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{0,1,2,3,4,5,6,7,8,9,+,-, . }

The alphabet for real 
numbers
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Concatenation
• Joining two or more characters to make a 

string

• Applies to strings concatenated to construct 
longer strings
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The empty string
•  

• Concatenation property

�

�x = x� = x
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Languages
• The closure T* of alphabet T

‣ The set of all possible strings formed by 
concatenating elements from T

• Language

‣ A subset of the closure of its alphabet
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• Grammars

• Finite state machines

• Regular expressions

Techniques to specify 
syntax
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• N, a nonterminal alphabet

• T, a terminal alphabet

• P, a set of rules of production

• S, the start symbol, an element of N

The four parts of a 
grammar
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 Th e rules of production are of the form 

  A  →  w   

 where  A  is a nonterminal and  w  is a string of terminals and nonterminals. 
Th e symbol → means “produces.” You should read production rule number 3 
in     Figure       7   .   1     as, “An identifi er produces an identifi er followed by a digit.” 

 Th e grammar specifi es the language by a process called a  derivation . 
To derive a valid sentence in the language, you begin with the start symbol 
and substitute for nonterminals from the rules of production until you get a 
string of terminals. Th e following is a derivation of the identifi er  cab3  from 
this grammar. Th e symbol ⇒ means “derives in one step.” 

 <identifi er> ⇒ <identifi er> <digit> Rule 3 
  ⇒ <identifi er>  3  Rule 9 
  ⇒ <identifi er> <letter>  3  Rule 2 
  ⇒ <identifi er>  b 3  Rule 5 
  ⇒ <identifi er> <letter>  b 3  Rule 2 
  ⇒ <identifi er>  a b 3  Rule 4 
  ⇒ <letter>  a b 3  Rule 1 
  ⇒  c a b 3  Rule 6 

 Next to each derivation step is the production rule on which the substitution 
is based. For example, Rule 2, 

 Productions 

 Derivations 

  FIGURE   7 . 1     
 A grammar for C identifi ers. 

N = { <identifi er> , <letter> , <digit> } 
T = { a , b , c , 1 , 2 , 3 } 
P = the productions 
 1. <identifi er> → <letter> 
 2. <identifi er> → <identifi er> <letter> 
 3. <identifi er> → <identifi er> <digit> 
 4. <letter> → a 
 5. <letter> → b 
 6. <letter> → c 
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T  { a b c 1 2 3 } 

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd   397 29/01/16   8:06 pm

Figure 7.1
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A derivation
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 <identifi er> → <identifi er> <letter> 

 was used to substitute for <identifi er> in the derivation step 

 <identifi er>  3  ⇒ <identifi er> <letter>  3   

 You should read this derivation step as “Identifi er followed by 3 derives in 
one step identifi er followed by letter followed by 3.” 

 Analogous to the closure operation on an alphabet is the closure of the 
derivation operation. Th e symbol ⇒* means “derives in zero or more steps.” 
You can summarize the previous eight derivation steps as 

 <identifi er> ⇒*  c a b 3   

 Th is derivation proves that  cab3  is a valid identifi er because it can 
be derived from the start symbol, <identifi er>. A language specifi ed by a 
grammar consists of all the strings derivable from the start symbol using 
the rules of production. Th e grammar provides an operational test for 
membership in the language. If it is impossible to derive a string, the string 
is not in the language. 

  A Grammar for Signed Integers  
 Th e grammar in     FIGURE 7.2          defi nes the language of signed integers, where 
d  represents a decimal digit. Th e start symbol is I, which stands for integer. 
F is the fi rst character, which is an optional sign, and M is the magnitude. 

 Sometimes the rules of production are not numbered and are combined 
on one line to conserve space on the printed page. You can write the rules of 
production for this grammar as 

 I → FM 
 F →  +  |  −  | ε 
 M →  d  |  d M 

 where the vertical bar, |, is the alternation operator and is read as “or.” Read 
the last line as “M produces  d , or  d  followed by M.” 

 Here are some derivations of valid signed integers in this grammar: 

 I ⇒ FM I ⇒ FM I ⇒ FM 
⇒ F d M  ⇒ F d M  ⇒ F d M 

  ⇒ F dd M  ⇒ F dd   ⇒ F dd M 
  ⇒ F ddd   ⇒  dd   ⇒ F ddd M 
  ⇒ -ddd    ⇒ Fdddd 
      ⇒  +dddd  

 Note how the last step of the second derivation uses the empty string to 
derive  dd  from F dd . It uses the production F → ε and the fact that ε d   = d . 

FIGURE 7.2 
A grammar for 
signed integers.

N = { I , F , M } 
T = { + , − , d } 
P = the productions 
 1. I → FM 
 2. F → + 
 3. F → −
 4. F → ε
 5. M → dM 
 6. M → d 
S = I 

 { I , F , M } 
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grammar consists of all the strings derivable from the start symbol using 
the rules of production. Th e grammar provides an operational test for 
membership in the language. If it is impossible to derive a string, the string 
is not in the language. 

  A Grammar for Signed Integers  
 Th e grammar in     FIGURE 7.2          defi nes the language of signed integers, where 
d  represents a decimal digit. Th e start symbol is I, which stands for integer. 
F is the fi rst character, which is an optional sign, and M is the magnitude. 

 Sometimes the rules of production are not numbered and are combined 
on one line to conserve space on the printed page. You can write the rules of 
production for this grammar as 

 I → FM 
 F →  +  |  −  | ε 
 M →  d  |  d M 

 where the vertical bar, |, is the alternation operator and is read as “or.” Read 
the last line as “M produces  d , or  d  followed by M.” 

 Here are some derivations of valid signed integers in this grammar: 
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 where the vertical bar, |, is the alternation operator and is read as “or.” Read 
the last line as “M produces  d , or  d  followed by M.” 

 Here are some derivations of valid signed integers in this grammar: 
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Th is production rule with the empty string is a convenient way to express 
the fact that a positive or negative sign in front of the magnitude is optional. 

 Some illegal strings from this grammar are  ddd+ ,  +-ddd , and  ddd+dd . 
Try to derive these strings from the grammar to convince yourself that 
they are not in the language. Can you informally prove from the rules of 
production that each of these strings is not in the language? 

 Th e productions in both of the sample grammars have recursive rules in 
which a nonterminal is defi ned in terms of itself. Rule 3 of     Figure       7   .   1     defi nes 
an <identifi er> in terms of an <identifi er> as 

 <identifi er> → <identifi er> <digit> 

 and Rule 5 of     Figure       7   .   2     defi nes M in terms of M as 

 M →  d M  

 Recursive rules produce languages with an infi nite number of legal sentences. 
To derive an identifi er, you can keep substituting <identifi er> <digit> for 
<identifi er> as long as you like to produce an arbitrarily long identifi er. 

 As in all recursive defi nitions, there must be an escape hatch to provide 
the basis for the defi nition. Otherwise, the sequence of substitutions for the 
nonterminal could never stop. Th e rule  M  →  d  provides the basis for M in 
    Figure       7   .   2    . 

  A Context-Sensitive Grammar  
 Th e production rules for the previous grammars always contain a single 
nonterminal on the left  side. Th e grammar in     FIGURE 7.3          has some production 
rules with both a terminal and nonterminal on the left  side. 

 Here is a derivation of a string of terminals with this grammar: 

 A ⇒  a ABC Rule 1 
  ⇒  aa ABCBC Rule 1 
  ⇒  aaab CBCBC Rule 2 
  ⇒  aaab BCCBC Rule 3 
  ⇒  aaab BCBCC Rule 3 
  ⇒  aaab BBCCC Rule 3 
  ⇒  aaabb BCCC Rule 4 
  ⇒  aaabbb CCC Rule 4 
  ⇒  aaabbbc CC Rule 5 
  ⇒  aaabbbcc C Rule 6 
  ⇒  aaabbbccc  Rule 6 

 An example of a substitution in this derivation is using Rule 5 in the step 

 aaabbbCCC ⇒ aaabbbcCC 

 Recursive productions 

FIGURE 7.3 
A context-sensitive 
grammar.

N = { A , B , C } 
T = { a , b , c } 
P = the productions 
 1. A → aABC 
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc 
 6. cC → cc 
S = A 

N = { A , B , C } 

3997.1 Languages, Grammars, and Parsing
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Th is production rule with the empty string is a convenient way to express 
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Th is production rule with the empty string is a convenient way to express 
the fact that a positive or negative sign in front of the magnitude is optional. 

 Some illegal strings from this grammar are  ddd+ ,  +-ddd , and  ddd+dd . 
Try to derive these strings from the grammar to convince yourself that 
they are not in the language. Can you informally prove from the rules of 
production that each of these strings is not in the language? 

 Th e productions in both of the sample grammars have recursive rules in 
which a nonterminal is defi ned in terms of itself. Rule 3 of     Figure       7   .   1     defi nes 
an <identifi er> in terms of an <identifi er> as 
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 and Rule 5 of     Figure       7   .   2     defi nes M in terms of M as 

 M →  d M  

 Recursive rules produce languages with an infi nite number of legal sentences. 
To derive an identifi er, you can keep substituting <identifi er> <digit> for 
<identifi er> as long as you like to produce an arbitrarily long identifi er. 
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 Parsing a given string is more diffi  cult than deriving an arbitrary 
valid string. Th e parsing problem is a form of searching. Th e parsing 
algorithm must search for just the right sequence of substitutions to derive 
the proposed string. Not only must it fi nd the derivation if the proposed 
string is valid, but it must also admit the possibility that the proposed string 
may not be valid. If you look for a lost diamond ring in your room and do 
not fi nd it, that does not mean the ring is not in your room. It may simply 
mean that you did not look in the right place. Similarly, if you try to fi nd a 
derivation for a proposed string and do not fi nd it, how do you know that 
such a derivation does not exist? A translator must be able to prove that no 
derivation exists if the proposed string is not valid. 

  A Grammar for Expressions      
 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 

 E ⇒ E + T Rule 1 
  ⇒ T + T Rule 2 
  ⇒ F + T Rule 4 
  ⇒  (  E  )  + T Rule 5 
  ⇒  (  T  )  + T Rule 2 
  ⇒  (  T * F  )  + T Rule 3 
  ⇒  (  F * F  )  + T Rule 4 

FIGURE 7.4 
The difference between deriving an arbitrary sentence and parsing a 
proposed sentence. 
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FIGURE 7.5 
A grammar for 
expressions. 
Nonterminal E 
represents the 
expression. T 
represents a term 
and F a factor in the 
expression.

N = { E , T , F } 
T = { + , * , ( , ) , a }
P = the productions 
 1. E → E + T 
 2. E → T
 3. T → T * F

4. T → F
 5. F → ( E ) 
 6. F → a 
S = E 

expression. T 
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derivation for a proposed string and do not fi nd it, how do you know that 
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derivation exists if the proposed string is not valid. 
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 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
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⇒  (   a  * F  )  + T Rule 6 
  ⇒  (   a  *  a   )  + T Rule 6 
  ⇒  (   a  *  a   )  + F Rule 4 
  ⇒  (   a  *  a   )  +  a  Rule 6 

 Th e reason this could be diffi  cult is that you might make a bad decision 
early in the parse that looks plausible at the time but that leads to a dead end. 
For example, you might spot the “(” in the string that you were given and 
choose Rule 5 immediately. Your attempted parse might be 

 E ⇒ T Rule 2 
  ⇒ F Rule 4 
  ⇒  (  E  )  Rule 5 
  ⇒  (  T  )  Rule 2 
  ⇒  (  T * F  )  Rule 3 
  ⇒  (  F * F  )  Rule 4 
  ⇒  (   a  * F  )  Rule 6 
  ⇒  (   a  *  a   )  Rule 6 

 Until now, you have seemingly made progress toward your goal of parsing 
the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 
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 The syntax tree 
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derivation for a proposed string and do not fi nd it, how do you know that 
such a derivation does not exist? A translator must be able to prove that no 
derivation exists if the proposed string is not valid. 

  A Grammar for Expressions      
 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 
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choose Rule 5 immediately. Your attempted parse might be 

 E ⇒ T Rule 2 
  ⇒ F Rule 4 
  ⇒  (  E  )  Rule 5 
  ⇒  (  T  )  Rule 2 
  ⇒  (  T * F  )  Rule 3 
  ⇒  (  F * F  )  Rule 4 
  ⇒  (   a  * F  )  Rule 6 
  ⇒  (   a  *  a   )  Rule 6 
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the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 
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the proposed string. Not only must it fi nd the derivation if the proposed 
string is valid, but it must also admit the possibility that the proposed string 
may not be valid. If you look for a lost diamond ring in your room and do 
not fi nd it, that does not mean the ring is not in your room. It may simply 
mean that you did not look in the right place. Similarly, if you try to fi nd a 
derivation for a proposed string and do not fi nd it, how do you know that 
such a derivation does not exist? A translator must be able to prove that no 
derivation exists if the proposed string is not valid. 

  A Grammar for Expressions      
 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 

 E ⇒ E + T Rule 1 
  ⇒ T + T Rule 2 
  ⇒ F + T Rule 4 
  ⇒  (  E  )  + T Rule 5 
  ⇒  (  T  )  + T Rule 2 
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 Th e reason this could be diffi  cult is that you might make a bad decision 
early in the parse that looks plausible at the time but that leads to a dead end. 
For example, you might spot the “(” in the string that you were given and 
choose Rule 5 immediately. Your attempted parse might be 
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 Until now, you have seemingly made progress toward your goal of parsing 
the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 
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you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
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  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 
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 Parsing a given string is more diffi  cult than deriving an arbitrary 
valid string. Th e parsing problem is a form of searching. Th e parsing 
algorithm must search for just the right sequence of substitutions to derive 
the proposed string. Not only must it fi nd the derivation if the proposed 
string is valid, but it must also admit the possibility that the proposed string 
may not be valid. If you look for a lost diamond ring in your room and do 
not fi nd it, that does not mean the ring is not in your room. It may simply 
mean that you did not look in the right place. Similarly, if you try to fi nd a 
derivation for a proposed string and do not fi nd it, how do you know that 
such a derivation does not exist? A translator must be able to prove that no 
derivation exists if the proposed string is not valid. 

  A Grammar for Expressions      
 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 

 E ⇒ E + T Rule 1 
  ⇒ T + T Rule 2 
  ⇒ F + T Rule 4 
  ⇒  (  E  )  + T Rule 5 
  ⇒  (  T  )  + T Rule 2 
  ⇒  (  T * F  )  + T Rule 3 
  ⇒  (  F * F  )  + T Rule 4 

FIGURE 7.4 
The difference between deriving an arbitrary sentence and parsing a 
proposed sentence. 
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⇒  (   a  * F  )  + T Rule 6 
  ⇒  (   a  *  a   )  + T Rule 6 
  ⇒  (   a  *  a   )  + F Rule 4 
  ⇒  (   a  *  a   )  +  a  Rule 6 

 Th e reason this could be diffi  cult is that you might make a bad decision 
early in the parse that looks plausible at the time but that leads to a dead end. 
For example, you might spot the “(” in the string that you were given and 
choose Rule 5 immediately. Your attempted parse might be 

 E ⇒ T Rule 2 
  ⇒ F Rule 4 
  ⇒  (  E  )  Rule 5 
  ⇒  (  T  )  Rule 2 
  ⇒  (  T * F  )  Rule 3 
  ⇒  (  F * F  )  Rule 4 
  ⇒  (   a  * F  )  Rule 6 
  ⇒  (   a  *  a   )  Rule 6 

 Until now, you have seemingly made progress toward your goal of parsing 
the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 

  FIGURE   7 . 6     
 The syntax tree 
for the parse of 
(a * a) + a in 
Figure 7.5. 
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derivation exists if the proposed string is not valid. 
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original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 
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original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 
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 Th e reason this could be diffi  cult is that you might make a bad decision 
early in the parse that looks plausible at the time but that leads to a dead end. 
For example, you might spot the “(” in the string that you were given and 
choose Rule 5 immediately. Your attempted parse might be 

 E ⇒ T Rule 2 
  ⇒ F Rule 4 
  ⇒  (  E  )  Rule 5 
  ⇒  (  T  )  Rule 2 
  ⇒  (  T * F  )  Rule 3 
  ⇒  (  F * F  )  Rule 4 
  ⇒  (   a  * F  )  Rule 6 
  ⇒  (   a  *  a   )  Rule 6 

 Until now, you have seemingly made progress toward your goal of parsing 
the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 

  FIGURE   7 . 6     
 The syntax tree 
for the parse of 
(a * a) + a in 
Figure 7.5. 
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 Parsing a given string is more diffi  cult than deriving an arbitrary 
valid string. Th e parsing problem is a form of searching. Th e parsing 
algorithm must search for just the right sequence of substitutions to derive 
the proposed string. Not only must it fi nd the derivation if the proposed 
string is valid, but it must also admit the possibility that the proposed string 
may not be valid. If you look for a lost diamond ring in your room and do 
not fi nd it, that does not mean the ring is not in your room. It may simply 
mean that you did not look in the right place. Similarly, if you try to fi nd a 
derivation for a proposed string and do not fi nd it, how do you know that 
such a derivation does not exist? A translator must be able to prove that no 
derivation exists if the proposed string is not valid. 

  A Grammar for Expressions      
 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 

 E ⇒ E + T Rule 1 
  ⇒ T + T Rule 2 
  ⇒ F + T Rule 4 
  ⇒  (  E  )  + T Rule 5 
  ⇒  (  T  )  + T Rule 2 
  ⇒  (  T * F  )  + T Rule 3 
  ⇒  (  F * F  )  + T Rule 4 

FIGURE 7.4 
The difference between deriving an arbitrary sentence and parsing a 
proposed sentence. 

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5 
A grammar for 
expressions. 
Nonterminal E 
represents the 
expression. T 
represents a term 
and F a factor in the 
expression.

N = { E , T , F } 
T = { + , * , ( , ) , a }
P = the productions 
 1. E → E + T 
 2. E → T
 3. T → T * F

4. T → F
 5. F → ( E ) 
 6. F → a 
S = E 

expression. T 

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd   401 29/01/16   8:06 pm

Parse

 Parsing a given string is more diffi  cult than deriving an arbitrary 
valid string. Th e parsing problem is a form of searching. Th e parsing 
algorithm must search for just the right sequence of substitutions to derive 
the proposed string. Not only must it fi nd the derivation if the proposed 
string is valid, but it must also admit the possibility that the proposed string 
may not be valid. If you look for a lost diamond ring in your room and do 
not fi nd it, that does not mean the ring is not in your room. It may simply 
mean that you did not look in the right place. Similarly, if you try to fi nd a 
derivation for a proposed string and do not fi nd it, how do you know that 
such a derivation does not exist? A translator must be able to prove that no 
derivation exists if the proposed string is not valid. 

  A Grammar for Expressions      
 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 

 E ⇒ E + T Rule 1 
  ⇒ T + T Rule 2 
  ⇒ F + T Rule 4 
  ⇒  (  E  )  + T Rule 5 
  ⇒  (  T  )  + T Rule 2 
  ⇒  (  T * F  )  + T Rule 3 
  ⇒  (  F * F  )  + T Rule 4 

FIGURE 7.4 
The difference between deriving an arbitrary sentence and parsing a 
proposed sentence. 

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5 
A grammar for 
expressions. 
Nonterminal E 
represents the 
expression. T 
represents a term 
and F a factor in the 
expression.

N = { E , T , F } 
T = { + , * , ( , ) , a }
P = the productions 
 1. E → E + T 
 2. E → T
 3. T → T * F

4. T → F
 5. F → ( E ) 
 6. F → a 
S = E 

expression. T 

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd   401 29/01/16   8:06 pm

⇒  (   a  * F  )  + T Rule 6 
  ⇒  (   a  *  a   )  + T Rule 6 
  ⇒  (   a  *  a   )  + F Rule 4 
  ⇒  (   a  *  a   )  +  a  Rule 6 

 Th e reason this could be diffi  cult is that you might make a bad decision 
early in the parse that looks plausible at the time but that leads to a dead end. 
For example, you might spot the “(” in the string that you were given and 
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 Until now, you have seemingly made progress toward your goal of parsing 
the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 
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for the parse of 
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algorithm must search for just the right sequence of substitutions to derive 
the proposed string. Not only must it fi nd the derivation if the proposed 
string is valid, but it must also admit the possibility that the proposed string 
may not be valid. If you look for a lost diamond ring in your room and do 
not fi nd it, that does not mean the ring is not in your room. It may simply 
mean that you did not look in the right place. Similarly, if you try to fi nd a 
derivation for a proposed string and do not fi nd it, how do you know that 
such a derivation does not exist? A translator must be able to prove that no 
derivation exists if the proposed string is not valid. 

  A Grammar for Expressions      
 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 
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 Th e reason this could be diffi  cult is that you might make a bad decision 
early in the parse that looks plausible at the time but that leads to a dead end. 
For example, you might spot the “(” in the string that you were given and 
choose Rule 5 immediately. Your attempted parse might be 
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 Until now, you have seemingly made progress toward your goal of parsing 
the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 

  FIGURE   7 . 6     
 The syntax tree 
for the parse of 
(a * a) + a in 
Figure 7.5. 

+E T

T F

F

E( )

T

a

*T F

F a

a

E

  FIGURE   7 . 7 
  The syntax tree for 
the parse of dd in 
Figure 7.2. 

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd   402 29/01/16   8:06 pm



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi  cult than deriving an arbitrary 
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 Th e reason this could be diffi  cult is that you might make a bad decision 
early in the parse that looks plausible at the time but that leads to a dead end. 
For example, you might spot the “(” in the string that you were given and 
choose Rule 5 immediately. Your attempted parse might be 
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 Until now, you have seemingly made progress toward your goal of parsing 
the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 
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the proposed string. Not only must it fi nd the derivation if the proposed 
string is valid, but it must also admit the possibility that the proposed string 
may not be valid. If you look for a lost diamond ring in your room and do 
not fi nd it, that does not mean the ring is not in your room. It may simply 
mean that you did not look in the right place. Similarly, if you try to fi nd a 
derivation for a proposed string and do not fi nd it, how do you know that 
such a derivation does not exist? A translator must be able to prove that no 
derivation exists if the proposed string is not valid. 

  A Grammar for Expressions      
 To see some of the diffi  culty a parser may encounter, consider     FIGURE 7.5         , 
which shows a grammar that describes an arithmetic infi x expression. 
Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 

 E ⇒ E + T Rule 1 
  ⇒ T + T Rule 2 
  ⇒ F + T Rule 4 
  ⇒  (  E  )  + T Rule 5 
  ⇒  (  T  )  + T Rule 2 
  ⇒  (  T * F  )  + T Rule 3 
  ⇒  (  F * F  )  + T Rule 4 

FIGURE 7.4 
The difference between deriving an arbitrary sentence and parsing a 
proposed sentence. 

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5 
A grammar for 
expressions. 
Nonterminal E 
represents the 
expression. T 
represents a term 
and F a factor in the 
expression.

N = { E , T , F } 
T = { + , * , ( , ) , a }
P = the productions 
 1. E → E + T 
 2. E → T
 3. T → T * F

4. T → F
 5. F → ( E ) 
 6. F → a 
S = E 

expression. T 

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd   401 29/01/16   8:06 pm

Parse

 Parsing a given string is more diffi  cult than deriving an arbitrary 
valid string. Th e parsing problem is a form of searching. Th e parsing 
algorithm must search for just the right sequence of substitutions to derive 
the proposed string. Not only must it fi nd the derivation if the proposed 
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may not be valid. If you look for a lost diamond ring in your room and do 
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Suppose you are given the string of terminals 

 ( a * a ) + a 

 and the production rules of this grammar, and are asked to parse the 
proposed string. Th e correct parse is 

 E ⇒ E + T Rule 1 
  ⇒ T + T Rule 2 
  ⇒ F + T Rule 4 
  ⇒  (  E  )  + T Rule 5 
  ⇒  (  T  )  + T Rule 2 
  ⇒  (  T * F  )  + T Rule 3 
  ⇒  (  F * F  )  + T Rule 4 

FIGURE 7.4 
The difference between deriving an arbitrary sentence and parsing a 
proposed sentence. 
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FIGURE 7.5 
A grammar for 
expressions. 
Nonterminal E 
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expression. T 
represents a term 
and F a factor in the 
expression.
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P = the productions 
 1. E → E + T 
 2. E → T
 3. T → T * F

4. T → F
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expression. T 
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⇒  (   a  * F  )  + T Rule 6 
  ⇒  (   a  *  a   )  + T Rule 6 
  ⇒  (   a  *  a   )  + F Rule 4 
  ⇒  (   a  *  a   )  +  a  Rule 6 

 Th e reason this could be diffi  cult is that you might make a bad decision 
early in the parse that looks plausible at the time but that leads to a dead end. 
For example, you might spot the “(” in the string that you were given and 
choose Rule 5 immediately. Your attempted parse might be 

 E ⇒ T Rule 2 
  ⇒ F Rule 4 
  ⇒  (  E  )  Rule 5 
  ⇒  (  T  )  Rule 2 
  ⇒  (  T * F  )  Rule 3 
  ⇒  (  F * F  )  Rule 4 
  ⇒  (   a  * F  )  Rule 6 
  ⇒  (   a  *  a   )  Rule 6 

 Until now, you have seemingly made progress toward your goal of parsing 
the original expression because the intermediate string looks more like the 
original string at each successive step of the derivation. Unfortunately, now 
you are stuck because there is no way to get the  + a  part of the original string. 

 Aft er reaching this dead end, you may be tempted to conclude that the 
proposed string is invalid, but that would be a mistake. Just because you 
cannot fi nd a derivation does not mean that such a derivation does not exist. 

 One interesting aspect of a parse is that it can be represented as a tree. 
Th e start symbol is the root of the tree. Each interior node of the tree is a 
nonterminal, and each leaf is a terminal. Th e children of an interior node 
are the symbols from the right side of the production rule substituted 
for the parent node in the derivation. Th e tree is called a  syntax tree , for 
obvious reasons.     FIGURE 7.6          shows the syntax tree for  (a  *  a) +   a  with the 
grammar in     Figure       7   .   5    , and     FIGURE 7.7      shows it for  dd  with the grammar 
in     Figure       7   .   2    .               

  A C Subset Grammar  
 Th e rules of production for the grammar in     FIGURE 7.8          specify a small subset 
of the C language. Th e only primitive types in this language are integer and 
character. Th e language has no provision for constant or type declarations 
and does not permit reference parameters. It also omits  switch  and  for  
statements. Despite these limitations, it gives an idea of how the syntax for a 
real language is formally defi ned. 

  FIGURE   7 . 6     
 The syntax tree 
for the parse of 
(a * a) + a in 
Figure 7.5. 
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<translation-unit> →
<external-declaration>
! <translation-unit> <external-declaration>

<external-declaration> →
<function-definition>
! <declaration>

<function-definition> →
<type-specifier> <identifier> ( <parameter-list> ) <compound-statement>
! <identifier> ( <parameter-list> ) <compound-statement>

<declaration> → <type-specifier> <declarator-list> ;

<type-specifier> → void ! char ! int 

<declarator-list> →
<identifier>
! <declarator-list> <identifier>

<parameter-list> →
!
! <parameter-declaration>
! <parameter-list> , <parameter-declaration>

<parameter-declaration> → <type-specifier> <identifier>

<compound-statement> → { <declaration-list> <statement-list> }

<declaration-list> →
!
! <declaration>
! <declaration> <declaration-list>

<statement-list> →
!
! <statement>
! <statement-list> <statement>

<statement> →
<compound-statement>
! <expression-statement>
! <selection-statement>
! <iteration-statement>

<expression-statement> → <expression> ;

<selection-statement> →
if ( <expression> ) <statement>
! if ( <expression> ) <statement> else <statement>

<iteration-statement> →
while ( <expression> ) <statement>
! do <statement> while ( <expression> ) ;

<expression> →
<relational-expression>
! <identifier> " <expression>

Figure 7.8
A grammar for a subset of the C++
language.
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<translation-unit> →
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! <identifier> ( <parameter-list> ) <compound-statement>

<declaration> → <type-specifier> <declarator-list> ;

<type-specifier> → void ! char ! int 

<declarator-list> →
<identifier>
! <declarator-list> <identifier>

<parameter-list> →
!
! <parameter-declaration>
! <parameter-list> , <parameter-declaration>

<parameter-declaration> → <type-specifier> <identifier>
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!
! <declaration>
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!
! <statement>
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<statement> →
<compound-statement>
! <expression-statement>
! <selection-statement>
! <iteration-statement>

<expression-statement> → <expression> ;

<selection-statement> →
if ( <expression> ) <statement>
! if ( <expression> ) <statement> else <statement>

<iteration-statement> →
while ( <expression> ) <statement>
! do <statement> while ( <expression> ) ;

<expression> →
<relational-expression>
! <identifier> " <expression>

Figure 7.8
A grammar for a subset of the C++
language.
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if ( <expression> ) <statement>
! if ( <expression> ) <statement> else <statement>

<iteration-statement> →
while ( <expression> ) <statement>
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<expression> →
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! <identifier> " <expression>
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<relational-expression> →
<additive-expression>
! <relational-expression> < <additive-expression>
! <relational-expression> > <additive-expression>
! <relational-expression> <= <additive-expression>
! <relational-expression> >= <additive-expression>

<additive-expression> →
<multiplicative-expression>
! <additive-expression> + <multiplicative-expression>
! <additive-expression> - <multiplicative-expression>

<multiplicative-expression> →
<unary-expression>
! <multiplicative-expression> * <unary-expression>
! <multiplicative-expression> / <unary-expression>

<unary-expression> →
<primary-expression>
! <identifier> ( <argument-expression-list> )

<primary-expression> →
<identifier>
! <constant>

<argument-expression-list> →
<expression>
! <argument-expression-list> , <expression>

<constant> →
<integer-constant>
! <character-constant>

<integer-constant> →
<digit>
! <integer-constant> <digit>

<character-constant> → ' <letter> '

<identifier> →
<letter>
! <identifier> <letter>
! <identifier> <digit>

<letter> →
a ! b ! c ! d ! e ! f ! g ! h ! i ! j ! k ! l ! m !
n ! o ! p ! q ! r ! s ! t ! u ! v ! w ! x ! y ! z !
A ! B ! C ! D ! E ! F ! G ! H ! I ! J ! K ! L ! M !
N ! O ! P ! Q ! R ! S ! T ! U ! V ! W ! X ! Y ! Z

<digit> →
0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9

Figure 7.8
(Continued)

Figure 7.8
(continued)
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 Th e nonterminals for this grammar are enclosed in angle brackets, <>. 
Any symbol not in brackets is in the terminal alphabet and may literally 
appear in a C program listing. Th e start symbol for this grammar is the 
nonterminal <translation-unit>. 

 Th e specifi cation of a programming language by the rules of production 
of its grammar is called  Backus Naur Form , abbreviated BNF. In BNF, the 
production symbol → is sometimes written  :  := . Th e Algol 60 language, 
designed in 1960, popularized BNF. 

 Th e following example of a parse with this grammar shows that 

 while ( a <= 9 ) 
     S1  ;  

 is a valid <statement>, assuming that  S1  is a valid <expression>. Th e parse 
consists of the derivation in FIGURE 7.9 . 

     FIGURE 7.10          shows the corresponding syntax tree for this parse. Th e 
nonterminal <statement> is the root of the tree because the purpose of the 
parse is to show that the string is a valid <statement>.        

 With this example in mind, consider the task of a C compiler. Th e 
compiler has programmed into it a set of production rules similar to the 
rules of     Figure       7   .   8    . A programmer submits a text fi le containing the source 
program, a long string of terminals, to the compiler. First, the compiler must 
determine whether the string of terminal characters represents a valid C 
translation unit. If the string is a valid <translation-unit>, then the compiler 
must generate the corresponding object code in a lower-level language. If it 
is not, the compiler must issue an appropriate syntax error. 

 Backus Naur Form (BNF) 

<character-constant> → ' <letter> '
<identifi er> →
  <letter>
  | <identifi er> <letter>
  | <identifi er> <digit>
<letter> →
  a | b | c | d | e | f | g | h | i | j | k | l | m |
  n | o | p | q | r | s | t | u | v | w | x | y | z |
  A | B | C | D | E | F | G | H | I | J | K | L | M |
  N | O | P | Q | R | S | T | U | V | W | X | Y | Z 
<digit> →
  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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 Th ere are literally hundreds of rules of production in the standard C 
grammar. Imagine what a job the C compiler has, sorting through those 
rules every time you submit a program to it! Fortunately, computer science 
theory has developed to the point where parsing is not diffi  cult for a 
compiler. When designed using the theory, C compilers can parse a program 
in a way that guarantees they will correctly decide which production to use 
for the substitution at every step of the derivation. If their parsing algorithm 
does not fi nd the derivation of <translation-unit> to match the source, they 
can prove that such a derivation does not exist and that the proposed source 
program must have a syntax error. 

 Code generation is more diffi  cult than parsing for compilers. Th e 
reason is that the object code must run on a specifi c machine produced by a 
specifi c manufacturer. Because every manufacturer’s machine has a diff erent 
architecture with diff erent instruction sets, code-generation techniques 

<statement>
⇒   <iteration-statement>
⇒ while ( <expression> ) <statement>
⇒ while ( <relational-expression> ) <statement>
⇒ while ( <relational-expression> <= <additive-expression> ) <statement>
⇒ while ( <additive-expression> <= <additive-expression> ) <statement>
⇒ while ( <multiplicative-expression> <= <additive-expression> ) <statement>
⇒ while ( <unary-expression> <= <additive-expression> ) <statement>
⇒ while ( <primary-expression> <= <additive-expression> ) <statement>
⇒ while ( <identifi er> <= <additive-expression> ) <statement>
⇒ while ( <letter> <= <additive-expression> ) <statement>
⇒ while ( a <= <additive-expression> ) <statement>
⇒ while ( a <= <multiplicative-expression> ) <statement>
⇒ while ( a <= <unary-expression> ) <statement>
⇒ while ( a <= <primary-expression> ) <statement>
⇒ while ( a <= <constant> ) <statement>
⇒ while ( a <= <integer-constant> ) <statement>
⇒ while ( a <= <digit> ) <statement>
⇒ while ( a <= 9 ) <statement>
⇒ while ( a <= 9 ) <expression-statement>
⇒ while ( a <= 9 ) <expression> ;
⇒* while ( a <= 9 ) S1;

FIGURE 7.9
The derivation of nonterminal <statement> while ( a <= 9 ) S1; for the grammar in Figure 7.8.
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for one machine may not be appropriate for another. A single, standard 
von Neumann architecture based on theoretical concepts does not exist. 
Consequently, not as much theory for code generation has been developed 
to guide compiler designers in their compiler construction eff orts. 

  Context Sensitivity of C  
 It appears from     Figure       7   .   8     that the C language is context-free. Every 
production rule has only a single nonterminal on the left  side. Th is is in 
contrast to a context-sensitive grammar, which can have more than a 
single nonterminal on the left , as in     Figure       7   .   3    . Appearances are deceiving. 
Even though the grammar for this subset of C, as well as the full standard 
C language, is context-free, the language itself has some context-sensitive 
aspects. 

C has a context-free 
grammar.

  FIGURE   7 . 10     
 The syntax tree for a parse of nonterminal <statement> while (a <= 9) S1; for the grammar in Figure 7.9. 
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The C language

• C has a context-free grammar.

• C is not a context-free language.
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Finite state machines
• Finite set of states called nodes represented 

by circles

• Transitions between states represented by 
directed arcs

• Each arc labeled by a terminal character

• One state designated the start state

• A nonempty set of states designated final 
states
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  An FSM to Parse an Identifi er  
     FIGURE 7.11          shows an FSM that parses an identifi er as defi ned by the 
grammar in     Figure       7    .   1    . Th e set of states is {A, B, C}. A is the start state, and B 
is the fi nal state. Th ere is a transition from A to B on a letter, from A to C on 
a digit, from B to B on a letter or a digit, and from C to C on a letter or a digit.        

 To use the FSM, imagine that the input string is written on a piece of 
paper tape. Start in the start state, and scan the characters on the input tape 
from left  to right. Each time you scan the next character on the tape, make a 
transition to another state of the FSM. Use only the transition that is allowed 
by the arc corresponding to the character you have just scanned. Aft er 
scanning all the input characters, if you are in a fi nal state, the characters are 
a valid identifi er. Otherwise they are not. 

  Example 7.4  To parse the string  cab3 , you would make the following 
transitions: 

 Current state: A Input:  cab3  Scan  c  and go to B. 
 Current state: B Input:  ab3  Scan  a  and go to B. 
 Current state: B Input:  b3  Scan  b  and go to B. 
 Current state: B Input:  3  Scan  3  and go to B. 
 Current state: B Input: Check for fi nal state. 

 Because there is no more input and the last state is B, a fi nal state,  cab3  is a 
valid identifi er. ❚

 You can also represent an FSM by its state transition table.     FIGURE 7.12

is the state transition table for the FSM of     Figure       7    .   11    . Th e table lists the next 
state reached by the transition from a given current state on a given input 
symbol.        

  FIGURE   7 . 11     
 An FSM to parse an identifi er. 
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  FIGURE   7 . 12     
 The state transition 
table for the FSM of 
Figure 7.11. 
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Parsing rules
• Start at the start state

• Scan the string from left to right

• For each terminal scanned, make a transition 
to the next state in the FSM

• After the last terminal scanned, if you are in 
a final state the string is in the language

• Otherwise, it is not
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  An FSM to Parse an Identifi er  
     FIGURE 7.11          shows an FSM that parses an identifi er as defi ned by the 
grammar in     Figure       7    .   1    . Th e set of states is {A, B, C}. A is the start state, and B 
is the fi nal state. Th ere is a transition from A to B on a letter, from A to C on 
a digit, from B to B on a letter or a digit, and from C to C on a letter or a digit.        

 To use the FSM, imagine that the input string is written on a piece of 
paper tape. Start in the start state, and scan the characters on the input tape 
from left  to right. Each time you scan the next character on the tape, make a 
transition to another state of the FSM. Use only the transition that is allowed 
by the arc corresponding to the character you have just scanned. Aft er 
scanning all the input characters, if you are in a fi nal state, the characters are 
a valid identifi er. Otherwise they are not. 

  Example 7.4  To parse the string  cab3 , you would make the following 
transitions: 

 Current state: A Input:  cab3  Scan  c  and go to B. 
 Current state: B Input:  ab3  Scan  a  and go to B. 
 Current state: B Input:  b3  Scan  b  and go to B. 
 Current state: B Input:  3  Scan  3  and go to B. 
 Current state: B Input: Check for fi nal state. 

 Because there is no more input and the last state is B, a fi nal state,  cab3  is a 
valid identifi er. ❚

 You can also represent an FSM by its state transition table.     FIGURE 7.12

is the state transition table for the FSM of     Figure       7    .   11    . Th e table lists the next 
state reached by the transition from a given current state on a given input 
symbol.        

  FIGURE   7 . 11     
 An FSM to parse an identifi er. 
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Simplified FSM
• Not all states have transitions on all terminal 

symbols

• Two ways to detect an illegal string

‣ You may run out of input, and not be in a 
final state

‣ You may be in some state, and the next 
input character does not correspond to 
any of the transitions from that state
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  Simplifi ed FSMs  
 It is oft en convenient to simplify the diagram for an FSM by eliminating the 
state whose sole purpose is to provide transitions for illegal input characters. 
State C in this machine is such a state. If the fi rst character is a digit, the 
string will not be a valid identifi er, regardless of the following characters. 
State C acts like a failure state. Once you make a transition to C, you can 
never make a transition to another state, and you know the input string 
eventually will be declared invalid.     FIGURE 7.13          shows the simplifi ed FSM of 
    Figure       7    .   11     without the failure state.        

 When you parse a string with this simplifi ed machine, you will not be 
able to make a transition when you encounter an illegal character in the input 
string. Th ere are two ways to detect an illegal sentence in a simplifi ed FSM: 

 ❯  You may run out of input and not be in a fi nal state. 
 ❯  You may be in some state, and the next input character does not 

correspond to any of the transitions from that state. 

FIGURE 7.14          is the corresponding state transition table for     Figure       7    .   13     . 
Th e state transition table for a simplifi ed machine has no entry for a missing 
transition. Note that this table has no entry under the digit column for the 
current state of A. Th e remaining machines in this chapter are written in 
simplifi ed form.        

  Nondeterministic FSMs  
 When you parse a sentence using a grammar, frequently you must 
choose between several production rules for substitution in a derivation 
step. Similarly, nondeterministic FSMs require you to decide between 
more than one transition when parsing the input string.     FIGURE 7.15          is 
a nondeterministic FSM to parse a signed integer. It is nondeterministic 
because there is at least one state that has more than one transition from 
it on the same character. For example, state A has a transition to both B 
and C on a digit. There is also some nondeterminism at state B because, 

  FIGURE   7 . 13     
 The FSM of Figure 7.11 without the failure state. 
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A
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  FIGURE   7 . 14     
 The state transition 
table for the FSM of 
Figure 7.13. 
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  Simplifi ed FSMs  
 It is oft en convenient to simplify the diagram for an FSM by eliminating the 
state whose sole purpose is to provide transitions for illegal input characters. 
State C in this machine is such a state. If the fi rst character is a digit, the 
string will not be a valid identifi er, regardless of the following characters. 
State C acts like a failure state. Once you make a transition to C, you can 
never make a transition to another state, and you know the input string 
eventually will be declared invalid.     FIGURE 7.13          shows the simplifi ed FSM of 
    Figure       7    .   11     without the failure state.        

 When you parse a string with this simplifi ed machine, you will not be 
able to make a transition when you encounter an illegal character in the input 
string. Th ere are two ways to detect an illegal sentence in a simplifi ed FSM: 

 ❯  You may run out of input and not be in a fi nal state. 
 ❯  You may be in some state, and the next input character does not 

correspond to any of the transitions from that state. 

FIGURE 7.14          is the corresponding state transition table for     Figure       7    .   13     . 
Th e state transition table for a simplifi ed machine has no entry for a missing 
transition. Note that this table has no entry under the digit column for the 
current state of A. Th e remaining machines in this chapter are written in 
simplifi ed form.        

  Nondeterministic FSMs  
 When you parse a sentence using a grammar, frequently you must 
choose between several production rules for substitution in a derivation 
step. Similarly, nondeterministic FSMs require you to decide between 
more than one transition when parsing the input string.     FIGURE 7.15          is 
a nondeterministic FSM to parse a signed integer. It is nondeterministic 
because there is at least one state that has more than one transition from 
it on the same character. For example, state A has a transition to both B 
and C on a digit. There is also some nondeterminism at state B because, 

  FIGURE   7 . 13     
 The FSM of Figure 7.11 without the failure state. 
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Nondeterministic FSM
• At least one state has more than one 

transition from it on the same character

• If you scan the last character and you are in 
a final state, the string is valid

• If you scan the last character and you are not 
in a final state, the string might be invalid

• To prove invalid, you must try all possibilities 
with backtracking
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to C is possible.        

  Example 7.5  You must make the following decisions to parse  +203  with 
this nondeterministic FSM: 

 Current state: A Input:  +203  Scan  +  and go to B. 
 Current state: B Input:  203  Scan  2  and go to B. 
 Current state: B Input:  03  Scan  0  and go to B. 
 Current state: B Input:  3   Scan  3  and go to C. 
 Current state: C Input:  Check for fi nal state. 

 Because there is no more input and you are in the fi nal state C, you have 
proven that the input string  +203  is a valid signed integer. ❚ 

 When parsing with rules of production, you run the risk of making 
an incorrect choice early in the parse. You may reach a dead end where 
no substitution will get your intermediate string of terminals and 
nonterminals closer to the given string. Just because you reach such a dead 
end does not necessarily mean that the string is invalid. All invalid strings 
will produce dead ends in an attempted parse. But even valid strings have 
the potential for producing dead ends if you make a wrong decision early 
in the derivation. 

 Th e same principle applies with nondeterministic FSMs. With the 
machine of     Figure       7   .   15    , if you are in the start state, A, and the next input 
character is  7 , you must choose between the transitions to B and to C. 
Suppose you choose the transition to C and then fi nd that there is another 
input character to scan. Because there are no transitions from C, you have 
reached a dead end in your attempted parse. You must conclude, therefore, 
that either the input string was invalid—or it was valid and you made an 
incorrect choice at an earlier point. 

  FIGURE   7 . 15     
 A nondeterministic FSM to parse a signed integer. 
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FIGURE 7.16          is the state transition table for the machine of     Figure       7    .   15     . 
Th e nondeterminism is evident from the multiple entries (B, C) in the 
digit column. Th ey represent a choice that must be made when attempting 
a parse.        

  Machines with Empty Transitions  
 In the same way that it is convenient to incorporate the empty string into 
production rules, it is sometimes convenient to construct FSMs with 
transitions on the empty string. Such transitions are called  empty transitions . 
FIGURE 7.17          is an FSM that corresponds closely to the grammar in     Figure       7    .   2      

to parse a signed integer, and     FIGURE 7.18          is its state transition table.               
 In     Figure       7    .   17     , F is the state aft er the fi rst character, and M is the 

magnitude state analogous to the F and M nonterminals of the grammar. 
In the same way that a sign can be  + ,  - , or neither, the transition from I to F 
can be on  + ,  - , or ε.  

  FIGURE   7 . 17     
 An FSM with an empty transition to parse a signed integer. 
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  FIGURE   7 . 16     
 The state transition table for the FSM of Figure 7.15. 
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Empty transitions
• An empty transition allows you to go from 

one state to another state without scanning 
a terminal character

• All finite state machines with empty 
transitions are considered nondeterministic
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FIGURE 7.16          is the state transition table for the machine of     Figure       7    .   15     . 
Th e nondeterminism is evident from the multiple entries (B, C) in the 
digit column. Th ey represent a choice that must be made when attempting 
a parse.        

  Machines with Empty Transitions  
 In the same way that it is convenient to incorporate the empty string into 
production rules, it is sometimes convenient to construct FSMs with 
transitions on the empty string. Such transitions are called  empty transitions . 
FIGURE 7.17          is an FSM that corresponds closely to the grammar in     Figure       7    .   2      

to parse a signed integer, and     FIGURE 7.18          is its state transition table.               
 In     Figure       7    .   17     , F is the state aft er the fi rst character, and M is the 

magnitude state analogous to the F and M nonterminals of the grammar. 
In the same way that a sign can be  + ,  - , or neither, the transition from I to F 
can be on  + ,  - , or ε.  

  FIGURE   7 . 17     
 An FSM with an empty transition to parse a signed integer. 
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  FIGURE   7 . 16     
 The state transition table for the FSM of Figure 7.15. 
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  Example 7.6  To parse  32  requires the following decisions: 

 Current state: I Input:  32    Scan ε and go to F. 
 Current state: F Input:  32  Scan  3  and go to M. 
 Current state: M Input:  2   Scan  2  and go to M. 
 Current state: M Input:  Check for fi nal state. 

 Th e transition from I to F on ε does not consume an input character. When you 
are in state I, you can do one of three things: (a) scan  +  and go to F, (b) scan  -  
and go to F, or (c) scan nothing (that is, the empty string) and go to F. ❚

 Machines with empty transitions are always considered nondeter-
ministic. In Example 7.6, the nondeterminism comes from the decision 
you must make when you are in state I and the next character is  + . You 
must decide whether to go from I to F on  +  or from I to F on ε. These are 
different transitions because they leave you with different input strings, 
even though they are transitions to the same state. 

 Given an FSM with empty transitions, it is always possible to transform 
it to an equivalent machine without the empty transitions. Th ere are two 
steps in the algorithm to eliminate an empty transition. 

 ❯  Given a transition from p to q on ε, for every transition from q to r on 
 a , add a transition from p to r on  a . 

 ❯  If q is a fi nal state, make p a fi nal state. 

 Th is algorithm follows from the concatenation property of ε: 

 εa = a 

  Example 7.7      FIGURE 7.19          shows how to remove an empty transition from 
the machine in part (a), resulting in the equivalent machine in part (b). 
Because there is a transition from state X to state Y on ε, and from state Y 

 Machines with empty 
transitions are considered 
nondeterministic. 

 Th e algorithm to remove an 
empty transition 

  FIGURE   7 . 18     
 The state transition table for the FSM of Figure 7.17. 
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Removing empty 
transitions

• Given a transition from p to q on   , for 
every transition from q to r on a, add a 
transition from p to r on a.

• If q is a final state, make p a final state

�
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to state Z on  a , you can eliminate the empty transition if you construct a 
transition from state X to state Z on  a . If you are in X, you might just as well 
go to Z directly on  a . Th e state and remaining input will be the same as if you 
went from X to Z via Y on ε. ❚        

  Example 7.8      FIGURE 7.20          shows this transformation on the FSM of 
    Figure       7   .   17    . Th e empty transition from I to F is replaced by the transition 
from I to M on digit, because there is a transition from F to M on digit. ❚         

 In Example 7.8, there is only one transition from F to M, so the empty 
transition from I to F is replaced by only one transition from I to M. If an 
FSM has more than one transition from the destination state of the empty 
transition, you must add more than one transition when you eliminate the 
empty transition. 

  Example 7.9  To eliminate the empty transition from W to X in     FIGURE 7.21(a)     , 
you need to replace it with two transitions, one from W to Y on  a  and one from 
W to Z on  b . In this example, because X is a fi nal state in     Figure       7   .   21    (a), W 
becomes a fi nal state in the equivalent machine of     Figure     7   .   21    (b) in accordance 
with the second step of the algorithm. ❚        

 Removing the empty transition from     Figure       7   .   17     produced a 
deterministic machine. In general, however, removing all the empty 
transitions does not guarantee that the FSM is deterministic. Even though 

  FIGURE   7 . 19     
 Removing an empty 
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to state Z on  a , you can eliminate the empty transition if you construct a 
transition from state X to state Z on  a . If you are in X, you might just as well 
go to Z directly on  a . Th e state and remaining input will be the same as if you 
went from X to Z via Y on ε. ❚        

  Example 7.8      FIGURE 7.20          shows this transformation on the FSM of 
    Figure       7   .   17    . Th e empty transition from I to F is replaced by the transition 
from I to M on digit, because there is a transition from F to M on digit. ❚         

 In Example 7.8, there is only one transition from F to M, so the empty 
transition from I to F is replaced by only one transition from I to M. If an 
FSM has more than one transition from the destination state of the empty 
transition, you must add more than one transition when you eliminate the 
empty transition. 

  Example 7.9  To eliminate the empty transition from W to X in     FIGURE 7.21(a)     , 
you need to replace it with two transitions, one from W to Y on  a  and one from 
W to Z on  b . In this example, because X is a fi nal state in     Figure       7   .   21    (a), W 
becomes a fi nal state in the equivalent machine of     Figure     7   .   21    (b) in accordance 
with the second step of the algorithm. ❚        

 Removing the empty transition from     Figure       7   .   17     produced a 
deterministic machine. In general, however, removing all the empty 
transitions does not guarantee that the FSM is deterministic. Even though 
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to state Z on  a , you can eliminate the empty transition if you construct a 
transition from state X to state Z on  a . If you are in X, you might just as well 
go to Z directly on  a . Th e state and remaining input will be the same as if you 
went from X to Z via Y on ε. ❚        

  Example 7.8      FIGURE 7.20          shows this transformation on the FSM of 
    Figure       7   .   17    . Th e empty transition from I to F is replaced by the transition 
from I to M on digit, because there is a transition from F to M on digit. ❚         

 In Example 7.8, there is only one transition from F to M, so the empty 
transition from I to F is replaced by only one transition from I to M. If an 
FSM has more than one transition from the destination state of the empty 
transition, you must add more than one transition when you eliminate the 
empty transition. 

  Example 7.9  To eliminate the empty transition from W to X in     FIGURE 7.21(a)     , 
you need to replace it with two transitions, one from W to Y on  a  and one from 
W to Z on  b . In this example, because X is a fi nal state in     Figure       7   .   21    (a), W 
becomes a fi nal state in the equivalent machine of     Figure     7   .   21    (b) in accordance 
with the second step of the algorithm. ❚        

 Removing the empty transition from     Figure       7   .   17     produced a 
deterministic machine. In general, however, removing all the empty 
transitions does not guarantee that the FSM is deterministic. Even though 
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to state Z on  a , you can eliminate the empty transition if you construct a 
transition from state X to state Z on  a . If you are in X, you might just as well 
go to Z directly on  a . Th e state and remaining input will be the same as if you 
went from X to Z via Y on ε. ❚        

  Example 7.8      FIGURE 7.20          shows this transformation on the FSM of 
    Figure       7   .   17    . Th e empty transition from I to F is replaced by the transition 
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all machines with empty transitions are nondeterministic, an FSM with 
no empty transitions may still be nondeterministic.     Figure       7   .   15     is such a 
machine, for example. 

 Given the choice, you are always better off  parsing with a deterministic 
rather than a nondeterministic FSM. With a deterministic machine, there 
is no possibility of making a wrong choice with a valid input string and 
terminating in a dead end. If you ever terminate at a dead end, you can 
conclude with certainty that the input string is invalid. 

 Computer scientists have been able to prove that for every 
nondeterministic FSM there is an equivalent deterministic FSM. Th at is, 
there is a deterministic machine that recognizes exactly the same 
language. Unfortunately, the proof of this useful result is beyond the 
scope of this text. The proof consists of a recipe that tells how to construct 
an equivalent deterministic machine from the nondeterministic one. 

  Multiple Token Recognizers  
 A  token  is a string of terminal characters that has meaning as a group. Th e 
characters usually correspond to some nonterminal in a language’s grammar. 
For example, consider the Pep/9 assembly language statement 

 mask: .WORD 0x00FF 

 Th e tokens in this statement are  mask  : ,  .WORD , and  0x00FF . Each is a set 
of characters from the assembly language alphabet and has meaning as a 
group. Th eir individual meanings are a symbol defi nition, a dot command, 
and a hexadecimal constant, respectively. 

 To a certain extent, the particular grouping of characters that you 
choose to form one token is arbitrary. For example, you could choose the 
string of characters  0x  and  00FF  to be separate tokens,  0x  for the prefi x and 
 00FF  for the value. You would normally choose the characters of a token 
to be those that make the implementation of the FSM as simple as possible. 

 A common use of an FSM in a translator is to detect the tokens in 
the source string. Consider the assembler’s job when confronted with this 
source line. Suppose the assembler has already determined that  mask:  is 
a symbol defi nition and  .WORD  is a dot command. It knows that either a 
decimal or hexadecimal constant can follow the dot command, so it must be 
programmed to accept either. It needs an FSM that recognizes both. 

     FIGURE 7.22(a)      shows two machines for parsing a hexadecimal constant 
and an unsigned integer. D is the fi nal state in the fi rst machine, and F is the 
fi nal state in the second machine for the unsigned integer. A hexadecimal 
constant is the digit  0 , followed by lowercase  x  or uppercase  X , followed by 
one or more hexdigits, which are  0 ..9, or  a .. f , or  A .. F . In the second machine, 
a digit is  0 .. 9 . 
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Figure 7.22

 To construct an FSM that will recognize both the hexadecimal constant 
and the unsigned integer, draw a new start state for the combined machine, 
state G in     Figure       7   .   22    (b). Th en draw empty transitions from the new start 
state to the start state of each individual machine—in this example, from G 
to A and G to E. Th e result is one nondeterministic FSM that will recognize 
either token. Th e fi nal state on termination tells you what token you have 
recognized. Aft er the parse, if you terminate in state D, you have detected a 
hexadecimal constant, and if you terminate in state F, you have detected an 
unsigned integer. 

 To get the machine into a more useful form, you should eliminate the 
empty transitions.     FIGURE 7.23(a)      shows removal of the empty transitions 
for the FSM of     Figure       7   .   22    (b). Aft er their removal, states A and E are 

FIGURE 7.22 
Combining two machines to construct one FSM that recognizes both tokens.
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  FIGURE   7 . 23     
 Transforming the FSM of Figure 7.22(b). 
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 To construct an FSM that will recognize both the hexadecimal constant 
and the unsigned integer, draw a new start state for the combined machine, 
state G in     Figure       7   .   22    (b). Th en draw empty transitions from the new start 
state to the start state of each individual machine—in this example, from G 
to A and G to E. Th e result is one nondeterministic FSM that will recognize 
either token. Th e fi nal state on termination tells you what token you have 
recognized. Aft er the parse, if you terminate in state D, you have detected a 
hexadecimal constant, and if you terminate in state F, you have detected an 
unsigned integer. 

 To get the machine into a more useful form, you should eliminate the 
empty transitions.     FIGURE 7.23(a)      shows removal of the empty transitions 
for the FSM of     Figure       7   .   22    (b). Aft er their removal, states A and E are 

FIGURE 7.22 
Combining two machines to construct one FSM that recognizes both tokens.
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 Transforming the FSM of Figure 7.22(b). 
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inaccessible; that is, you can never reach them starting from the start state, 
regardless of the input string. Consequently, they can never aff ect the parse 
and can be eliminated from the machine, as shown in     Figure       7   .   23    (b).         

 As another example of when the translator needs to recognize multiple 
tokens, consider the assembler’s job when confronted with the following two 
source lines: 

 NOTE: LDWA this,d ;comment 1 
       NOTA        ;comment 2 

 Th e fi rst token on the fi rst line is a symbol defi nition. Th e fi rst token on 
the second line is a mnemonic for a unary instruction. At the beginning 
of each line, the translator needs an FSM to recognize a symbol defi nition, 
which is in the form of an identifi er followed immediately by a colon, or 
a mnemonic, which is in the form of an identifi er.     FIGURE 7.24          shows the 
appropriate multiple-token FSM.        

 In the fi rst line, this machine makes the following transitions: 

 A to B on  N  
 B to B on  O  
 B to B on  T  
 B to B on  E  
 B to C on  :   

 aft er which the translator halts in fi nal state C and therefore has detected a 
symbol defi nition. In the second line, it makes the transitions 

 A to B on  N  
 B to B on  O  
 B to B on  T  
 B to B on  A   

 Because the next input character is not a colon, the FSM does not make the 
transition to state C. Th e translator halts in fi nal state B and therefore has 
detected an identifi er. 

  Grammars Versus FSMs  
 Grammars and FSMs are not equivalent in power. Of the two, grammars 
are more powerful than FSMs. Th at is, there are some languages whose 
syntax rules are so complex that, even though they can be specifi ed with 
a grammar, they cannot be specifi ed with an FSM. On the other hand, any 
language whose syntax rules are simple enough to be specifi ed by an FSM 
can also be specifi ed by a grammar. 

     Figure       7   .   1     is the grammar for an identifi er, and     Figure       7   .   13     is the FSM 
for an identifi er. Th e rules for forming a valid identifi er are that the fi rst 

  FIGURE   7 . 24     
 An FSM to parse a Pep/9 
assembly language 
identifi er or symbol 
defi nition. 
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character must be a letter and the remaining characters must be letters or 
digits. Th ese rules are so simple that an identifi er can be specifi ed by either 
a grammar or an FSM. 

     Figure       7   .   5     is a grammar for an expression. Th e language of expressions 
is so complex that it is mathematically impossible to specify an FSM that can 
parse an expression. Th e problem with FSMs for expressions is that you can 
have unlimited nested parentheses. Once the FSM scans a left  parenthesis, 
it must transition to a state knowing that it is nested one level deep. If it 
scans another left  parenthesis, it must transition to a state knowing that it 
is now nested two levels deep. If it then scans a right parenthesis, it must 
transition back to a state representing one level deep. It continues scanning 
left  and right parentheses, transitioning to appropriate states for each level 
of nesting. To detect a valid expression, the fi nal states must be ones with 
no nesting. 

 Th ere is no mathematical limit in the grammar to the nesting level 
of an expression. Th erefore, to construct an equivalent FSM, there would 
be no limit to the number of states. However, an FSM must have a fi nite 
number of states. Th erefore, it is impossible to specify an FSM for an 
expression. 

 Although a description of regular expressions is beyond the scope of 
this text, how powerful are they? It turns out that for every regular expression 
there is an equivalent FSM, and for every FSM there is an equivalent regular 
expression. Consequently, FSMs and regular expressions are equal in power 
and are both less powerful than grammars.     FIGURE 7.25          shows the power 
relationship between the three methods for specifying the syntax of a 
language. 

 7.3 Implementing Finite-State Machines 
 Th e remainder of this chapter shows how language translators convert a 
source program into an object program. It uses the Java language rather than 
C to illustrate the translation techniques. Th e syntax of the Java language is 

Grammars

Finite-state machines Regular expressions Less powerful

More powerful

FIGURE 7.25 
The power of grammars, FSMs, and regular expressions.
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similar to that of C, and it has the advantage of being object-oriented. Java 
provides an extensive library of graphical user interface (GUI) elements for 
input and output. Th e programs in this chapter get their input as a string of 
terminal characters from a single input window and send the results of the 
translation to the standard output window. Th e GUI programming details 
are not shown but are available with the soft ware for this text.        

 Java itself is an interpreted language based on the Java Virtual Machine 
(JVM).     FIGURE 7.26          shows the diff erence between a compiled language and 
an interpreted language. Part (a) shows the translation process for a compiled 
language like C. Every run in the computation process executes a machine 
language program with input and output. In the fi rst run, a C compiler 
converts the source code in a high-level language to the object code in machine 
language. In the second run, the machine language object code executes, 
processing the application input and producing the application output. 

 Part (b) shows the translation process for an interpreted language like 
Java and Pep/9, both of which are based on virtual machines. In the fi rst 

  FIGURE   7 . 26     
 The difference between compilation and interpretation.  
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similar to that of C, and it has the advantage of being object-oriented. Java 
provides an extensive library of graphical user interface (GUI) elements for 
input and output. Th e programs in this chapter get their input as a string of 
terminal characters from a single input window and send the results of the 
translation to the standard output window. Th e GUI programming details 
are not shown but are available with the soft ware for this text.        

 Java itself is an interpreted language based on the Java Virtual Machine 
(JVM).     FIGURE 7.26          shows the diff erence between a compiled language and 
an interpreted language. Part (a) shows the translation process for a compiled 
language like C. Every run in the computation process executes a machine 
language program with input and output. In the fi rst run, a C compiler 
converts the source code in a high-level language to the object code in machine 
language. In the second run, the machine language object code executes, 
processing the application input and producing the application output. 

 Part (b) shows the translation process for an interpreted language like 
Java and Pep/9, both of which are based on virtual machines. In the fi rst 
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 The difference between compilation and interpretation.  
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run, the object code is byte code instead of machine language. In the second 
run, the object code does not execute directly. Instead, the virtual machine 
executes with two sources of input, the object byte code from the fi rst run 
and the application input. 

Advantages of interpretation include fast compilation time and ease of 
portability. It is faster to compile into byte code because byte code is at a 
higher level of abstraction than machine code and thus easier to translate. 
    Figure       2   .   3     shows how a compiled language like C achieves its platform 
independence. Th e language maintainers must have a compiler for every 
platform. With an interpreted language like Java, the same compiler 
works for all platforms. Th e language maintainers need only to provide a 
virtual machine for every platform, a simpler task than providing separate 
compilers. 

   A disadvantage of interpretation is slow execution speed compared to 
compilation. During execution time, the application is not executing directly. 
Instead, the virtual machine is executing. Th is extra layer of abstraction 
provided by the virtual machine during run time makes execution of 
interpreted programs generally slower than execution of equivalent compiled 
programs. 

  The Compilation Process  
 Th e syntax of a programming language is usually specifi ed by a formal 
grammar, which forms the basis of the parsing algorithm for the translator. 
Rather than specifying all the syntax, as the grammar in     Figure       7   .   8     does, the 
formal grammar frequently specifi es an upper level of abstraction and leaves 
the lower level to be specifi ed by regular expressions or FSMs. 

FIGURE 7.27          shows the steps in a typical compilation process. Th e low-
level syntax analysis is called  lexical analysis , and the high-level syntax 
analysis is called  parsing . (Th is is a more specialized meaning of the word 
parse . It is sometimes used in a more general sense to include all syntax 
analysis.) In most translators for artifi cial languages, the lexical analyzer 
is based on a deterministic FSM whose input is a string of characters. Th e 
parser is usually based on a grammar whose input is the sequence of tokens 
taken from the lexical analyzer. 

Advantage of interpretation

Disadvantage of 
interpretation

FIGURE 7.27 
Steps in the compilation process.
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Stages of translation
• Input of lexical analyzer – string of terminal 

characters

• Output of lexical analyzer and input of 
parser – stream of tokens

• Output of parser and input of code 
generator – syntax tree and/or program in 
low-level language

• Output of code generator – object program
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FSM implementation 
techniques

• Table-lookup

• Direct-code



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

A table-lookup 
implementation
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  An FSM to Parse an Identifi er  
     FIGURE 7.11          shows an FSM that parses an identifi er as defi ned by the 
grammar in     Figure       7    .   1    . Th e set of states is {A, B, C}. A is the start state, and B 
is the fi nal state. Th ere is a transition from A to B on a letter, from A to C on 
a digit, from B to B on a letter or a digit, and from C to C on a letter or a digit.        

 To use the FSM, imagine that the input string is written on a piece of 
paper tape. Start in the start state, and scan the characters on the input tape 
from left  to right. Each time you scan the next character on the tape, make a 
transition to another state of the FSM. Use only the transition that is allowed 
by the arc corresponding to the character you have just scanned. Aft er 
scanning all the input characters, if you are in a fi nal state, the characters are 
a valid identifi er. Otherwise they are not. 

  Example 7.4  To parse the string  cab3 , you would make the following 
transitions: 

 Current state: A Input:  cab3  Scan  c  and go to B. 
 Current state: B Input:  ab3  Scan  a  and go to B. 
 Current state: B Input:  b3  Scan  b  and go to B. 
 Current state: B Input:  3  Scan  3  and go to B. 
 Current state: B Input: Check for fi nal state. 

 Because there is no more input and the last state is B, a fi nal state,  cab3  is a 
valid identifi er. ❚

 You can also represent an FSM by its state transition table.     FIGURE 7.12

is the state transition table for the FSM of     Figure       7    .   11    . Th e table lists the next 
state reached by the transition from a given current state on a given input 
symbol.        

  FIGURE   7 . 11     
 An FSM to parse an identifi er. 
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  FIGURE   7 . 12     
 The state transition 
table for the FSM of 
Figure 7.11. 
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Console output
cab3 is a valid identifier.

Console output
3cab is not a valid identifier.

Figure 7.28
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package fig0728;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Figure 7.28 of J Stanley Warford, <i>Computer Systems</i>, Fifth edition,
 * Jones &amp; Bartlett, 2017.
 *
 * <p>
 * Implementation of the FSM of Figure 7.11 with the table-lookup technique.
 *
 * <p>
 * File: <code>Fig0728Main.java</code>
 *
 * @see <a href="http://computersystemsbook.com"><i>Computer Systems</i></a>
 * book home page,
 * <a href="http://www.cslab.pepperdine.edu/warford/cosc330/">course</a>
 * home page.
 * @author J. Stanley Warford
 */

Figure 7.28
(continued)



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

Javadoc

Figure 7.28
(continued)
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Figure 7.28
(continued)
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public class Fig0728Main implements ActionListener {

   final JFrame mainWindowFrame;
   final JPanel inputPanel;
   final JLabel label;
   final JTextField textField;
   final JPanel buttonPanel;
   final JButton button;

Figure 7.28
(continued)
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public Fig0728Main() {
   // Set up the main window.
   mainWindowFrame = new JFrame("Figure 7.28");
   mainWindowFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
   mainWindowFrame.setSize(new Dimension(240, 120));

   // Lay out the label and text field input panel from top to bottom.
   inputPanel = new JPanel();
   inputPanel.setLayout(new BoxLayout(inputPanel, BoxLayout.PAGE_AXIS));
   label = new JLabel("Enter a string of letters and digits:");
   inputPanel.add(label);
   textField = new JTextField(20);
   inputPanel.add(textField);
   inputPanel.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));

   // Lay out the button from left to right.
   buttonPanel = new JPanel();
   buttonPanel.setLayout(new BoxLayout(buttonPanel, BoxLayout.LINE_AXIS));
   buttonPanel.setBorder(BorderFactory.createEmptyBorder(0, 10, 10, 10));
   buttonPanel.add(Box.createHorizontalGlue());
   button = new JButton("Parse");
   buttonPanel.add(button);
   buttonPanel.add(Box.createRigidArea(new Dimension(10, 0)));

Figure 7.28
(continued)
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   // Combine the input panel and the button panel in the main window.
   mainWindowFrame.add(inputPanel, BorderLayout.CENTER);
   mainWindowFrame.add(buttonPanel, BorderLayout.PAGE_END);

   textField.addActionListener(this);
   button.addActionListener(this);

   mainWindowFrame.pack();
   mainWindowFrame.setVisible(true);
}

Figure 7.28
(continued)
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private static void createAndShowGUI() {
   JFrame.setDefaultLookAndFeelDecorated(true);
   new Fig0728Main();
}

public static void main(String[] args) {
   javax.swing.SwingUtilities.invokeLater(Fig0728Main::createAndShowGUI);
}

Figure 7.28
(continued)
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   public static boolean isAlpha(char ch) {
      return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z');
   }
   // States
   static final int S_A = 0;
   static final int S_B = 1;
   static final int S_C = 2;
   // Alphabet
   static final int T_LETTER = 0;
   static final int T_DIGIT = 1;
   // State transition table
   static final int[][] FSM = {
      {S_B, S_C},
      {S_B, S_B},
      {S_C, S_C}
   };

Figure 7.28
(continued)



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

   @Override
   public void actionPerformed(ActionEvent event) {
      String line = textField.getText();
      char ch;
      int FSMChar;
      int state = S_A;
      for (int i = 0; i < line.length(); i++) {
         ch = line.charAt(i);
         FSMChar = isAlpha(ch) ? T_LETTER : T_DIGIT;
         state = FSM[state][FSMChar];
      }
      if (state == S_B) {
         System.out.printf("%s is a valid identifier.\n", line);
      } else {
         System.out.printf("%s is not a valid identifier.\n", line);
      }
   }
}

Figure 7.28
(continued)
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A direct-code 
implementation
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to state Z on  a , you can eliminate the empty transition if you construct a 
transition from state X to state Z on  a . If you are in X, you might just as well 
go to Z directly on  a . Th e state and remaining input will be the same as if you 
went from X to Z via Y on ε. ❚        

  Example 7.8      FIGURE 7.20          shows this transformation on the FSM of 
    Figure       7   .   17    . Th e empty transition from I to F is replaced by the transition 
from I to M on digit, because there is a transition from F to M on digit. ❚         

 In Example 7.8, there is only one transition from F to M, so the empty 
transition from I to F is replaced by only one transition from I to M. If an 
FSM has more than one transition from the destination state of the empty 
transition, you must add more than one transition when you eliminate the 
empty transition. 

  Example 7.9  To eliminate the empty transition from W to X in     FIGURE 7.21(a)     , 
you need to replace it with two transitions, one from W to Y on  a  and one from 
W to Z on  b . In this example, because X is a fi nal state in     Figure       7   .   21    (a), W 
becomes a fi nal state in the equivalent machine of     Figure     7   .   21    (b) in accordance 
with the second step of the algorithm. ❚        

 Removing the empty transition from     Figure       7   .   17     produced a 
deterministic machine. In general, however, removing all the empty 
transitions does not guarantee that the FSM is deterministic. Even though 

  FIGURE   7 . 19     
 Removing an empty 
transition.  ZYX
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Console output
Invalid entry.

Console output
Number = -58

Figure 7.29
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public class Fig0729Main implements ActionListener {

   final JFrame mainWindowFrame;
   final JPanel inputPanel;
   final JLabel label;
   final JTextField textField;
   final JPanel buttonPanel;
   final JButton button;

...

   @Override
   public void actionPerformed(ActionEvent event) {
      String line = textField.getText();
      Parser parser = new Parser();
      parser.parseNum(line);
      if (parser.getValid()) {
         System.out.printf("Number = %d\n", parser.getNumber());
      } else {
         System.out.print("Invalid entry.\n");
      }
   }
}

Figure 7.29
(continued)
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package fig0729;

enum State {
   S_I, S_F, S_M, S_STOP
}

Figure 7.29
(continued)
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package fig0729;

public class Parser {

    private boolean valid = false;
    private int number = 0;

    public boolean getValid() {
        return valid;
    }

    public int getNumber() {
        return number;
    }

    private boolean isDigit(char ch) {
        return ('0' <= ch) && (ch <= '9');
    }

Figure 7.29
(continued)
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   public void parseNum(String line) {
      line = line + '\n';
      int lineIndex = 0;
      char nextChar;
      int sign = +1;
      valid = true;
      State state = State.S_I;
      do {
         nextChar = line.charAt(lineIndex++);
         switch (state) {
            case S_I:
               if (nextChar == '+') {
                  sign = +1;
                  state = State.S_F;
               } else if (nextChar == '-') {
                  sign = -1;
                  state = State.S_F;
               } else if (isDigit(nextChar)) {
                  sign = +1;
                  number = nextChar - '0';
                  state = State.S_M;
               } else {
                  valid = false;
               }
               break;

Figure 7.29
(continued)
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            case S_F:
               if (isDigit(nextChar)) {
                  number = nextChar - '0';
                  state = State.S_M;
               } else {
                  valid = false;
               }
               break;
            case S_M:
               if (isDigit(nextChar)) {
                  number = 10 * number + nextChar - '0';
               } else if (nextChar == '\n') {
                  number = sign * number;
                  state = State.S_STOP;
               } else {
                  valid = false;
               }
               break;
         }
      } while ((state != State.S_STOP) && valid);
   }
}

Figure 7.29
(continued)
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An input buffer
• Used to process one character at a time 

from a Java String as if from an input stream

• Provides a special feature needed by 
multiple-token parsers

• Ability to back up a character into the input 
stream after being scanned
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public class InBuffer {

    private String inString;
    private String line;
    private int lineIndex;

    public InBuffer(String string) {
        inString = string + "\n\n";
        // To guarantee inString.length() == 0 eventually
    }

Figure 7.30
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    public void getLine() {
        int i = inString.indexOf('\n');
        line = inString.substring(0, i + 1);
        inString = inString.substring(i + 1);
        lineIndex = 0;
    }

    public boolean inputRemains() {
        return inString.length() != 0;
    }

    public char advanceInput() {
        return line.charAt(lineIndex++);
    }

    public void backUpInput() {
        lineIndex--;
    }
}

Figure 7.30
(continued)
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A multiple-token parser
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Figure 7.31
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Console output
Identifier = Here
Identifier = is
Identifier = A47
Integer    = 48
Identifier = B
Empty token
Identifier = C
Integer    = -49
Identifier = ALongIdentifier
Integer    = 50
Identifier = D16
Integer    = -51
Empty token

Figure 7.32
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Console output
Identifier = Here
Identifier = is
Identifier = A47
Syntax error
Identifier = C
Integer    = 49
Empty token
Empty token
Identifier = ALongIdentifier
Empty token

Figure 7.32
(continued)
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to Start, aft er which the  i  and  s  characters produce the recognition of a 
second identifi er, as shown in the sample output. Similarly,  A47  is recognized 
as an identifi er. 

 For the next token, the initial  4  sends the machine into the Integer state. 
Th e  8  makes the transition to the same state. Now the machine inputs the  B . 
Th ere is no transition from state Integer on the terminal  B . Because the machine 
is in the fi nal state for integers, it concludes that an integer has been scanned. It 
puts the  B  terminal, which it could not use in this state, back into the input for 
use as the fi rst terminal for the next token. It then declares that an integer has 
been scanned. Notice that  B  is detected as an identifi er the next time around. 

 Th e machine continues recognizing tokens until it gets to the end of 
the line, at which point it recognizes the empty token. It will recognize the 
empty token whether or not there are trailing spaces in the input because the 
buff er appends two newline characters to the input string. 

 Th e second sample input shows how the machine handles a string of 
characters that contains a syntax error. Aft er recognizing  Here ,  is , and 
 A47 , on the next call, the FSM gets the  +  and goes to state Sign. Because the 
next character is space, and there is no transition from Sign on space, the 
FSM returns the invalid token. 

 Like all multiple-token recognizers, this machine operates on the 
following design principle: 

 ❯ You can never fail once you reach a fi nal state. Instead, if the fi nal 
state does not have a transition from it on the terminal just input, you 
have recognized a token and should back up the input. Th e character 
will then be available as the fi rst terminal for the next token.

 Th e machine handles an empty line (or a line with only spaces) correctly, 
returning the empty token on the fi rst call. 

     FIGURE 7.33          is a Unifi ed Modeling Language (UML) diagram of the class 
structure of a token.  AToken  is an abstract token with no attributes and one 
public abstract operation,  getDescription(  ) . Th e plus sign in front of the 

 A design principle for 
multiple-token recognizers 

TEmpty TInvalid

AToken

TIdentifier
– stringValue: String

+ TIdentifier (StringBuffer: stringBuffer)

TInteger
 – intValue: int

+ TInteger (i: int) 

+ getDescription(): String

  FIGURE   7 . 33     
 The UML diagram of the class structure of AToken. 
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abstract public class AToken {
    public abstract String getDescription();
}

public class TEmpty extends AToken {

    @Override
    public String getDescription() {
        return "Empty token";
    }
}

public class TInvalid extends AToken {

    @Override
    public String getDescription() {
        return "Syntax error";
    }
}

Figure 7.34
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public class TInteger extends AToken {
    private final int intValue;

    public TInteger(int i) {
        intValue = i;
    }

    @Override
    public String getDescription() {
        return String.format("Integer    = %d", intValue);
    }
} 

public class TIdentifier extends AToken {
    private final String stringValue;

    public TIdentifier(StringBuffer stringBuffer) {
        stringValue = new String(stringBuffer);
    }

    @Override
    public String getDescription() {
        return String.format("Identifier = %s", stringValue);
    }
}

Figure 7.34
(continued)
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public class Util {

    public static boolean isDigit(char ch) {
        return ('0' <= ch) && (ch <= '9');
    }

    public static boolean isAlpha(char ch) {
        return (('a' <= ch) && (ch <= 'z') || ('A' <= ch) && (ch <= 'Z'));
    }
}

public enum LexState {
    LS_START, LS_IDENT, LS_SIGN, LS_INTEGER, LS_STOP
}

Figure 7.35
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public class Tokenizer {

    private final InBuffer b;

    public Tokenizer(InBuffer inBuffer) {
        b = inBuffer;
    }

    public AToken getToken() {
        char nextChar;
        StringBuffer localStringValue = new StringBuffer("");
        int localIntValue = 0;
        int sign = +1;
        AToken aToken = new TEmpty();
        LexState state = LexState.LS_START;

Figure 7.35
(continued)
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        do {
            nextChar = b.advanceInput();
            switch (state) {
                case LS_START:
                    if (Util.isAlpha(nextChar)) {
                        localStringValue.append(nextChar);
                        state = LexState.LS_IDENT;
                    } else if (nextChar == '-') {
                        sign = -1;
                        state = LexState.LS_SIGN;
                    } else if (nextChar == '+') {
                        sign = +1;
                        state = LexState.LS_SIGN;
                    } else if (Util.isDigit(nextChar)) {
                        localIntValue = nextChar - '0';
                        state = LexState.LS_INTEGER;
                    } else if (nextChar == '\n') {
                        state = LexState.LS_STOP;
                    } else if (nextChar != ' ') {
                        aToken = new TInvalid();
                    }
                    break;

Figure 7.35
(continued)
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                case LS_IDENT:
                    if (Util.isAlpha(nextChar) || Util.isDigit(nextChar)) {
                        localStringValue.append(nextChar);
                    } else {
                        b.backUpInput();
                        aToken = new TIdentifier(localStringValue);
                        state = LexState.LS_STOP;
                    }
                    break;
                case LS_SIGN:
                    if (Util.isDigit(nextChar)) {
                        localIntValue = 10 * localIntValue + nextChar - '0';
                        state = LexState.LS_INTEGER;
                    } else {
                        aToken = new TInvalid();
                    }
                    break;

Figure 7.35
(continued)
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                case LS_INTEGER:
                    if (Util.isDigit(nextChar)) {
                        localIntValue = 10 * localIntValue + nextChar - '0';
                    } else {
                        b.backUpInput();
                        aToken = new TInteger(sign * localIntValue);
                        state = LexState.LS_STOP;
                    }
                    break;
            }
        } while ((state != LexState.LS_STOP) && !(aToken instanceof TInvalid));
        return aToken;
    }
}

Figure 7.35
(continued)
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    public void actionPerformed(ActionEvent event) {
        InBuffer inBuffer = new InBuffer(textArea.getText());
        Tokenizer t = new Tokenizer(inBuffer);
        AToken aToken;
        inBuffer.getLine();
        while (inBuffer.inputRemains()) {
            do {
                aToken = t.getToken();
                System.out.println(aToken.getDescription());
            } while (!(aToken instanceof TEmpty)
                  && !(aToken instanceof TInvalid));
            inBuffer.getLine();
        }
    }
}

Figure 7.36
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Console output
Planet Mars is red.
Enumerated output: P_MARS
Ordinal output: 3

Console output
Texas is not a planet.

Java map demo
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public enum Planet {
    P_MERCURY, P_VENUS, P_EARTH, P_MARS, P_JUPITER, P_SATURN,
    P_URANUS, P_NEPTUNE, P_PLUTO
}

public class Maps {

    public static final Map<String, Planet> planetTable;
    public static final Map<Planet, String> planetStringTable;

    static {
        planetTable = new HashMap<>();
        planetTable.put("mercury", Planet.P_MERCURY);
        planetTable.put("venus", Planet.P_VENUS);
        planetTable.put("earth", Planet.P_EARTH);
        planetTable.put("mars", Planet.P_MARS);
        planetTable.put("jupiter", Planet.P_JUPITER);
        planetTable.put("saturn", Planet.P_SATURN);
        planetTable.put("uranus", Planet.P_URANUS);
        planetTable.put("neptune", Planet.P_NEPTUNE);
        planetTable.put("pluto", Planet.P_PLUTO);
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        planetStringTable = new EnumMap<>(Planet.class);
        planetStringTable.put(Planet.P_MERCURY, "Mercury");
        planetStringTable.put(Planet.P_VENUS, "Venus");
        planetStringTable.put(Planet.P_EARTH, "Earth");
        planetStringTable.put(Planet.P_MARS, "Mars");
        planetStringTable.put(Planet.P_JUPITER, "Jupiter");
        planetStringTable.put(Planet.P_SATURN, "Saturn");
        planetStringTable.put(Planet.P_URANUS, "Uranus");
        planetStringTable.put(Planet.P_NEPTUNE, "Neptune");
        planetStringTable.put(Planet.P_PLUTO, "Pluto");
    }
}
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   public void actionPerformed(ActionEvent event) {
      String line = textField.getText();
      if (Maps.planetTable.containsKey(line.toLowerCase())) {
         Planet planet = Maps.planetTable.get(line.toLowerCase());
         String planetString = Maps.planetStringTable.get(planet);
         switch (planet) {
            case P_MERCURY:
            case P_VENUS:
               System.out.printf("%s is close to the sun.\n", planetString);
               break;
            case P_EARTH:
               System.out.printf("The %s is indeed a planet.\n", planetString);
               break;
            case P_MARS:
               System.out.printf("Planet %s is red.\n", planetString);
               break;
            case P_JUPITER:
            case P_SATURN:
               System.out.printf("%s is a big planet.\n", planetString);
               break;
            case P_URANUS:
            case P_NEPTUNE:
            case P_PLUTO:
               System.out.printf("%s is far from the sun.\n", planetString);
         }
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         System.out.printf("Enumerated output: %s\n", planet);
         System.out.printf("Ordinal output: %d\n", planet.ordinal());
      } else {
         System.out.println(line + " is not a planet.");
      }
   }
}
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A language translator
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Input
set (Time, 15)
set (   Accel, 3)
set (TSquared   , Time)
    MUL ( TSquared, Time)
set ( Position, TSquared)
mul (Position, Accel)
dIV(Position,2)
stop
end

Output
Object code:
Time <- 15
Accel <- 3
TSquared <- Time
TSquared <- TSquared * Time
Position <- TSquared
Position <- Position * Accel
Position <- Position / 2
stop

Program listing:
set (Time, 15)
set (Accel, 3)
set (TSquared, Time)
mul (TSquared, Time)
set (Position, TSquared)
mul (Position, Accel)
div (Position, 2)
stop
end

Figure 7.37
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Input
set (Alpha,, 123)
set (Alpha)
sit (Alpha, 123)
set, (Alpha)
mul (Alpha, Beta
set (123, Alpha)
neg (Alpha, Beta)
set (Alpha, 123) x

Output
9 errors were detected.

Program listing:
ERROR: Second argument not an identifier or integer.
ERROR: Comma expected after first argument.
ERROR: Line must begin with function identifier.
ERROR: Left parenthesis expected after function.
ERROR: Right parenthesis expected after argument.
ERROR: First argument not an identifier.
ERROR: Right parenthesis expected after argument.
ERROR: Illegal trailing character.
ERROR: Missing "end" sentinel.

Figure 7.37
(continued)



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

public enum Mnemon {
   M_ADD, M_SUB, M_MUL, M_DIV, M_NEG, M_ABS, M_SET, M_STOP, M_END
}

public final class Maps {

   public static final Map<String, Mnemon> unaryMnemonTable;
   public static final Map<String, Mnemon> nonUnaryMnemonTable;
   public static final Map<Mnemon, String> mnemonStringTable;

   static {
      unaryMnemonTable = new HashMap<>();
      unaryMnemonTable.put("stop", Mnemon.M_STOP);
      unaryMnemonTable.put("end", Mnemon.M_END);

      nonUnaryMnemonTable = new HashMap<>();
      nonUnaryMnemonTable.put("neg", Mnemon.M_NEG);
      nonUnaryMnemonTable.put("abs", Mnemon.M_ABS);
      nonUnaryMnemonTable.put("add", Mnemon.M_ADD);
      nonUnaryMnemonTable.put("sub", Mnemon.M_SUB);
      nonUnaryMnemonTable.put("mul", Mnemon.M_MUL);
      nonUnaryMnemonTable.put("div", Mnemon.M_DIV);
      nonUnaryMnemonTable.put("set", Mnemon.M_SET);

Figure 7.38
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      mnemonStringTable = new EnumMap<>(Mnemon.class);
      mnemonStringTable.put(Mnemon.M_NEG, "neg");
      mnemonStringTable.put(Mnemon.M_ABS, "abs");
      mnemonStringTable.put(Mnemon.M_ADD, "add");
      mnemonStringTable.put(Mnemon.M_SUB, "sub");
      mnemonStringTable.put(Mnemon.M_MUL, "mul");
      mnemonStringTable.put(Mnemon.M_DIV, "div");
      mnemonStringTable.put(Mnemon.M_SET, "set");
      mnemonStringTable.put(Mnemon.M_STOP, "stop");
      mnemonStringTable.put(Mnemon.M_END, "end");
   }
}

Figure 7.38
(continued)
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program listing continues in the following fi gures.     Figure       7   .   38     shows the 
setup of three Java maps used by the translator. Th e fi rst two maps, one 
for unary instructions and one for nonunary instructions, take the string 
representation of a reserved word as the key and return the enumerated 
mnemonic representation. Th e third table uses enumerated mnemonic 
values as the key to look up the string symbol to place in the generated 
code. Th e maps use the lowercase string representation of the source code 
reserved word. 

     FIGURE 7.39          is the UML diagram of an abstract argument, and 
    FIGURE 7.40          is its Java implementation. Because an argument in the source 
code can be either an identifi er or an integer, the program stores a general 
argument as an  AArg , which at run time is either an  IdentArg  or an 
 IntArg . Class  AArg  defi nes the abstract method  generateCode(  ) , which 
contributes to code generation when the value of an argument must be 
output.    

     FIGURE 7.41          is the UML diagram of an abstract token, and     FIGURE 7.42          
is a partial listing of its Java implementation. Th e implementations of 
 TLeftParen ,  TRightParen ,  TEmpty , and  TInvalid  are identical to the 
implementation of  TComma  and are not shown in the fi gure. Th is structure 
of a token is similar to the one in     Figure       7   .   33     of the previous section. Classes 
 TIdentifier  and  TInteger  have getter methods to retrieve the values of 
their attributes.    

 Th e lexical analyzer returns an identifi er when it encounters a reserved 
word and when it encounters an argument. When it encounters a reserved 
word, the parser needs to look up the word in the mnemonic map. It uses 
 getStringValue(  )  to get the identifi er value from the token.            

     FIGURE 7.43          is the UML diagram of the abstract code class  ACode  ,  and 
    FIGURE 7.44          is a complete listing of its Java implementation. An object of class 

  FIGURE   7 . 39     
 The UML diagram of the class structure of AArg. 

+ generateCode(): String

AArg

IdentArg
– identValue: String

+ IdentArg (str: String)

IntArg
– intValue: int

+ IntArg (i: int)

4397.4 Code Generation
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abstract public class AArg {
    abstract public String generateCode();
}

public class IdentArg extends AArg {
    private final String identValue;
    public IdentArg(String str) {
        identValue = str;
    }
    @Override
    public String generateCode() {
        return identValue;
    }
}

public class IntArg extends AArg {
    private final int intValue;
    public IntArg(int i) {
        intValue = i;
    }
    @Override
    public String generateCode() {
        return String.format("%d", intValue);
    }
}

Figure 7.40
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  FIGURE   7 . 41     
 The UML diagram of the class structure of AToken. 

TComma

AToken

TRightParen

TLeftParen TEmpty

TInvalidTIdentifier
– stringValue: String

+ TIdentifier (stringBuffer: StringBuffer)
+ getStringValue(): String

TInteger
– intValue: int
+ TInteger(i: int)
+ getIntValue(): int

FIGURE 7.40 
The Java implementation of class AArg in Figure 7.39.

abstract public class AArg {
   abstract public String generateCode();
}

public class IdentArg extends AArg {
   private final String identValue;
   public IdentArg(String str) {
      identValue = str;
   }
   public String generateCode() {
      return identValue;
   }
}

public class IntArg extends AArg {
   private final int intValue;
   public IntArg(int i) {
      intValue = i;
   }
   public String generateCode() {
      return String.format("%d", intValue);
   }
}

   abstract public String generateCode();
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abstract public class AToken {
}

public class TIdentifier extends AToken {
   private final String stringValue;
   public TIdentifier(StringBuffer stringBuffer) {
      stringValue = new String(stringBuffer);
   }
   public String getStringValue() {
      return stringValue;
   }
}

public class TInteger extends AToken {
   private final int intValue;
   public TInteger(int i) {
      intValue = i;
   }
   public int getIntValue() {
      return intValue;
   }
}

public class TComma extends AToken {
}

Figure 7.42



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.43
  FIGURE   7 . 43     
 The UML diagram of the class structure of ACode. 

+ generateCode ( ): String
+ generateListing ( ): String

ACode

– errorMessage: String
Error

+ generateCode (): String
AArg

+ IntArg (i: int)
– intValue: int

IntArg

+ IdentArg (str: String)
– identValue: String

IdentArg

– mnemonic: Mnemon
UnaryInstr

+ OneArgInstr (mn: Mnemon, aArg: AArg)

– mnemonic: Mnemon
– aArg: AArg

OneArgInstr

+ TwoArgInstr (mn: Mnemon, fArg: AArg, sArg: AArg)

TwoArgInstr
– mnemonic: Mnemon
– firstArg: AArg
– secondArg: AArg

EmptyInstr
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abstract public class ACode {
    abstract public String generateCode();
    abstract public String generateListing();
}

public class Error extends ACode {
    private final String errorMessage;
    public Error(String errMessage) {
        errorMessage = errMessage;
    }

    @Override
    public String generateListing() {
        return "ERROR: " + errorMessage + "\n";
    }

    @Override
    public String generateCode() {
        return "";
    }
}

Figure 7.44
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public class EmptyInstr extends ACode {
    // For an empty source line.

    @Override
    public String generateListing() {
        return "\n";
    }

    @Override
    public String generateCode() {
        return "";
    }
}

Figure 7.44
(continued)
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public class UnaryInstr extends ACode {
    private final Mnemon mnemonic;
    public UnaryInstr(Mnemon mn) {
        mnemonic = mn;
    }

    @Override
    public String generateListing() {
        return Maps.mnemonStringTable.get(mnemonic) + "\n";
    }

    @Override
    public String generateCode() {
        switch (mnemonic) {
            case M_STOP:
                return "stop\n";
            case M_END:
                return "";
            default:
                return ""; // Should not occur.
        }
    }
}

Figure 7.44
(continued)
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public class OneArgInstr extends ACode {
   private final Mnemon mnemonic;
   private final AArg aArg;
   public OneArgInstr(Mnemon mn, AArg aArg) {
      mnemonic = mn;
      this.aArg = aArg;
   }
    @Override
   public String generateListing() {
      return String.format("%s (%s)\n", 
                    Maps.mnemonStringTable.get(mnemonic), aArg.generateCode());
   }
    @Override
   public String generateCode() {
      switch (mnemonic) {
         case M_ABS:
            return String.format("%s <- |%s|\n",
                          aArg.generateCode(), aArg.generateCode());
         case M_NEG:
            return String.format("%s <- -%s\n",
                          aArg.generateCode(), aArg.generateCode());
         default:
            return ""; // Should not occur.
      }
   }
}

Figure 7.44
(continued)
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public class TwoArgInstr extends ACode {
    private final Mnemon mnemonic;
    private final AArg firstArg;
    private final AArg secondArg;
    public TwoArgInstr(Mnemon mn, AArg fArg, AArg sArg) {
        mnemonic = mn;
        firstArg = fArg;
        secondArg = sArg;
    }

    @Override
    public String generateListing() {
        return String.format("%s (%s, %s)\n",
                      Maps.mnemonStringTable.get(mnemonic),
                      firstArg.generateCode(),
                      secondArg.generateCode());
    }

Figure 7.44
(continued)
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    @Override
    public String generateCode() {
        switch (mnemonic) {
            case M_SET:
                return String.format("%s <- %s\n",
                              firstArg.generateCode(),
                              secondArg.generateCode());
            case M_ADD:
                return String.format("%s <- %s + %s\n",
                              firstArg.generateCode(),
                              firstArg.generateCode(),
                              secondArg.generateCode());
            case M_SUB:
                return String.format("%s <- %s - %s\n",
                              firstArg.generateCode(),
                              firstArg.generateCode(),
                              secondArg.generateCode());
            case M_MUL:
                return String.format("%s <- %s * %s\n",
                              firstArg.generateCode(),
                              firstArg.generateCode(),
                              secondArg.generateCode());

Figure 7.44
(continued)
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            case M_DIV:
                return String.format("%s <- %s / %s\n",
                              firstArg.generateCode(),
                              firstArg.generateCode(),
                              secondArg.generateCode());
            default:
                return ""; // Should not occur.
        }
    }
}

Figure 7.44
(continued)
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public enum LexState {
    LS_START, LS_IDENT, LS_SIGN, LS_INTEGER, LS_STOP
}

public class Tokenizer {

   private final InBuffer b;

   public Tokenizer(InBuffer inBuffer) {
      b = inBuffer;
   }

   public AToken getToken() {
      char nextChar;
      StringBuffer localStringValue = new StringBuffer("");
      int localIntValue = 0;
      int sign = +1;
      AToken aToken = new TEmpty();
      LexState state = LexState.LS_START;

Figure 7.45
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      do {
         nextChar = b.advanceInput();
         switch (state) {
            case LS_START:
               if (Util.isAlpha(nextChar)) {
                  localStringValue.append(nextChar);
                  state = LexState.LS_IDENT;
               } else if (nextChar == '-') {
                  sign = -1;
                  state = LexState.LS_SIGN;
               } else if (nextChar == '+') {
                  sign = +1;
                  state = LexState.LS_SIGN;
               } else if (Util.isDigit(nextChar)) {
                  localIntValue = nextChar - '0';
                  state = LexState.LS_INTEGER;
               } else if (nextChar == ',') {
                  aToken = new TComma();
                  state = LexState.LS_STOP;
               } else if (nextChar == '(') {
                  aToken = new TLeftParen();
                  state = LexState.LS_STOP;
               } else if (nextChar == ')') {
                  aToken = new TRightParen();
                  state = LexState.LS_STOP;

Figure 7.45
(continued)
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               } else if (nextChar == '\n') {
                  state = LexState.LS_STOP;
               } else if (nextChar != ' ') {
                  aToken = new TInvalid();
               }
               break;
            case LS_IDENT:
               if (Util.isAlpha(nextChar) || Util.isDigit(nextChar)) {
                  localStringValue.append(nextChar);
               } else {
                  b.backUpInput();
                  aToken = new TIdentifier(localStringValue);
                  state = LexState.LS_STOP;
               }
               break;
            case LS_SIGN:
               if (Util.isDigit(nextChar)) {
                  localStringValue.append(nextChar);
                  state = LexState.LS_INTEGER;
               } else {
                  aToken = new TInvalid();
               }
               break;

Figure 7.45
(continued)
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            case LS_INTEGER:
               if (Util.isDigit(nextChar)) {
                  localIntValue = 10 * localIntValue + nextChar - '0';
               } else {
                  b.backUpInput();
                  aToken = new TInteger(localIntValue);
                  state = LexState.LS_STOP;
               }
               break;
         }
      } while ((state != LexState.LS_STOP) && !(aToken instanceof TInvalid));
      return aToken;
   }
}

Figure 7.45
(continued)
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  FIGURE   7 . 46     
 The FSM for the parser processSourceLine of Figure 7.47. 
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Note 2: Only the identifiers set, add, sub, mul, div, neg, and abs.
Note 3: Only for mnemonics M_NEG and M_ABS.
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    Figure       7   .   41    . Th e fi nal state  PS_FINISH  can be reached only by input of token 
 T_EMPTY . Th e transition from  PS_START  to  PS_FINISH  will occur if there 
is a blank line or if there is a line that contains only spaces. Th e terminal 
strings  end  and  stop  are the only identifi ers that make the transition from 
 PS_START  to  PS_UNARY . Th e identifi ers that correspond to the other 
reserved words— set ,  add ,  sub ,  mul ,  div ,  neg , and  abs —make the 
transition from  PS_START  to  PS_FUNCTION . All other identifi ers are 
invalid when detected in the  PS_START  state.        

     FIGURE 7.47          is a partial listing of the translator that implements the 
FSM of     Figure       7   .   46    . Class  Translator  has two methods, private method 
 parseLine(  )  and public method  translate() , which calls  parseLine()  
in a loop that executes once per source line. 
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public enum ParseState {
   PS_START, PS_UNARY, PS_FUNCTION, PS_OPEN, PS_1ST_OPRND, PS_NONUNARY1,
   PS_COMMA, PS_2ND_OPRND, PS_NON_UNARY2, PS_FINISH
}

public class Translator {
   private final InBuffer b;
   private Tokenizer t;
   private ACode aCode;

   public Translator(InBuffer inBuffer) {
      b = inBuffer;
   }

   // Sets aCode and returns boolean true if end statement is processed.
   private boolean parseLine() {
      boolean terminate = false;
      AArg localFirstArg = new IntArg(0);
      AArg localSecondArg;
      // Compiler requires following useless initialization.
      Mnemon localMnemon = Mnemon.M_END;
      AToken aToken;
      aCode = new EmptyInstr();
      ParseState state = ParseState.PS_START;

Figure 7.47
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      do {
         aToken = t.getToken();
         switch (state) {
            case PS_START:
               if (aToken instanceof TIdentifier) {
                  TIdentifier localTIdentifier = (TIdentifier) aToken;
                  String tempStr = localTIdentifier.getStringValue();
                  if (Maps.unaryMnemonTable.containsKey(
                           tempStr.toLowerCase())) {
                     localMnemon = Maps.unaryMnemonTable.get(
                           tempStr.toLowerCase());
                     aCode = new UnaryInstr(localMnemon);
                     terminate = localMnemon == Mnemon.M_END;
                     state = ParseState.PS_UNARY;
                  } else if (Maps.nonUnaryMnemonTable.containsKey(
                           tempStr.toLowerCase())) {
                     localMnemon = Maps.nonUnaryMnemonTable.get(
                           tempStr.toLowerCase());
                     state = ParseState.PS_FUNCTION;
                  } else {
                     aCode = new Error(
                           "Line must begin with function identifier.");
                  }

Figure 7.47
(continued)
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               } else if (aToken instanceof TEmpty) {
                  aCode = new EmptyInstr();
                  state = ParseState.PS_FINISH;
               } else {
                  aCode = new Error(
                     "Line must begin with function identifier.");
               }
               break;
...

Figure 7.47
(continued)
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            case PS_FUNCTION:
               if (aToken instanceof TLeftParen) {
                  state = ParseState.PS_OPEN;
               } else {
                  aCode = new Error(
                        "Left parenthesis expected after function.");
               }
               break;
            case PS_OPEN:
               if (aToken instanceof TIdentifier) {
                  TIdentifier localTIdentifier = (TIdentifier) aToken;
                  localFirstArg = new IdentArg(
                        localTIdentifier.getStringValue());
                  state = ParseState.PS_1ST_OPRND;
               } else {
                  aCode = new Error("First argument not an identifier.");
               }
               break;

Not in
Figure 7.47
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            case PS_1ST_OPRND:
               if (localMnemon == Mnemon.M_NEG
                     || localMnemon == Mnemon.M_ABS) {
                  if (aToken instanceof TRightParen) {
                     aCode = new OneArgInstr(localMnemon, localFirstArg);
                     state = ParseState.PS_NONUNARY1;
                  } else {
                     aCode = new Error(
                           "Right parenthesis expected after argument.");
                  }
               } else if (aToken instanceof TComma) {
                  state = ParseState.PS_COMMA;
               } else {
                  aCode = new Error(
                        "Comma expected after first argument.");
               }
               break;

Not in
Figure 7.47
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            case PS_COMMA:
               if (aToken instanceof TIdentifier) {
                  TIdentifier localTIdentifier = (TIdentifier) aToken;
                  localSecondArg = new IdentArg(
                        localTIdentifier.getStringValue());
                  aCode = new TwoArgInstr(
                        localMnemon, localFirstArg, localSecondArg);
                  state = ParseState.PS_2ND_OPRND;
               } else if (aToken instanceof TInteger) {
                  TInteger localTInteger = (TInteger) aToken;
                  localSecondArg = new IntArg(localTInteger.getIntValue());
                  aCode = new TwoArgInstr(
                        localMnemon, localFirstArg, localSecondArg);
                  state = ParseState.PS_2ND_OPRND;
               } else {
                  aCode = new Error(
                        "Second argument not an identifier or integer.");
               }
               break;

Figure 7.47
(continued)
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            case PS_2ND_OPRND:
               if (aToken instanceof TRightParen) {
                  state = ParseState.PS_NON_UNARY2;
               } else {
                  aCode = new Error(
                        "Right parenthesis expected after argument.");
               }
               break;

Not in
Figure 7.47
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            case PS_NON_UNARY2:
               if (aToken instanceof TEmpty) {
                  state = ParseState.PS_FINISH;
               } else {
                  aCode = new Error("Illegal trailing character.");
               }
               break;
         }
      } while (state != ParseState.PS_FINISH && !(aCode instanceof Error));
      return terminate;
   }

Figure 7.47
(continued)
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   public void translate() {
      ArrayList<ACode> codeTable = new ArrayList<>();
      int numErrors = 0;
      t = new Tokenizer(b);
      boolean terminateWithEnd = false;
      b.getLine();
      while (b.inputRemains() && !terminateWithEnd) {
         terminateWithEnd = parseLine(); // Sets aCode and returns boolean.
         codeTable.add(aCode);
         if (aCode instanceof Error) {
            numErrors++;
         }
         b.getLine();
      }
      if (!terminateWithEnd) {
         aCode = new Error("Missing \"end\" sentinel.");
         codeTable.add(aCode);
         numErrors++;
      }

Figure 7.47
(continued)
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      if (numErrors == 0) {
         System.out.printf("Object code:\n");
         for (int i = 0; i < codeTable.size(); i++) {
            System.out.printf("%s", codeTable.get(i).generateCode());
         }
      }
      if (numErrors == 1) {
         System.out.printf("One error was detected.\n");
      } else if (numErrors > 1) {
         System.out.printf("%d errors were detected.\n", numErrors);
      }
      System.out.printf("\nProgram listing:\n");
      for (int i = 0; i < codeTable.size(); i++) {
         System.out.printf("%s", codeTable.get(i).generateListing());
      }
   }
}

Figure 7.47
(continued)
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    public void actionPerformed(ActionEvent event) {
        InBuffer inBuffer = new InBuffer(textArea.getText());
        Translator tr = new Translator(inBuffer);
        tr.translate();
    }

Figure 7.48
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Translation phases
• Lexical analyzer – getToken()

• Parser– parseLine()

• Code generator– generateCode()



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

9.  For the grammar of     Figure       7   .   8    , draw the syntax tree for <translation-
unit> from the following string, assuming that  alpha ,  beta ,  gamma , 
and  main  are valid <identifi er>s and  C1 ,  S1 , and  S2  are <expression>s: 

 int main() 
 { int gamma; 
    alpha (gamma); 
    if (C1) 
      S1; 
    else 
      S2; 
 } 

10.  Th e question this exercise poses is “Can two diff erent grammars produce 
the same language?” Th e grammars in FIGURE 7.49  and FIGURE 7.50  are 
not the same because they have diff erent nonterminal sets and diff erent 
production rules. Experiment with these two grammars by deriving 
some terminal strings. From your experiments, describe the languages 
produced by these grammars. Is it possible to derive a valid string of 
terminals with the grammar in     Figure       7   .   49     that is not in 7.50 or vice 
versa? Prove your conjecture.        

  Section 7.2  

11.  For each of the machines shown in   FIGURE 7.51   , (1) state whether the 
FSM is deterministic or nondeterministic, and (2) identify any states 
that are inaccessible.         

12.  Remove the empty transitions to produce the equivalent machine for 
each of the FSMs in   FIGURE 7.52   .        

13.  Draw a deterministic FSM that recognizes strings of 1’s and 0’s specifi ed 
by each of the following criteria. Each FSM should reject any characters 

  FIGURE   7 . 49     
 A grammar for 
Exercise 10. 

N = { A , B }
T = { 0 , 1 }
P = the productions 
 1. A → 0 B 
 2. B → 1 0 B
 3. B → ε
S = A 

N  { A , B }

N = { C } 
T = { 0 , 1 } 
P = the productions 
 1. C → C 10 
 2. C → 0
S = C

FIGURE 7.50
Another grammar for 
Exercise 10.

N  { C } 

  FIGURE   7 . 51     
 The FSMs for Exercise 11. 

XW

Y

a

a

*(a)

ac b

Z

XW

Y

a

c

(b)

b

Z

XW

Y

a

a

(c)

a

Z

XW

Y

a

b

a

a c

(d)

b

cb

Z

cc bc bc bac ba b a a ca c

459Exercises

9781284079630_CH07_391_466.indd   459 29/01/16   8:06 pm

Figures 7.49, 7.50

9.  For the grammar of     Figure       7   .   8    , draw the syntax tree for <translation-
unit> from the following string, assuming that  alpha ,  beta ,  gamma , 
and  main  are valid <identifi er>s and  C1 ,  S1 , and  S2  are <expression>s: 

 int main() 
 { int gamma; 
    alpha (gamma); 
    if (C1) 
      S1; 
    else 
      S2; 
 } 

10.  Th e question this exercise poses is “Can two diff erent grammars produce 
the same language?” Th e grammars in FIGURE 7.49  and FIGURE 7.50  are 
not the same because they have diff erent nonterminal sets and diff erent 
production rules. Experiment with these two grammars by deriving 
some terminal strings. From your experiments, describe the languages 
produced by these grammars. Is it possible to derive a valid string of 
terminals with the grammar in     Figure       7   .   49     that is not in 7.50 or vice 
versa? Prove your conjecture.        

  Section 7.2  

11.  For each of the machines shown in   FIGURE 7.51   , (1) state whether the 
FSM is deterministic or nondeterministic, and (2) identify any states 
that are inaccessible.         

12.  Remove the empty transitions to produce the equivalent machine for 
each of the FSMs in   FIGURE 7.52   .        

13.  Draw a deterministic FSM that recognizes strings of 1’s and 0’s specifi ed 
by each of the following criteria. Each FSM should reject any characters 

  FIGURE   7 . 49     
 A grammar for 
Exercise 10. 

N = { A , B }
T = { 0 , 1 }
P = the productions 
 1. A → 0 B 
 2. B → 1 0 B
 3. B → ε
S = A 

N  { A , B }

N = { C } 
T = { 0 , 1 } 
P = the productions 
 1. C → C 10 
 2. C → 0
S = C

FIGURE 7.50
Another grammar for 
Exercise 10.

N  { C } 

  FIGURE   7 . 51     
 The FSMs for Exercise 11. 

XW

Y

a

a

*(a)

ac b

Z

XW

Y

a

c

(b)

b

Z

XW

Y

a

a

(c)

a

Z

XW

Y

a

b

a

a c

(d)

b

cb

Z

cc bc bc bac ba b a a ca c

459Exercises

9781284079630_CH07_391_466.indd   459 29/01/16   8:06 pm



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

9.  For the grammar of     Figure       7   .   8    , draw the syntax tree for <translation-
unit> from the following string, assuming that  alpha ,  beta ,  gamma , 
and  main  are valid <identifi er>s and  C1 ,  S1 , and  S2  are <expression>s: 

 int main() 
 { int gamma; 
    alpha (gamma); 
    if (C1) 
      S1; 
    else 
      S2; 
 } 

10.  Th e question this exercise poses is “Can two diff erent grammars produce 
the same language?” Th e grammars in FIGURE 7.49  and FIGURE 7.50  are 
not the same because they have diff erent nonterminal sets and diff erent 
production rules. Experiment with these two grammars by deriving 
some terminal strings. From your experiments, describe the languages 
produced by these grammars. Is it possible to derive a valid string of 
terminals with the grammar in     Figure       7   .   49     that is not in 7.50 or vice 
versa? Prove your conjecture.        

  Section 7.2  

11.  For each of the machines shown in   FIGURE 7.51   , (1) state whether the 
FSM is deterministic or nondeterministic, and (2) identify any states 
that are inaccessible.         

12.  Remove the empty transitions to produce the equivalent machine for 
each of the FSMs in   FIGURE 7.52   .        

13.  Draw a deterministic FSM that recognizes strings of 1’s and 0’s specifi ed 
by each of the following criteria. Each FSM should reject any characters 

  FIGURE   7 . 49     
 A grammar for 
Exercise 10. 

N = { A , B }
T = { 0 , 1 }
P = the productions 
 1. A → 0 B 
 2. B → 1 0 B
 3. B → ε
S = A 

N  { A , B }

N = { C } 
T = { 0 , 1 } 
P = the productions 
 1. C → C 10 
 2. C → 0
S = C

FIGURE 7.50
Another grammar for 
Exercise 10.

N  { C } 

  FIGURE   7 . 51     
 The FSMs for Exercise 11. 

XW

Y

a

a

*(a)

ac b

Z

XW

Y

a

c

(b)

b

Z

XW

Y

a

a

(c)

a

Z

XW

Y

a

b

a

a c

(d)

b

cb

Z

cc bc bc bac ba b a a ca c

459Exercises

9781284079630_CH07_391_466.indd   459 29/01/16   8:06 pm

Figure 7.51

9.  For the grammar of     Figure       7   .   8    , draw the syntax tree for <translation-
unit> from the following string, assuming that  alpha ,  beta ,  gamma , 
and  main  are valid <identifi er>s and  C1 ,  S1 , and  S2  are <expression>s: 

 int main() 
 { int gamma; 
    alpha (gamma); 
    if (C1) 
      S1; 
    else 
      S2; 
 } 

10.  Th e question this exercise poses is “Can two diff erent grammars produce 
the same language?” Th e grammars in FIGURE 7.49  and FIGURE 7.50  are 
not the same because they have diff erent nonterminal sets and diff erent 
production rules. Experiment with these two grammars by deriving 
some terminal strings. From your experiments, describe the languages 
produced by these grammars. Is it possible to derive a valid string of 
terminals with the grammar in     Figure       7   .   49     that is not in 7.50 or vice 
versa? Prove your conjecture.        

  Section 7.2  

11.  For each of the machines shown in   FIGURE 7.51   , (1) state whether the 
FSM is deterministic or nondeterministic, and (2) identify any states 
that are inaccessible.         

12.  Remove the empty transitions to produce the equivalent machine for 
each of the FSMs in   FIGURE 7.52   .        

13.  Draw a deterministic FSM that recognizes strings of 1’s and 0’s specifi ed 
by each of the following criteria. Each FSM should reject any characters 

  FIGURE   7 . 49     
 A grammar for 
Exercise 10. 

N = { A , B }
T = { 0 , 1 }
P = the productions 
 1. A → 0 B 
 2. B → 1 0 B
 3. B → ε
S = A 

N  { A , B }

N = { C } 
T = { 0 , 1 } 
P = the productions 
 1. C → C 10 
 2. C → 0
S = C

FIGURE 7.50
Another grammar for 
Exercise 10.

N  { C } 

  FIGURE   7 . 51     
 The FSMs for Exercise 11. 

XW

Y

a

a

*(a)

ac b

Z

XW

Y

a

c

(b)

b

Z

XW

Y

a

a

(c)

a

Z

XW

Y

a

b

a

a c

(d)

b

cb

Z

cc bc bc bac ba b a a ca c

459Exercises

9781284079630_CH07_391_466.indd   459 29/01/16   8:06 pm



Computer Systems F I F T H    E D I T I O N

Copyright © 2017  by Jones & Bartlett Learning, LLC an Ascend Learning Company

that are not 0 or 1.  *(a)  Th e string of three characters,  101 .  (b)  All strings 
of arbitrary length that end in  101 . For example, the FSM should accept 
 1101  but reject  1011 .  (c)  All strings of arbitrary length that begin with 
101 . For example, the FSM should accept  1010  but reject  0101 .  (d)  All 
strings of arbitrary length that contain a  101  at least once anywhere. For 
example, the FSM should accept all the strings mentioned in parts (a), 
(b), and (c), as well as strings such as  11100001011111100111 . 

  Section 7.4  

14.  Design a grammar that describes the source language of the translator 
in     Figure       7   .   47    . 

 Problems 

  Section 7.3  

15.  Improve the program in     Figure       7   .   28     as suggested in the text by defi ning 
a third enumeration in  Alphabet  called  T_OTHER , which represents a 
symbol that is neither a letter nor a digit. 

16.  Implement each FSM in Exercise 13 using the table-lookup technique of 
the program in     Figure       7   .   28    . Classify a character as  B_ONE ,  B_ZERO , or 
B_OTHER  in the transition table. 

17.  Implement each FSM in Exercise 13 using the direct-code technique of 
the program in     Figure       7   .   29    . Write a procedure called  parsePat(  )  for 
a parse pattern that corresponds to  parseNum() . Do not include the 
attribute  number  or method  getNumber(  )  in class  Parser . 

18.  A hexadecimal digit is ' 0 '..' 9 ', or ' a '..' f ', or ' A '..' F '. A hexadecimal 
constant is a sequence of hexadecimal digits. Examples include  3 , 
 a ,  0d , and  FF4e . Use the direct-code technique for implementing 
an FSM as in the program of     Figure       7   .   29     to parse a hexadecimal 
constant and convert it to a nonnegative integer. Th e input/output 
should be similar to that in the fi gure, with invalid input producing 
an error message and a valid hexadecimal input string producing the 
nonnegative integer value. 

  Section 7.4  

19.  Write an assembler for Pep/9 assembly language. Complete the following 
milestones in the order they are listed.     

  FIGURE   7 . 52     
 The FSMs for 
Exercise 12. 
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Figure 7.52
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an FSM as in the program of     Figure       7   .   29     to parse a hexadecimal 
constant and convert it to a nonnegative integer. Th e input/output 
should be similar to that in the fi gure, with invalid input producing 
an error message and a valid hexadecimal input string producing the 
nonnegative integer value. 

  Section 7.4  

19.  Write an assembler for Pep/9 assembly language. Complete the following 
milestones in the order they are listed.     

  FIGURE   7 . 52     
 The FSMs for 
Exercise 12. 
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Figure 7.53

   (a)  Write class  Tokenizer  with method  getToken(  ) , to implement 
the FSM of     FIGURE 7.53         . Use class  InBuffer  from     Figure       7   .   30    . 
Implement method  getDescription(  )  for each concrete 
token and  output the tokens with a nested  do  loop as in 
 actionPerformed()  of     Figure       7   .   36    .  

 Integers are stored in two bytes. When considered unsigned, 
the range is 0..65535. When considered signed, the range is 
−32768..32767. Your program must accept integers in the range 
−32768..65535. Each time you scan a decimal digit and update the 
total value, check it against this range. If inputting a decimal digit 
makes the total value go out of this range, return the invalid token. 
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     FIGURE   7 . 53     
 The FSM for getToken in Problem 19(a).  
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