
Chapter 7

Language
Translation
Principles

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• The fundamental question of computer
science:

“What can be automated?”

• One answer – Translation from one
programming language to another.

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Alphabet – A nonempty set of characters.

• Concatenation – joining characters to form
a string.

• The empty string – The identity element for
concatenation.

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

{a,b,c,d,e,f,g,h,i,j,k,l,m,n,
o,p,q,r,s,t,u,v,w,x,y,z,A,B,
C,D,E,F,G,H,I,J,K,L,M,N,O,P,
Q,R,S,T,U,V,W,X,Y,Z,0,1,2,3,
4,5,6,7,8,9,+,-,*,/,=,<,>,[,
],(,),{,},.,,,:,;,&,!,%,', "
_,\,#,?,},|, ~ }

The C alphabet

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

{a,b,c,d,e,f,g,h,i,j,k,l,m,n,
o,p,q,r,s,t,u,v,w,x,y,z,A,B,
C,D,E,F,G,H,I,J,K,L,M,N,O,P,
Q,R,S,T,U,V,W,X,Y,Z,0,1,2,3,
4,5,6,7,8,9,\,.,,,:,;,‘, “ }

The Pep/9 assembly
language alphabet

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

{0,1,2,3,4,5,6,7,8,9,+,-, . }

The alphabet for real
numbers

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Concatenation
• Joining two or more characters to make a

string

• Applies to strings concatenated to construct
longer strings

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The empty string
•

• Concatenation property

�

�x = x� = x

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Languages
• The closure T* of alphabet T

‣ The set of all possible strings formed by
concatenating elements from T

• Language

‣ A subset of the closure of its alphabet

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• Grammars

• Finite state machines

• Regular expressions

Techniques to specify
syntax

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

• N, a nonterminal alphabet

• T, a terminal alphabet

• P, a set of rules of production

• S, the start symbol, an element of N

The four parts of a
grammar

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

Figure 7.1

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e rules of production are of the form

 A → w

 where A is a nonterminal and w is a string of terminals and nonterminals.
Th e symbol → means “produces.” You should read production rule number 3
in Figure 7 . 1 as, “An identifi er produces an identifi er followed by a digit.”

 Th e grammar specifi es the language by a process called a derivation .
To derive a valid sentence in the language, you begin with the start symbol
and substitute for nonterminals from the rules of production until you get a
string of terminals. Th e following is a derivation of the identifi er cab3 from
this grammar. Th e symbol ⇒ means “derives in one step.”

 <identifi er> ⇒ <identifi er> <digit> Rule 3
 ⇒ <identifi er> 3 Rule 9
 ⇒ <identifi er> <letter> 3 Rule 2
 ⇒ <identifi er> b 3 Rule 5
 ⇒ <identifi er> <letter> b 3 Rule 2
 ⇒ <identifi er> a b 3 Rule 4
 ⇒ <letter> a b 3 Rule 1
 ⇒ c a b 3 Rule 6

 Next to each derivation step is the production rule on which the substitution
is based. For example, Rule 2,

 Productions

 Derivations

 FIGURE 7 . 1
 A grammar for C identifi ers.

N = { <identifi er> , <letter> , <digit> }
T = { a , b , c , 1 , 2 , 3 }
P = the productions
 1. <identifi er> → <letter>
 2. <identifi er> → <identifi er> <letter>
 3. <identifi er> → <identifi er> <digit>
 4. <letter> → a
 5. <letter> → b
 6. <letter> → c
 7. <digit> → 1
 8. <digit> → 2
 9. <digit> → 3
S = <identifi er>

T { a b c 1 2 3 }

3977.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 397 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 <identifi er> → <identifi er> <letter>

 was used to substitute for <identifi er> in the derivation step

 <identifi er> 3 ⇒ <identifi er> <letter> 3

 You should read this derivation step as “Identifi er followed by 3 derives in
one step identifi er followed by letter followed by 3.”

 Analogous to the closure operation on an alphabet is the closure of the
derivation operation. Th e symbol ⇒* means “derives in zero or more steps.”
You can summarize the previous eight derivation steps as

 <identifi er> ⇒* c a b 3

 Th is derivation proves that cab3 is a valid identifi er because it can
be derived from the start symbol, <identifi er>. A language specifi ed by a
grammar consists of all the strings derivable from the start symbol using
the rules of production. Th e grammar provides an operational test for
membership in the language. If it is impossible to derive a string, the string
is not in the language.

 A Grammar for Signed Integers
 Th e grammar in FIGURE 7.2 defi nes the language of signed integers, where
d represents a decimal digit. Th e start symbol is I, which stands for integer.
F is the fi rst character, which is an optional sign, and M is the magnitude.

 Sometimes the rules of production are not numbered and are combined
on one line to conserve space on the printed page. You can write the rules of
production for this grammar as

 I → FM
 F → + | − | ε
 M → d | d M

 where the vertical bar, |, is the alternation operator and is read as “or.” Read
the last line as “M produces d , or d followed by M.”

 Here are some derivations of valid signed integers in this grammar:

 I ⇒ FM I ⇒ FM I ⇒ FM
⇒ F d M ⇒ F d M ⇒ F d M

 ⇒ F dd M ⇒ F dd ⇒ F dd M
 ⇒ F ddd ⇒ dd ⇒ F ddd M
 ⇒ -ddd ⇒ Fdddd
 ⇒ +dddd

 Note how the last step of the second derivation uses the empty string to
derive dd from F dd . It uses the production F → ε and the fact that ε d = d .

FIGURE 7.2
A grammar for
signed integers.

N = { I , F , M }
T = { + , − , d }
P = the productions
 1. I → FM
 2. F → +
 3. F → −
 4. F → ε
 5. M → dM
 6. M → d
S = I

 { I , F , M }

398 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 398 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 <identifi er> → <identifi er> <letter>

 was used to substitute for <identifi er> in the derivation step

 <identifi er> 3 ⇒ <identifi er> <letter> 3

 You should read this derivation step as “Identifi er followed by 3 derives in
one step identifi er followed by letter followed by 3.”

 Analogous to the closure operation on an alphabet is the closure of the
derivation operation. Th e symbol ⇒* means “derives in zero or more steps.”
You can summarize the previous eight derivation steps as

 <identifi er> ⇒* c a b 3

 Th is derivation proves that cab3 is a valid identifi er because it can
be derived from the start symbol, <identifi er>. A language specifi ed by a
grammar consists of all the strings derivable from the start symbol using
the rules of production. Th e grammar provides an operational test for
membership in the language. If it is impossible to derive a string, the string
is not in the language.

 A Grammar for Signed Integers
 Th e grammar in FIGURE 7.2 defi nes the language of signed integers, where
d represents a decimal digit. Th e start symbol is I, which stands for integer.
F is the fi rst character, which is an optional sign, and M is the magnitude.

 Sometimes the rules of production are not numbered and are combined
on one line to conserve space on the printed page. You can write the rules of
production for this grammar as

 I → FM
 F → + | − | ε
 M → d | d M

 where the vertical bar, |, is the alternation operator and is read as “or.” Read
the last line as “M produces d , or d followed by M.”

 Here are some derivations of valid signed integers in this grammar:

 I ⇒ FM I ⇒ FM I ⇒ FM
⇒ F d M ⇒ F d M ⇒ F d M

 ⇒ F dd M ⇒ F dd ⇒ F dd M
 ⇒ F ddd ⇒ dd ⇒ F ddd M
 ⇒ -ddd ⇒ Fdddd
 ⇒ +dddd

 Note how the last step of the second derivation uses the empty string to
derive dd from F dd . It uses the production F → ε and the fact that ε d = d .

FIGURE 7.2
A grammar for
signed integers.

N = { I , F , M }
T = { + , − , d }
P = the productions
 1. I → FM
 2. F → +
 3. F → −
 4. F → ε
 5. M → dM
 6. M → d
S = I

 { I , F , M }

398 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 398 29/01/16 8:06 pm

Figure 7.2

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 <identifi er> → <identifi er> <letter>

 was used to substitute for <identifi er> in the derivation step

 <identifi er> 3 ⇒ <identifi er> <letter> 3

 You should read this derivation step as “Identifi er followed by 3 derives in
one step identifi er followed by letter followed by 3.”

 Analogous to the closure operation on an alphabet is the closure of the
derivation operation. Th e symbol ⇒* means “derives in zero or more steps.”
You can summarize the previous eight derivation steps as

 <identifi er> ⇒* c a b 3

 Th is derivation proves that cab3 is a valid identifi er because it can
be derived from the start symbol, <identifi er>. A language specifi ed by a
grammar consists of all the strings derivable from the start symbol using
the rules of production. Th e grammar provides an operational test for
membership in the language. If it is impossible to derive a string, the string
is not in the language.

 A Grammar for Signed Integers
 Th e grammar in FIGURE 7.2 defi nes the language of signed integers, where
d represents a decimal digit. Th e start symbol is I, which stands for integer.
F is the fi rst character, which is an optional sign, and M is the magnitude.

 Sometimes the rules of production are not numbered and are combined
on one line to conserve space on the printed page. You can write the rules of
production for this grammar as

 I → FM
 F → + | − | ε
 M → d | d M

 where the vertical bar, |, is the alternation operator and is read as “or.” Read
the last line as “M produces d , or d followed by M.”

 Here are some derivations of valid signed integers in this grammar:

 I ⇒ FM I ⇒ FM I ⇒ FM
⇒ F d M ⇒ F d M ⇒ F d M

 ⇒ F dd M ⇒ F dd ⇒ F dd M
 ⇒ F ddd ⇒ dd ⇒ F ddd M
 ⇒ -ddd ⇒ Fdddd
 ⇒ +dddd

 Note how the last step of the second derivation uses the empty string to
derive dd from F dd . It uses the production F → ε and the fact that ε d = d .

FIGURE 7.2
A grammar for
signed integers.

N = { I , F , M }
T = { + , − , d }
P = the productions
 1. I → FM
 2. F → +
 3. F → −
 4. F → ε
 5. M → dM
 6. M → d
S = I

 { I , F , M }

398 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 398 29/01/16 8:06 pm

Alternative notation for
production rules

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 <identifi er> → <identifi er> <letter>

 was used to substitute for <identifi er> in the derivation step

 <identifi er> 3 ⇒ <identifi er> <letter> 3

 You should read this derivation step as “Identifi er followed by 3 derives in
one step identifi er followed by letter followed by 3.”

 Analogous to the closure operation on an alphabet is the closure of the
derivation operation. Th e symbol ⇒* means “derives in zero or more steps.”
You can summarize the previous eight derivation steps as

 <identifi er> ⇒* c a b 3

 Th is derivation proves that cab3 is a valid identifi er because it can
be derived from the start symbol, <identifi er>. A language specifi ed by a
grammar consists of all the strings derivable from the start symbol using
the rules of production. Th e grammar provides an operational test for
membership in the language. If it is impossible to derive a string, the string
is not in the language.

 A Grammar for Signed Integers
 Th e grammar in FIGURE 7.2 defi nes the language of signed integers, where
d represents a decimal digit. Th e start symbol is I, which stands for integer.
F is the fi rst character, which is an optional sign, and M is the magnitude.

 Sometimes the rules of production are not numbered and are combined
on one line to conserve space on the printed page. You can write the rules of
production for this grammar as

 I → FM
 F → + | − | ε
 M → d | d M

 where the vertical bar, |, is the alternation operator and is read as “or.” Read
the last line as “M produces d , or d followed by M.”

 Here are some derivations of valid signed integers in this grammar:

 I ⇒ FM I ⇒ FM I ⇒ FM
⇒ F d M ⇒ F d M ⇒ F d M

 ⇒ F dd M ⇒ F dd ⇒ F dd M
 ⇒ F ddd ⇒ dd ⇒ F ddd M
 ⇒ -ddd ⇒ Fdddd
 ⇒ +dddd

 Note how the last step of the second derivation uses the empty string to
derive dd from F dd . It uses the production F → ε and the fact that ε d = d .

FIGURE 7.2
A grammar for
signed integers.

N = { I , F , M }
T = { + , − , d }
P = the productions
 1. I → FM
 2. F → +
 3. F → −
 4. F → ε
 5. M → dM
 6. M → d
S = I

 { I , F , M }

398 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 398 29/01/16 8:06 pm

Some derivations

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 <identifi er> → <identifi er> <letter>

 was used to substitute for <identifi er> in the derivation step

 <identifi er> 3 ⇒ <identifi er> <letter> 3

 You should read this derivation step as “Identifi er followed by 3 derives in
one step identifi er followed by letter followed by 3.”

 Analogous to the closure operation on an alphabet is the closure of the
derivation operation. Th e symbol ⇒* means “derives in zero or more steps.”
You can summarize the previous eight derivation steps as

 <identifi er> ⇒* c a b 3

 Th is derivation proves that cab3 is a valid identifi er because it can
be derived from the start symbol, <identifi er>. A language specifi ed by a
grammar consists of all the strings derivable from the start symbol using
the rules of production. Th e grammar provides an operational test for
membership in the language. If it is impossible to derive a string, the string
is not in the language.

 A Grammar for Signed Integers
 Th e grammar in FIGURE 7.2 defi nes the language of signed integers, where
d represents a decimal digit. Th e start symbol is I, which stands for integer.
F is the fi rst character, which is an optional sign, and M is the magnitude.

 Sometimes the rules of production are not numbered and are combined
on one line to conserve space on the printed page. You can write the rules of
production for this grammar as

 I → FM
 F → + | − | ε
 M → d | d M

 where the vertical bar, |, is the alternation operator and is read as “or.” Read
the last line as “M produces d , or d followed by M.”

 Here are some derivations of valid signed integers in this grammar:

 I ⇒ FM I ⇒ FM I ⇒ FM
⇒ F d M ⇒ F d M ⇒ F d M

 ⇒ F dd M ⇒ F dd ⇒ F dd M
 ⇒ F ddd ⇒ dd ⇒ F ddd M
 ⇒ -ddd ⇒ Fdddd
 ⇒ +dddd

 Note how the last step of the second derivation uses the empty string to
derive dd from F dd . It uses the production F → ε and the fact that ε d = d .

FIGURE 7.2
A grammar for
signed integers.

N = { I , F , M }
T = { + , − , d }
P = the productions
 1. I → FM
 2. F → +
 3. F → −
 4. F → ε
 5. M → dM
 6. M → d
S = I

 { I , F , M }

398 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 398 29/01/16 8:06 pm

Some derivations

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 <identifi er> → <identifi er> <letter>

 was used to substitute for <identifi er> in the derivation step

 <identifi er> 3 ⇒ <identifi er> <letter> 3

 You should read this derivation step as “Identifi er followed by 3 derives in
one step identifi er followed by letter followed by 3.”

 Analogous to the closure operation on an alphabet is the closure of the
derivation operation. Th e symbol ⇒* means “derives in zero or more steps.”
You can summarize the previous eight derivation steps as

 <identifi er> ⇒* c a b 3

 Th is derivation proves that cab3 is a valid identifi er because it can
be derived from the start symbol, <identifi er>. A language specifi ed by a
grammar consists of all the strings derivable from the start symbol using
the rules of production. Th e grammar provides an operational test for
membership in the language. If it is impossible to derive a string, the string
is not in the language.

 A Grammar for Signed Integers
 Th e grammar in FIGURE 7.2 defi nes the language of signed integers, where
d represents a decimal digit. Th e start symbol is I, which stands for integer.
F is the fi rst character, which is an optional sign, and M is the magnitude.

 Sometimes the rules of production are not numbered and are combined
on one line to conserve space on the printed page. You can write the rules of
production for this grammar as

 I → FM
 F → + | − | ε
 M → d | d M

 where the vertical bar, |, is the alternation operator and is read as “or.” Read
the last line as “M produces d , or d followed by M.”

 Here are some derivations of valid signed integers in this grammar:

 I ⇒ FM I ⇒ FM I ⇒ FM
⇒ F d M ⇒ F d M ⇒ F d M

 ⇒ F dd M ⇒ F dd ⇒ F dd M
 ⇒ F ddd ⇒ dd ⇒ F ddd M
 ⇒ -ddd ⇒ Fdddd
 ⇒ +dddd

 Note how the last step of the second derivation uses the empty string to
derive dd from F dd . It uses the production F → ε and the fact that ε d = d .

FIGURE 7.2
A grammar for
signed integers.

N = { I , F , M }
T = { + , − , d }
P = the productions
 1. I → FM
 2. F → +
 3. F → −
 4. F → ε
 5. M → dM
 6. M → d
S = I

 { I , F , M }

398 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 398 29/01/16 8:06 pm

Some derivations

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Grammars
• Context-free

‣ A single nonterminal on the left side of
every production rule

• Context-sensitive

‣ Not context-free

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

Figure 7.3

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Th is production rule with the empty string is a convenient way to express
the fact that a positive or negative sign in front of the magnitude is optional.

 Some illegal strings from this grammar are ddd+ , +-ddd , and ddd+dd .
Try to derive these strings from the grammar to convince yourself that
they are not in the language. Can you informally prove from the rules of
production that each of these strings is not in the language?

 Th e productions in both of the sample grammars have recursive rules in
which a nonterminal is defi ned in terms of itself. Rule 3 of Figure 7 . 1 defi nes
an <identifi er> in terms of an <identifi er> as

 <identifi er> → <identifi er> <digit>

 and Rule 5 of Figure 7 . 2 defi nes M in terms of M as

 M → d M

 Recursive rules produce languages with an infi nite number of legal sentences.
To derive an identifi er, you can keep substituting <identifi er> <digit> for
<identifi er> as long as you like to produce an arbitrarily long identifi er.

 As in all recursive defi nitions, there must be an escape hatch to provide
the basis for the defi nition. Otherwise, the sequence of substitutions for the
nonterminal could never stop. Th e rule M → d provides the basis for M in
 Figure 7 . 2 .

 A Context-Sensitive Grammar
 Th e production rules for the previous grammars always contain a single
nonterminal on the left side. Th e grammar in FIGURE 7.3 has some production
rules with both a terminal and nonterminal on the left side.

 Here is a derivation of a string of terminals with this grammar:

 A ⇒ a ABC Rule 1
 ⇒ aa ABCBC Rule 1
 ⇒ aaab CBCBC Rule 2
 ⇒ aaab BCCBC Rule 3
 ⇒ aaab BCBCC Rule 3
 ⇒ aaab BBCCC Rule 3
 ⇒ aaabb BCCC Rule 4
 ⇒ aaabbb CCC Rule 4
 ⇒ aaabbbc CC Rule 5
 ⇒ aaabbbcc C Rule 6
 ⇒ aaabbbccc Rule 6

 An example of a substitution in this derivation is using Rule 5 in the step

 aaabbbCCC ⇒ aaabbbcCC

 Recursive productions

FIGURE 7.3
A context-sensitive
grammar.

N = { A , B , C }
T = { a , b , c }
P = the productions
 1. A → aABC
 2. A → abC
 3. CB → BC

4. bB → bb
 5. bC → bc
 6. cC → cc
S = A

N = { A , B , C }

3997.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 399 29/01/16 8:06 pm

A derivation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Figure 7.4

The parsing problem

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Figure 7.5

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

Parse

 Parsing a given string is more diffi cult than deriving an arbitrary
valid string. Th e parsing problem is a form of searching. Th e parsing
algorithm must search for just the right sequence of substitutions to derive
the proposed string. Not only must it fi nd the derivation if the proposed
string is valid, but it must also admit the possibility that the proposed string
may not be valid. If you look for a lost diamond ring in your room and do
not fi nd it, that does not mean the ring is not in your room. It may simply
mean that you did not look in the right place. Similarly, if you try to fi nd a
derivation for a proposed string and do not fi nd it, how do you know that
such a derivation does not exist? A translator must be able to prove that no
derivation exists if the proposed string is not valid.

 A Grammar for Expressions
 To see some of the diffi culty a parser may encounter, consider FIGURE 7.5 ,
which shows a grammar that describes an arithmetic infi x expression.
Suppose you are given the string of terminals

 (a * a) + a

 and the production rules of this grammar, and are asked to parse the
proposed string. Th e correct parse is

 E ⇒ E + T Rule 1
 ⇒ T + T Rule 2
 ⇒ F + T Rule 4
 ⇒ (E) + T Rule 5
 ⇒ (T) + T Rule 2
 ⇒ (T * F) + T Rule 3
 ⇒ (F * F) + T Rule 4

FIGURE 7.4
The difference between deriving an arbitrary sentence and parsing a
proposed sentence.

Valid sentenceDerivation

Proposed
sentence

Grammar

Grammar

(a) Deriving a valid sentence.

(b) The parsing problem.

Derivation
or

“not valid “

FIGURE 7.5
A grammar for
expressions.
Nonterminal E
represents the
expression. T
represents a term
and F a factor in the
expression.

N = { E , T , F }
T = { + , * , (,) , a }
P = the productions
 1. E → E + T
 2. E → T
 3. T → T * F

4. T → F
 5. F → (E)
 6. F → a
S = E

expression. T

4017.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 401 29/01/16 8:06 pm

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Figure 7.6

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

⇒ (a * F) + T Rule 6
 ⇒ (a * a) + T Rule 6
 ⇒ (a * a) + F Rule 4
 ⇒ (a * a) + a Rule 6

 Th e reason this could be diffi cult is that you might make a bad decision
early in the parse that looks plausible at the time but that leads to a dead end.
For example, you might spot the “(” in the string that you were given and
choose Rule 5 immediately. Your attempted parse might be

 E ⇒ T Rule 2
 ⇒ F Rule 4
 ⇒ (E) Rule 5
 ⇒ (T) Rule 2
 ⇒ (T * F) Rule 3
 ⇒ (F * F) Rule 4
 ⇒ (a * F) Rule 6
 ⇒ (a * a) Rule 6

 Until now, you have seemingly made progress toward your goal of parsing
the original expression because the intermediate string looks more like the
original string at each successive step of the derivation. Unfortunately, now
you are stuck because there is no way to get the + a part of the original string.

 Aft er reaching this dead end, you may be tempted to conclude that the
proposed string is invalid, but that would be a mistake. Just because you
cannot fi nd a derivation does not mean that such a derivation does not exist.

 One interesting aspect of a parse is that it can be represented as a tree.
Th e start symbol is the root of the tree. Each interior node of the tree is a
nonterminal, and each leaf is a terminal. Th e children of an interior node
are the symbols from the right side of the production rule substituted
for the parent node in the derivation. Th e tree is called a syntax tree , for
obvious reasons. FIGURE 7.6 shows the syntax tree for (a * a) + a with the
grammar in Figure 7 . 5 , and FIGURE 7.7 shows it for dd with the grammar
in Figure 7 . 2 .

 A C Subset Grammar
 Th e rules of production for the grammar in FIGURE 7.8 specify a small subset
of the C language. Th e only primitive types in this language are integer and
character. Th e language has no provision for constant or type declarations
and does not permit reference parameters. It also omits switch and for
statements. Despite these limitations, it gives an idea of how the syntax for a
real language is formally defi ned.

 FIGURE 7 . 6
 The syntax tree
for the parse of
(a * a) + a in
Figure 7.5.

+E T

T F

F

E()

T

a

*T F

F a

a

E

 FIGURE 7 . 7
 The syntax tree for
the parse of dd in
Figure 7.2.

F M

d M

d

I

ε

402 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 402 29/01/16 8:06 pm

Figure 7.7

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

340 Chapter 7 Language Translation Principles

<translation-unit> →
<external-declaration>
! <translation-unit> <external-declaration>

<external-declaration> →
<function-definition>
! <declaration>

<function-definition> →
<type-specifier> <identifier> (<parameter-list>) <compound-statement>
! <identifier> (<parameter-list>) <compound-statement>

<declaration> → <type-specifier> <declarator-list> ;

<type-specifier> → void ! char ! int

<declarator-list> →
<identifier>
! <declarator-list> <identifier>

<parameter-list> →
!
! <parameter-declaration>
! <parameter-list> , <parameter-declaration>

<parameter-declaration> → <type-specifier> <identifier>

<compound-statement> → { <declaration-list> <statement-list> }

<declaration-list> →
!
! <declaration>
! <declaration> <declaration-list>

<statement-list> →
!
! <statement>
! <statement-list> <statement>

<statement> →
<compound-statement>
! <expression-statement>
! <selection-statement>
! <iteration-statement>

<expression-statement> → <expression> ;

<selection-statement> →
if (<expression>) <statement>
! if (<expression>) <statement> else <statement>

<iteration-statement> →
while (<expression>) <statement>
! do <statement> while (<expression>) ;

<expression> →
<relational-expression>
! <identifier> " <expression>

Figure 7.8
A grammar for a subset of the C++
language.

Figure 7.8

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

340 Chapter 7 Language Translation Principles

<translation-unit> →
<external-declaration>
! <translation-unit> <external-declaration>

<external-declaration> →
<function-definition>
! <declaration>

<function-definition> →
<type-specifier> <identifier> (<parameter-list>) <compound-statement>
! <identifier> (<parameter-list>) <compound-statement>

<declaration> → <type-specifier> <declarator-list> ;

<type-specifier> → void ! char ! int

<declarator-list> →
<identifier>
! <declarator-list> <identifier>

<parameter-list> →
!
! <parameter-declaration>
! <parameter-list> , <parameter-declaration>

<parameter-declaration> → <type-specifier> <identifier>

<compound-statement> → { <declaration-list> <statement-list> }

<declaration-list> →
!
! <declaration>
! <declaration> <declaration-list>

<statement-list> →
!
! <statement>
! <statement-list> <statement>

<statement> →
<compound-statement>
! <expression-statement>
! <selection-statement>
! <iteration-statement>

<expression-statement> → <expression> ;

<selection-statement> →
if (<expression>) <statement>
! if (<expression>) <statement> else <statement>

<iteration-statement> →
while (<expression>) <statement>
! do <statement> while (<expression>) ;

<expression> →
<relational-expression>
! <identifier> " <expression>

Figure 7.8
A grammar for a subset of the C++
language.

Figure 7.8
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

340 Chapter 7 Language Translation Principles

<translation-unit> →
<external-declaration>
! <translation-unit> <external-declaration>

<external-declaration> →
<function-definition>
! <declaration>

<function-definition> →
<type-specifier> <identifier> (<parameter-list>) <compound-statement>
! <identifier> (<parameter-list>) <compound-statement>

<declaration> → <type-specifier> <declarator-list> ;

<type-specifier> → void ! char ! int

<declarator-list> →
<identifier>
! <declarator-list> <identifier>

<parameter-list> →
!
! <parameter-declaration>
! <parameter-list> , <parameter-declaration>

<parameter-declaration> → <type-specifier> <identifier>

<compound-statement> → { <declaration-list> <statement-list> }

<declaration-list> →
!
! <declaration>
! <declaration> <declaration-list>

<statement-list> →
!
! <statement>
! <statement-list> <statement>

<statement> →
<compound-statement>
! <expression-statement>
! <selection-statement>
! <iteration-statement>

<expression-statement> → <expression> ;

<selection-statement> →
if (<expression>) <statement>
! if (<expression>) <statement> else <statement>

<iteration-statement> →
while (<expression>) <statement>
! do <statement> while (<expression>) ;

<expression> →
<relational-expression>
! <identifier> " <expression>

Figure 7.8
A grammar for a subset of the C++
language.

Figure 7.8
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

7.1 Languages, Grammars, and Parsing 341

<relational-expression> →
<additive-expression>
! <relational-expression> < <additive-expression>
! <relational-expression> > <additive-expression>
! <relational-expression> <= <additive-expression>
! <relational-expression> >= <additive-expression>

<additive-expression> →
<multiplicative-expression>
! <additive-expression> + <multiplicative-expression>
! <additive-expression> - <multiplicative-expression>

<multiplicative-expression> →
<unary-expression>
! <multiplicative-expression> * <unary-expression>
! <multiplicative-expression> / <unary-expression>

<unary-expression> →
<primary-expression>
! <identifier> (<argument-expression-list>)

<primary-expression> →
<identifier>
! <constant>

<argument-expression-list> →
<expression>
! <argument-expression-list> , <expression>

<constant> →
<integer-constant>
! <character-constant>

<integer-constant> →
<digit>
! <integer-constant> <digit>

<character-constant> → ' <letter> '

<identifier> →
<letter>
! <identifier> <letter>
! <identifier> <digit>

<letter> →
a ! b ! c ! d ! e ! f ! g ! h ! i ! j ! k ! l ! m !
n ! o ! p ! q ! r ! s ! t ! u ! v ! w ! x ! y ! z !
A ! B ! C ! D ! E ! F ! G ! H ! I ! J ! K ! L ! M !
N ! O ! P ! Q ! R ! S ! T ! U ! V ! W ! X ! Y ! Z

<digit> →
0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9

Figure 7.8
(Continued)

Figure 7.8
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

7.1 Languages, Grammars, and Parsing 341

<relational-expression> →
<additive-expression>
! <relational-expression> < <additive-expression>
! <relational-expression> > <additive-expression>
! <relational-expression> <= <additive-expression>
! <relational-expression> >= <additive-expression>

<additive-expression> →
<multiplicative-expression>
! <additive-expression> + <multiplicative-expression>
! <additive-expression> - <multiplicative-expression>

<multiplicative-expression> →
<unary-expression>
! <multiplicative-expression> * <unary-expression>
! <multiplicative-expression> / <unary-expression>

<unary-expression> →
<primary-expression>
! <identifier> (<argument-expression-list>)

<primary-expression> →
<identifier>
! <constant>

<argument-expression-list> →
<expression>
! <argument-expression-list> , <expression>

<constant> →
<integer-constant>
! <character-constant>

<integer-constant> →
<digit>
! <integer-constant> <digit>

<character-constant> → ' <letter> '

<identifier> →
<letter>
! <identifier> <letter>
! <identifier> <digit>

<letter> →
a ! b ! c ! d ! e ! f ! g ! h ! i ! j ! k ! l ! m !
n ! o ! p ! q ! r ! s ! t ! u ! v ! w ! x ! y ! z !
A ! B ! C ! D ! E ! F ! G ! H ! I ! J ! K ! L ! M !
N ! O ! P ! Q ! R ! S ! T ! U ! V ! W ! X ! Y ! Z

<digit> →
0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9

Figure 7.8
(Continued)

Figure 7.8
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

7.1 Languages, Grammars, and Parsing 341

<relational-expression> →
<additive-expression>
! <relational-expression> < <additive-expression>
! <relational-expression> > <additive-expression>
! <relational-expression> <= <additive-expression>
! <relational-expression> >= <additive-expression>

<additive-expression> →
<multiplicative-expression>
! <additive-expression> + <multiplicative-expression>
! <additive-expression> - <multiplicative-expression>

<multiplicative-expression> →
<unary-expression>
! <multiplicative-expression> * <unary-expression>
! <multiplicative-expression> / <unary-expression>

<unary-expression> →
<primary-expression>
! <identifier> (<argument-expression-list>)

<primary-expression> →
<identifier>
! <constant>

<argument-expression-list> →
<expression>
! <argument-expression-list> , <expression>

<constant> →
<integer-constant>
! <character-constant>

<integer-constant> →
<digit>
! <integer-constant> <digit>

<character-constant> → ' <letter> '

<identifier> →
<letter>
! <identifier> <letter>
! <identifier> <digit>

<letter> →
a ! b ! c ! d ! e ! f ! g ! h ! i ! j ! k ! l ! m !
n ! o ! p ! q ! r ! s ! t ! u ! v ! w ! x ! y ! z !
A ! B ! C ! D ! E ! F ! G ! H ! I ! J ! K ! L ! M !
N ! O ! P ! Q ! R ! S ! T ! U ! V ! W ! X ! Y ! Z

<digit> →
0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9

Figure 7.8
(Continued)

Figure 7.8
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th e nonterminals for this grammar are enclosed in angle brackets, <>.
Any symbol not in brackets is in the terminal alphabet and may literally
appear in a C program listing. Th e start symbol for this grammar is the
nonterminal <translation-unit>.

 Th e specifi cation of a programming language by the rules of production
of its grammar is called Backus Naur Form , abbreviated BNF. In BNF, the
production symbol → is sometimes written : := . Th e Algol 60 language,
designed in 1960, popularized BNF.

 Th e following example of a parse with this grammar shows that

 while (a <= 9)
 S1 ;

 is a valid <statement>, assuming that S1 is a valid <expression>. Th e parse
consists of the derivation in FIGURE 7.9 .

 FIGURE 7.10 shows the corresponding syntax tree for this parse. Th e
nonterminal <statement> is the root of the tree because the purpose of the
parse is to show that the string is a valid <statement>.

 With this example in mind, consider the task of a C compiler. Th e
compiler has programmed into it a set of production rules similar to the
rules of Figure 7 . 8 . A programmer submits a text fi le containing the source
program, a long string of terminals, to the compiler. First, the compiler must
determine whether the string of terminal characters represents a valid C
translation unit. If the string is a valid <translation-unit>, then the compiler
must generate the corresponding object code in a lower-level language. If it
is not, the compiler must issue an appropriate syntax error.

 Backus Naur Form (BNF)

<character-constant> → ' <letter> '
<identifi er> →
 <letter>
 | <identifi er> <letter>
 | <identifi er> <digit>
<letter> →
 a | b | c | d | e | f | g | h | i | j | k | l | m |
 n | o | p | q | r | s | t | u | v | w | x | y | z |
 A | B | C | D | E | F | G | H | I | J | K | L | M |
 N | O | P | Q | R | S | T | U | V | W | X | Y | Z
<digit> →
 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

4057.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 405 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Th ere are literally hundreds of rules of production in the standard C
grammar. Imagine what a job the C compiler has, sorting through those
rules every time you submit a program to it! Fortunately, computer science
theory has developed to the point where parsing is not diffi cult for a
compiler. When designed using the theory, C compilers can parse a program
in a way that guarantees they will correctly decide which production to use
for the substitution at every step of the derivation. If their parsing algorithm
does not fi nd the derivation of <translation-unit> to match the source, they
can prove that such a derivation does not exist and that the proposed source
program must have a syntax error.

 Code generation is more diffi cult than parsing for compilers. Th e
reason is that the object code must run on a specifi c machine produced by a
specifi c manufacturer. Because every manufacturer’s machine has a diff erent
architecture with diff erent instruction sets, code-generation techniques

<statement>
⇒ <iteration-statement>
⇒ while (<expression>) <statement>
⇒ while (<relational-expression>) <statement>
⇒ while (<relational-expression> <= <additive-expression>) <statement>
⇒ while (<additive-expression> <= <additive-expression>) <statement>
⇒ while (<multiplicative-expression> <= <additive-expression>) <statement>
⇒ while (<unary-expression> <= <additive-expression>) <statement>
⇒ while (<primary-expression> <= <additive-expression>) <statement>
⇒ while (<identifi er> <= <additive-expression>) <statement>
⇒ while (<letter> <= <additive-expression>) <statement>
⇒ while (a <= <additive-expression>) <statement>
⇒ while (a <= <multiplicative-expression>) <statement>
⇒ while (a <= <unary-expression>) <statement>
⇒ while (a <= <primary-expression>) <statement>
⇒ while (a <= <constant>) <statement>
⇒ while (a <= <integer-constant>) <statement>
⇒ while (a <= <digit>) <statement>
⇒ while (a <= 9) <statement>
⇒ while (a <= 9) <expression-statement>
⇒ while (a <= 9) <expression> ;
⇒* while (a <= 9) S1;

FIGURE 7.9
The derivation of nonterminal <statement> while (a <= 9) S1; for the grammar in Figure 7.8.

406 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 406 29/01/16 8:06 pm

Figure 7.9

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

for one machine may not be appropriate for another. A single, standard
von Neumann architecture based on theoretical concepts does not exist.
Consequently, not as much theory for code generation has been developed
to guide compiler designers in their compiler construction eff orts.

 Context Sensitivity of C
 It appears from Figure 7 . 8 that the C language is context-free. Every
production rule has only a single nonterminal on the left side. Th is is in
contrast to a context-sensitive grammar, which can have more than a
single nonterminal on the left , as in Figure 7 . 3 . Appearances are deceiving.
Even though the grammar for this subset of C, as well as the full standard
C language, is context-free, the language itself has some context-sensitive
aspects.

C has a context-free
grammar.

 FIGURE 7 . 10
 The syntax tree for a parse of nonterminal <statement> while (a <= 9) S1; for the grammar in Figure 7.9.

<statement>

<expression>

<relational-expression>

<relational-expression>

<additive-expression>

<additive-expression>

<expression-statement>

<expression>

<multiplicative-expression>

<multiplicative-expression>

<unary-expression>

<unary-expression>

<primary-expression>

<primary-expression>

<constant>

>tnatsnoc-regetni<>reifitnedi<

>tigid<>rettel<

9a

<statement>while

<iteration-statement>

)(

<=
;

S1

4077.1 Languages, Grammars, and Parsing

9781284079630_CH07_391_466.indd 407 29/01/16 8:06 pm

Figure 7.10

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

The C language

• C has a context-free grammar.

• C is not a context-free language.

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Finite state machines
• Finite set of states called nodes represented

by circles

• Transitions between states represented by
directed arcs

• Each arc labeled by a terminal character

• One state designated the start state

• A nonempty set of states designated final
states

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 An FSM to Parse an Identifi er
 FIGURE 7.11 shows an FSM that parses an identifi er as defi ned by the
grammar in Figure 7 . 1 . Th e set of states is {A, B, C}. A is the start state, and B
is the fi nal state. Th ere is a transition from A to B on a letter, from A to C on
a digit, from B to B on a letter or a digit, and from C to C on a letter or a digit.

 To use the FSM, imagine that the input string is written on a piece of
paper tape. Start in the start state, and scan the characters on the input tape
from left to right. Each time you scan the next character on the tape, make a
transition to another state of the FSM. Use only the transition that is allowed
by the arc corresponding to the character you have just scanned. Aft er
scanning all the input characters, if you are in a fi nal state, the characters are
a valid identifi er. Otherwise they are not.

 Example 7.4 To parse the string cab3 , you would make the following
transitions:

 Current state: A Input: cab3 Scan c and go to B.
 Current state: B Input: ab3 Scan a and go to B.
 Current state: B Input: b3 Scan b and go to B.
 Current state: B Input: 3 Scan 3 and go to B.
 Current state: B Input: Check for fi nal state.

 Because there is no more input and the last state is B, a fi nal state, cab3 is a
valid identifi er. ❚

 You can also represent an FSM by its state transition table. FIGURE 7.12

is the state transition table for the FSM of Figure 7 . 11 . Th e table lists the next
state reached by the transition from a given current state on a given input
symbol.

 FIGURE 7 . 11
 An FSM to parse an identifi er.

B

C

letter

digit

digit

letter

digit

A

letter
Start

digit

 FIGURE 7 . 12
 The state transition
table for the FSM of
Figure 7.11.

Current
State

Next State

Letter Digit

A B C

B B B

C C C

4097.2 Finite-State Machines

9781284079630_CH07_391_466.indd 409 29/01/16 8:06 pm

Figure 7.11

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Parsing rules
• Start at the start state

• Scan the string from left to right

• For each terminal scanned, make a transition
to the next state in the FSM

• After the last terminal scanned, if you are in
a final state the string is in the language

• Otherwise, it is not

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 An FSM to Parse an Identifi er
 FIGURE 7.11 shows an FSM that parses an identifi er as defi ned by the
grammar in Figure 7 . 1 . Th e set of states is {A, B, C}. A is the start state, and B
is the fi nal state. Th ere is a transition from A to B on a letter, from A to C on
a digit, from B to B on a letter or a digit, and from C to C on a letter or a digit.

 To use the FSM, imagine that the input string is written on a piece of
paper tape. Start in the start state, and scan the characters on the input tape
from left to right. Each time you scan the next character on the tape, make a
transition to another state of the FSM. Use only the transition that is allowed
by the arc corresponding to the character you have just scanned. Aft er
scanning all the input characters, if you are in a fi nal state, the characters are
a valid identifi er. Otherwise they are not.

 Example 7.4 To parse the string cab3 , you would make the following
transitions:

 Current state: A Input: cab3 Scan c and go to B.
 Current state: B Input: ab3 Scan a and go to B.
 Current state: B Input: b3 Scan b and go to B.
 Current state: B Input: 3 Scan 3 and go to B.
 Current state: B Input: Check for fi nal state.

 Because there is no more input and the last state is B, a fi nal state, cab3 is a
valid identifi er. ❚

 You can also represent an FSM by its state transition table. FIGURE 7.12

is the state transition table for the FSM of Figure 7 . 11 . Th e table lists the next
state reached by the transition from a given current state on a given input
symbol.

 FIGURE 7 . 11
 An FSM to parse an identifi er.

B

C

letter

digit

digit

letter

digit

A

letter
Start

digit

 FIGURE 7 . 12
 The state transition
table for the FSM of
Figure 7.11.

Current
State

Next State

Letter Digit

A B C

B B B

C C C

4097.2 Finite-State Machines

9781284079630_CH07_391_466.indd 409 29/01/16 8:06 pm

Figure 7.12

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Simplified FSM
• Not all states have transitions on all terminal

symbols

• Two ways to detect an illegal string

‣ You may run out of input, and not be in a
final state

‣ You may be in some state, and the next
input character does not correspond to
any of the transitions from that state

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Simplifi ed FSMs
 It is oft en convenient to simplify the diagram for an FSM by eliminating the
state whose sole purpose is to provide transitions for illegal input characters.
State C in this machine is such a state. If the fi rst character is a digit, the
string will not be a valid identifi er, regardless of the following characters.
State C acts like a failure state. Once you make a transition to C, you can
never make a transition to another state, and you know the input string
eventually will be declared invalid. FIGURE 7.13 shows the simplifi ed FSM of
 Figure 7 . 11 without the failure state.

 When you parse a string with this simplifi ed machine, you will not be
able to make a transition when you encounter an illegal character in the input
string. Th ere are two ways to detect an illegal sentence in a simplifi ed FSM:

 ❯ You may run out of input and not be in a fi nal state.
 ❯ You may be in some state, and the next input character does not

correspond to any of the transitions from that state.

FIGURE 7.14 is the corresponding state transition table for Figure 7 . 13 .
Th e state transition table for a simplifi ed machine has no entry for a missing
transition. Note that this table has no entry under the digit column for the
current state of A. Th e remaining machines in this chapter are written in
simplifi ed form.

 Nondeterministic FSMs
 When you parse a sentence using a grammar, frequently you must
choose between several production rules for substitution in a derivation
step. Similarly, nondeterministic FSMs require you to decide between
more than one transition when parsing the input string. FIGURE 7.15 is
a nondeterministic FSM to parse a signed integer. It is nondeterministic
because there is at least one state that has more than one transition from
it on the same character. For example, state A has a transition to both B
and C on a digit. There is also some nondeterminism at state B because,

 FIGURE 7 . 13
 The FSM of Figure 7.11 without the failure state.

B

letter

digit

A
Start letter

 FIGURE 7 . 14
 The state transition
table for the FSM of
Figure 7.13.

Current
State

Next State

Letter Digit

A B

B B B

410 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 410 29/01/16 8:06 pm

Figure 7.13

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Simplifi ed FSMs
 It is oft en convenient to simplify the diagram for an FSM by eliminating the
state whose sole purpose is to provide transitions for illegal input characters.
State C in this machine is such a state. If the fi rst character is a digit, the
string will not be a valid identifi er, regardless of the following characters.
State C acts like a failure state. Once you make a transition to C, you can
never make a transition to another state, and you know the input string
eventually will be declared invalid. FIGURE 7.13 shows the simplifi ed FSM of
 Figure 7 . 11 without the failure state.

 When you parse a string with this simplifi ed machine, you will not be
able to make a transition when you encounter an illegal character in the input
string. Th ere are two ways to detect an illegal sentence in a simplifi ed FSM:

 ❯ You may run out of input and not be in a fi nal state.
 ❯ You may be in some state, and the next input character does not

correspond to any of the transitions from that state.

FIGURE 7.14 is the corresponding state transition table for Figure 7 . 13 .
Th e state transition table for a simplifi ed machine has no entry for a missing
transition. Note that this table has no entry under the digit column for the
current state of A. Th e remaining machines in this chapter are written in
simplifi ed form.

 Nondeterministic FSMs
 When you parse a sentence using a grammar, frequently you must
choose between several production rules for substitution in a derivation
step. Similarly, nondeterministic FSMs require you to decide between
more than one transition when parsing the input string. FIGURE 7.15 is
a nondeterministic FSM to parse a signed integer. It is nondeterministic
because there is at least one state that has more than one transition from
it on the same character. For example, state A has a transition to both B
and C on a digit. There is also some nondeterminism at state B because,

 FIGURE 7 . 13
 The FSM of Figure 7.11 without the failure state.

B

letter

digit

A
Start letter

 FIGURE 7 . 14
 The state transition
table for the FSM of
Figure 7.13.

Current
State

Next State

Letter Digit

A B

B B B

410 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 410 29/01/16 8:06 pm

Figure 7.14

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Nondeterministic FSM
• At least one state has more than one

transition from it on the same character

• If you scan the last character and you are in
a final state, the string is valid

• If you scan the last character and you are not
in a final state, the string might be invalid

• To prove invalid, you must try all possibilities
with backtracking

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Companygiven that the next input character is a digit, a transition both to B and
to C is possible.

 Example 7.5 You must make the following decisions to parse +203 with
this nondeterministic FSM:

 Current state: A Input: +203 Scan + and go to B.
 Current state: B Input: 203 Scan 2 and go to B.
 Current state: B Input: 03 Scan 0 and go to B.
 Current state: B Input: 3 Scan 3 and go to C.
 Current state: C Input: Check for fi nal state.

 Because there is no more input and you are in the fi nal state C, you have
proven that the input string +203 is a valid signed integer. ❚

 When parsing with rules of production, you run the risk of making
an incorrect choice early in the parse. You may reach a dead end where
no substitution will get your intermediate string of terminals and
nonterminals closer to the given string. Just because you reach such a dead
end does not necessarily mean that the string is invalid. All invalid strings
will produce dead ends in an attempted parse. But even valid strings have
the potential for producing dead ends if you make a wrong decision early
in the derivation.

 Th e same principle applies with nondeterministic FSMs. With the
machine of Figure 7 . 15 , if you are in the start state, A, and the next input
character is 7 , you must choose between the transitions to B and to C.
Suppose you choose the transition to C and then fi nd that there is another
input character to scan. Because there are no transitions from C, you have
reached a dead end in your attempted parse. You must conclude, therefore,
that either the input string was invalid—or it was valid and you made an
incorrect choice at an earlier point.

 FIGURE 7 . 15
 A nondeterministic FSM to parse a signed integer.

B

digit

digit

A
Start

+

C

digit

digit

-

4117.2 Finite-State Machines

9781284079630_CH07_391_466.indd 411 29/01/16 8:06 pm

Figure 7.15

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

FIGURE 7.16 is the state transition table for the machine of Figure 7 . 15 .
Th e nondeterminism is evident from the multiple entries (B, C) in the
digit column. Th ey represent a choice that must be made when attempting
a parse.

 Machines with Empty Transitions
 In the same way that it is convenient to incorporate the empty string into
production rules, it is sometimes convenient to construct FSMs with
transitions on the empty string. Such transitions are called empty transitions .
FIGURE 7.17 is an FSM that corresponds closely to the grammar in Figure 7 . 2

to parse a signed integer, and FIGURE 7.18 is its state transition table.
 In Figure 7 . 17 , F is the state aft er the fi rst character, and M is the

magnitude state analogous to the F and M nonterminals of the grammar.
In the same way that a sign can be + , - , or neither, the transition from I to F
can be on + , - , or ε.

 FIGURE 7 . 17
 An FSM with an empty transition to parse a signed integer.

F

digit

I
Start

+

M digit

-

ε

 FIGURE 7 . 16
 The state transition table for the FSM of Figure 7.15.

Current
State

Next State

+ – Digit

A B B B, C

B B, C

C

412 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 412 29/01/16 8:06 pm

Figure 7.16

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Empty transitions
• An empty transition allows you to go from

one state to another state without scanning
a terminal character

• All finite state machines with empty
transitions are considered nondeterministic

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

FIGURE 7.16 is the state transition table for the machine of Figure 7 . 15 .
Th e nondeterminism is evident from the multiple entries (B, C) in the
digit column. Th ey represent a choice that must be made when attempting
a parse.

 Machines with Empty Transitions
 In the same way that it is convenient to incorporate the empty string into
production rules, it is sometimes convenient to construct FSMs with
transitions on the empty string. Such transitions are called empty transitions .
FIGURE 7.17 is an FSM that corresponds closely to the grammar in Figure 7 . 2

to parse a signed integer, and FIGURE 7.18 is its state transition table.
 In Figure 7 . 17 , F is the state aft er the fi rst character, and M is the

magnitude state analogous to the F and M nonterminals of the grammar.
In the same way that a sign can be + , - , or neither, the transition from I to F
can be on + , - , or ε.

 FIGURE 7 . 17
 An FSM with an empty transition to parse a signed integer.

F

digit

I
Start

+

M digit

-

ε

 FIGURE 7 . 16
 The state transition table for the FSM of Figure 7.15.

Current
State

Next State

+ – Digit

A B B B, C

B B, C

C

412 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 412 29/01/16 8:06 pm

Figure 7.17

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 Example 7.6 To parse 32 requires the following decisions:

 Current state: I Input: 32 Scan ε and go to F.
 Current state: F Input: 32 Scan 3 and go to M.
 Current state: M Input: 2 Scan 2 and go to M.
 Current state: M Input: Check for fi nal state.

 Th e transition from I to F on ε does not consume an input character. When you
are in state I, you can do one of three things: (a) scan + and go to F, (b) scan -
and go to F, or (c) scan nothing (that is, the empty string) and go to F. ❚

 Machines with empty transitions are always considered nondeter-
ministic. In Example 7.6, the nondeterminism comes from the decision
you must make when you are in state I and the next character is + . You
must decide whether to go from I to F on + or from I to F on ε. These are
different transitions because they leave you with different input strings,
even though they are transitions to the same state.

 Given an FSM with empty transitions, it is always possible to transform
it to an equivalent machine without the empty transitions. Th ere are two
steps in the algorithm to eliminate an empty transition.

 ❯ Given a transition from p to q on ε, for every transition from q to r on
 a , add a transition from p to r on a .

 ❯ If q is a fi nal state, make p a fi nal state.

 Th is algorithm follows from the concatenation property of ε:

 εa = a

 Example 7.7 FIGURE 7.19 shows how to remove an empty transition from
the machine in part (a), resulting in the equivalent machine in part (b).
Because there is a transition from state X to state Y on ε, and from state Y

 Machines with empty
transitions are considered
nondeterministic.

 Th e algorithm to remove an
empty transition

 FIGURE 7 . 18
 The state transition table for the FSM of Figure 7.17.

Current
State

Next State

+ – Digit ε

I F F F

F M

M M

4137.2 Finite-State Machines

9781284079630_CH07_391_466.indd 413 29/01/16 8:06 pm

Figure 7.18

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Removing empty
transitions

• Given a transition from p to q on , for
every transition from q to r on a, add a
transition from p to r on a.

• If q is a final state, make p a final state

�

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

to state Z on a , you can eliminate the empty transition if you construct a
transition from state X to state Z on a . If you are in X, you might just as well
go to Z directly on a . Th e state and remaining input will be the same as if you
went from X to Z via Y on ε. ❚

 Example 7.8 FIGURE 7.20 shows this transformation on the FSM of
 Figure 7 . 17 . Th e empty transition from I to F is replaced by the transition
from I to M on digit, because there is a transition from F to M on digit. ❚

 In Example 7.8, there is only one transition from F to M, so the empty
transition from I to F is replaced by only one transition from I to M. If an
FSM has more than one transition from the destination state of the empty
transition, you must add more than one transition when you eliminate the
empty transition.

 Example 7.9 To eliminate the empty transition from W to X in FIGURE 7.21(a) ,
you need to replace it with two transitions, one from W to Y on a and one from
W to Z on b . In this example, because X is a fi nal state in Figure 7 . 21 (a), W
becomes a fi nal state in the equivalent machine of Figure 7 . 21 (b) in accordance
with the second step of the algorithm. ❚

 Removing the empty transition from Figure 7 . 17 produced a
deterministic machine. In general, however, removing all the empty
transitions does not guarantee that the FSM is deterministic. Even though

 FIGURE 7 . 19
 Removing an empty
transition. ZYX

Start

c

(a) The original FSM.

a
ZYX

Start

c

a

(b) The equivalent FSM without an
 empty transition.

a
ε

The original FSM. The equivalent FSM without an

 FIGURE 7 . 20
 Removing the
empty transition
from the FSM of
Figure 7.17.

digit

F

digit

I
Start

+

M

-

digit

(a) The original FSM.

F

digit

I
Start

+

M

-

digit

(b) The empty transition removed.

ε

FI FI

414 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 414 29/01/16 8:06 pm

Figure 7.19

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

to state Z on a , you can eliminate the empty transition if you construct a
transition from state X to state Z on a . If you are in X, you might just as well
go to Z directly on a . Th e state and remaining input will be the same as if you
went from X to Z via Y on ε. ❚

 Example 7.8 FIGURE 7.20 shows this transformation on the FSM of
 Figure 7 . 17 . Th e empty transition from I to F is replaced by the transition
from I to M on digit, because there is a transition from F to M on digit. ❚

 In Example 7.8, there is only one transition from F to M, so the empty
transition from I to F is replaced by only one transition from I to M. If an
FSM has more than one transition from the destination state of the empty
transition, you must add more than one transition when you eliminate the
empty transition.

 Example 7.9 To eliminate the empty transition from W to X in FIGURE 7.21(a) ,
you need to replace it with two transitions, one from W to Y on a and one from
W to Z on b . In this example, because X is a fi nal state in Figure 7 . 21 (a), W
becomes a fi nal state in the equivalent machine of Figure 7 . 21 (b) in accordance
with the second step of the algorithm. ❚

 Removing the empty transition from Figure 7 . 17 produced a
deterministic machine. In general, however, removing all the empty
transitions does not guarantee that the FSM is deterministic. Even though

 FIGURE 7 . 19
 Removing an empty
transition. ZYX

Start

c

(a) The original FSM.

a
ZYX

Start

c

a

(b) The equivalent FSM without an
 empty transition.

a
ε

The original FSM. The equivalent FSM without an

 FIGURE 7 . 20
 Removing the
empty transition
from the FSM of
Figure 7.17.

digit

F

digit

I
Start

+

M

-

digit

(a) The original FSM.

F

digit

I
Start

+

M

-

digit

(b) The empty transition removed.

ε

FI FI

414 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 414 29/01/16 8:06 pm

Figure 7.19

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

to state Z on a , you can eliminate the empty transition if you construct a
transition from state X to state Z on a . If you are in X, you might just as well
go to Z directly on a . Th e state and remaining input will be the same as if you
went from X to Z via Y on ε. ❚

 Example 7.8 FIGURE 7.20 shows this transformation on the FSM of
 Figure 7 . 17 . Th e empty transition from I to F is replaced by the transition
from I to M on digit, because there is a transition from F to M on digit. ❚

 In Example 7.8, there is only one transition from F to M, so the empty
transition from I to F is replaced by only one transition from I to M. If an
FSM has more than one transition from the destination state of the empty
transition, you must add more than one transition when you eliminate the
empty transition.

 Example 7.9 To eliminate the empty transition from W to X in FIGURE 7.21(a) ,
you need to replace it with two transitions, one from W to Y on a and one from
W to Z on b . In this example, because X is a fi nal state in Figure 7 . 21 (a), W
becomes a fi nal state in the equivalent machine of Figure 7 . 21 (b) in accordance
with the second step of the algorithm. ❚

 Removing the empty transition from Figure 7 . 17 produced a
deterministic machine. In general, however, removing all the empty
transitions does not guarantee that the FSM is deterministic. Even though

 FIGURE 7 . 19
 Removing an empty
transition. ZYX

Start

c

(a) The original FSM.

a
ZYX

Start

c

a

(b) The equivalent FSM without an
 empty transition.

a
ε

The original FSM. The equivalent FSM without an

 FIGURE 7 . 20
 Removing the
empty transition
from the FSM of
Figure 7.17.

digit

F

digit

I
Start

+

M

-

digit

(a) The original FSM.

F

digit

I
Start

+

M

-

digit

(b) The empty transition removed.

ε

FI FI

414 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 414 29/01/16 8:06 pm

Figure 7.20

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

to state Z on a , you can eliminate the empty transition if you construct a
transition from state X to state Z on a . If you are in X, you might just as well
go to Z directly on a . Th e state and remaining input will be the same as if you
went from X to Z via Y on ε. ❚

 Example 7.8 FIGURE 7.20 shows this transformation on the FSM of
 Figure 7 . 17 . Th e empty transition from I to F is replaced by the transition
from I to M on digit, because there is a transition from F to M on digit. ❚

 In Example 7.8, there is only one transition from F to M, so the empty
transition from I to F is replaced by only one transition from I to M. If an
FSM has more than one transition from the destination state of the empty
transition, you must add more than one transition when you eliminate the
empty transition.

 Example 7.9 To eliminate the empty transition from W to X in FIGURE 7.21(a) ,
you need to replace it with two transitions, one from W to Y on a and one from
W to Z on b . In this example, because X is a fi nal state in Figure 7 . 21 (a), W
becomes a fi nal state in the equivalent machine of Figure 7 . 21 (b) in accordance
with the second step of the algorithm. ❚

 Removing the empty transition from Figure 7 . 17 produced a
deterministic machine. In general, however, removing all the empty
transitions does not guarantee that the FSM is deterministic. Even though

 FIGURE 7 . 19
 Removing an empty
transition. ZYX

Start

c

(a) The original FSM.

a
ZYX

Start

c

a

(b) The equivalent FSM without an
 empty transition.

a
ε

The original FSM. The equivalent FSM without an

 FIGURE 7 . 20
 Removing the
empty transition
from the FSM of
Figure 7.17.

digit

F

digit

I
Start

+

M

-

digit

(a) The original FSM.

F

digit

I
Start

+

M

-

digit

(b) The empty transition removed.

ε

FI FI

414 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 414 29/01/16 8:06 pm

Figure 7.20

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.21

all machines with empty transitions are nondeterministic, an FSM with
no empty transitions may still be nondeterministic. Figure 7 . 15 is such a
machine, for example.

 Given the choice, you are always better off parsing with a deterministic
rather than a nondeterministic FSM. With a deterministic machine, there
is no possibility of making a wrong choice with a valid input string and
terminating in a dead end. If you ever terminate at a dead end, you can
conclude with certainty that the input string is invalid.

 Computer scientists have been able to prove that for every
nondeterministic FSM there is an equivalent deterministic FSM. Th at is,
there is a deterministic machine that recognizes exactly the same
language. Unfortunately, the proof of this useful result is beyond the
scope of this text. The proof consists of a recipe that tells how to construct
an equivalent deterministic machine from the nondeterministic one.

 Multiple Token Recognizers
 A token is a string of terminal characters that has meaning as a group. Th e
characters usually correspond to some nonterminal in a language’s grammar.
For example, consider the Pep/9 assembly language statement

 mask: .WORD 0x00FF

 Th e tokens in this statement are mask : , .WORD , and 0x00FF . Each is a set
of characters from the assembly language alphabet and has meaning as a
group. Th eir individual meanings are a symbol defi nition, a dot command,
and a hexadecimal constant, respectively.

 To a certain extent, the particular grouping of characters that you
choose to form one token is arbitrary. For example, you could choose the
string of characters 0x and 00FF to be separate tokens, 0x for the prefi x and
 00FF for the value. You would normally choose the characters of a token
to be those that make the implementation of the FSM as simple as possible.

 A common use of an FSM in a translator is to detect the tokens in
the source string. Consider the assembler’s job when confronted with this
source line. Suppose the assembler has already determined that mask: is
a symbol defi nition and .WORD is a dot command. It knows that either a
decimal or hexadecimal constant can follow the dot command, so it must be
programmed to accept either. It needs an FSM that recognizes both.

 FIGURE 7.22(a) shows two machines for parsing a hexadecimal constant
and an unsigned integer. D is the fi nal state in the fi rst machine, and F is the
fi nal state in the second machine for the unsigned integer. A hexadecimal
constant is the digit 0 , followed by lowercase x or uppercase X , followed by
one or more hexdigits, which are 0 ..9, or a .. f , or A .. F . In the second machine,
a digit is 0 .. 9 .

 Th e advantage of a
 deterministic FSM

 Th e defi nition of a token

 FIGURE 7 . 21
 Removing an empty
transition.

Start

Z

Y

a

bb

a
c

(b) The equivalent FSM without
 an empty transition.

W X

Z

W
Start

a

bc

(a) The original FSM.

Y

X

ε

4157.2 Finite-State Machines

9781284079630_CH07_391_466.indd 415 29/01/16 8:06 pm

all machines with empty transitions are nondeterministic, an FSM with
no empty transitions may still be nondeterministic. Figure 7 . 15 is such a
machine, for example.

 Given the choice, you are always better off parsing with a deterministic
rather than a nondeterministic FSM. With a deterministic machine, there
is no possibility of making a wrong choice with a valid input string and
terminating in a dead end. If you ever terminate at a dead end, you can
conclude with certainty that the input string is invalid.

 Computer scientists have been able to prove that for every
nondeterministic FSM there is an equivalent deterministic FSM. Th at is,
there is a deterministic machine that recognizes exactly the same
language. Unfortunately, the proof of this useful result is beyond the
scope of this text. The proof consists of a recipe that tells how to construct
an equivalent deterministic machine from the nondeterministic one.

 Multiple Token Recognizers
 A token is a string of terminal characters that has meaning as a group. Th e
characters usually correspond to some nonterminal in a language’s grammar.
For example, consider the Pep/9 assembly language statement

 mask: .WORD 0x00FF

 Th e tokens in this statement are mask : , .WORD , and 0x00FF . Each is a set
of characters from the assembly language alphabet and has meaning as a
group. Th eir individual meanings are a symbol defi nition, a dot command,
and a hexadecimal constant, respectively.

 To a certain extent, the particular grouping of characters that you
choose to form one token is arbitrary. For example, you could choose the
string of characters 0x and 00FF to be separate tokens, 0x for the prefi x and
 00FF for the value. You would normally choose the characters of a token
to be those that make the implementation of the FSM as simple as possible.

 A common use of an FSM in a translator is to detect the tokens in
the source string. Consider the assembler’s job when confronted with this
source line. Suppose the assembler has already determined that mask: is
a symbol defi nition and .WORD is a dot command. It knows that either a
decimal or hexadecimal constant can follow the dot command, so it must be
programmed to accept either. It needs an FSM that recognizes both.

 FIGURE 7.22(a) shows two machines for parsing a hexadecimal constant
and an unsigned integer. D is the fi nal state in the fi rst machine, and F is the
fi nal state in the second machine for the unsigned integer. A hexadecimal
constant is the digit 0 , followed by lowercase x or uppercase X , followed by
one or more hexdigits, which are 0 ..9, or a .. f , or A .. F . In the second machine,
a digit is 0 .. 9 .

 Th e advantage of a
 deterministic FSM

 Th e defi nition of a token

 FIGURE 7 . 21
 Removing an empty
transition.

Start

Z

Y

a

bb

a
c

(b) The equivalent FSM without
 an empty transition.

W X

Z

W
Start

a

bc

(a) The original FSM.

Y

X

ε

4157.2 Finite-State Machines

9781284079630_CH07_391_466.indd 415 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.21

all machines with empty transitions are nondeterministic, an FSM with
no empty transitions may still be nondeterministic. Figure 7 . 15 is such a
machine, for example.

 Given the choice, you are always better off parsing with a deterministic
rather than a nondeterministic FSM. With a deterministic machine, there
is no possibility of making a wrong choice with a valid input string and
terminating in a dead end. If you ever terminate at a dead end, you can
conclude with certainty that the input string is invalid.

 Computer scientists have been able to prove that for every
nondeterministic FSM there is an equivalent deterministic FSM. Th at is,
there is a deterministic machine that recognizes exactly the same
language. Unfortunately, the proof of this useful result is beyond the
scope of this text. The proof consists of a recipe that tells how to construct
an equivalent deterministic machine from the nondeterministic one.

 Multiple Token Recognizers
 A token is a string of terminal characters that has meaning as a group. Th e
characters usually correspond to some nonterminal in a language’s grammar.
For example, consider the Pep/9 assembly language statement

 mask: .WORD 0x00FF

 Th e tokens in this statement are mask : , .WORD , and 0x00FF . Each is a set
of characters from the assembly language alphabet and has meaning as a
group. Th eir individual meanings are a symbol defi nition, a dot command,
and a hexadecimal constant, respectively.

 To a certain extent, the particular grouping of characters that you
choose to form one token is arbitrary. For example, you could choose the
string of characters 0x and 00FF to be separate tokens, 0x for the prefi x and
 00FF for the value. You would normally choose the characters of a token
to be those that make the implementation of the FSM as simple as possible.

 A common use of an FSM in a translator is to detect the tokens in
the source string. Consider the assembler’s job when confronted with this
source line. Suppose the assembler has already determined that mask: is
a symbol defi nition and .WORD is a dot command. It knows that either a
decimal or hexadecimal constant can follow the dot command, so it must be
programmed to accept either. It needs an FSM that recognizes both.

 FIGURE 7.22(a) shows two machines for parsing a hexadecimal constant
and an unsigned integer. D is the fi nal state in the fi rst machine, and F is the
fi nal state in the second machine for the unsigned integer. A hexadecimal
constant is the digit 0 , followed by lowercase x or uppercase X , followed by
one or more hexdigits, which are 0 ..9, or a .. f , or A .. F . In the second machine,
a digit is 0 .. 9 .

 Th e advantage of a
 deterministic FSM

 Th e defi nition of a token

 FIGURE 7 . 21
 Removing an empty
transition.

Start

Z

Y

a

bb

a
c

(b) The equivalent FSM without
 an empty transition.

W X

Z

W
Start

a

bc

(a) The original FSM.

Y

X

ε

4157.2 Finite-State Machines

9781284079630_CH07_391_466.indd 415 29/01/16 8:06 pm

all machines with empty transitions are nondeterministic, an FSM with
no empty transitions may still be nondeterministic. Figure 7 . 15 is such a
machine, for example.

 Given the choice, you are always better off parsing with a deterministic
rather than a nondeterministic FSM. With a deterministic machine, there
is no possibility of making a wrong choice with a valid input string and
terminating in a dead end. If you ever terminate at a dead end, you can
conclude with certainty that the input string is invalid.

 Computer scientists have been able to prove that for every
nondeterministic FSM there is an equivalent deterministic FSM. Th at is,
there is a deterministic machine that recognizes exactly the same
language. Unfortunately, the proof of this useful result is beyond the
scope of this text. The proof consists of a recipe that tells how to construct
an equivalent deterministic machine from the nondeterministic one.

 Multiple Token Recognizers
 A token is a string of terminal characters that has meaning as a group. Th e
characters usually correspond to some nonterminal in a language’s grammar.
For example, consider the Pep/9 assembly language statement

 mask: .WORD 0x00FF

 Th e tokens in this statement are mask : , .WORD , and 0x00FF . Each is a set
of characters from the assembly language alphabet and has meaning as a
group. Th eir individual meanings are a symbol defi nition, a dot command,
and a hexadecimal constant, respectively.

 To a certain extent, the particular grouping of characters that you
choose to form one token is arbitrary. For example, you could choose the
string of characters 0x and 00FF to be separate tokens, 0x for the prefi x and
 00FF for the value. You would normally choose the characters of a token
to be those that make the implementation of the FSM as simple as possible.

 A common use of an FSM in a translator is to detect the tokens in
the source string. Consider the assembler’s job when confronted with this
source line. Suppose the assembler has already determined that mask: is
a symbol defi nition and .WORD is a dot command. It knows that either a
decimal or hexadecimal constant can follow the dot command, so it must be
programmed to accept either. It needs an FSM that recognizes both.

 FIGURE 7.22(a) shows two machines for parsing a hexadecimal constant
and an unsigned integer. D is the fi nal state in the fi rst machine, and F is the
fi nal state in the second machine for the unsigned integer. A hexadecimal
constant is the digit 0 , followed by lowercase x or uppercase X , followed by
one or more hexdigits, which are 0 ..9, or a .. f , or A .. F . In the second machine,
a digit is 0 .. 9 .

 Th e advantage of a
 deterministic FSM

 Th e defi nition of a token

 FIGURE 7 . 21
 Removing an empty
transition.

Start

Z

Y

a

bb

a
c

(b) The equivalent FSM without
 an empty transition.

W X

Z

W
Start

a

bc

(a) The original FSM.

Y

X

ε

4157.2 Finite-State Machines

9781284079630_CH07_391_466.indd 415 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Multiple token
recognizers

• Token

‣ A string of terminal characters that has
meaning as a group

• FSM with multiple final states

• The final state determines the token that is
recognized

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.22

 To construct an FSM that will recognize both the hexadecimal constant
and the unsigned integer, draw a new start state for the combined machine,
state G in Figure 7 . 22 (b). Th en draw empty transitions from the new start
state to the start state of each individual machine—in this example, from G
to A and G to E. Th e result is one nondeterministic FSM that will recognize
either token. Th e fi nal state on termination tells you what token you have
recognized. Aft er the parse, if you terminate in state D, you have detected a
hexadecimal constant, and if you terminate in state F, you have detected an
unsigned integer.

 To get the machine into a more useful form, you should eliminate the
empty transitions. FIGURE 7.23(a) shows removal of the empty transitions
for the FSM of Figure 7 . 22 (b). Aft er their removal, states A and E are

FIGURE 7.22
Combining two machines to construct one FSM that recognizes both tokens.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

ε

ε

(a) Separate machines for a hexadecimal constant and an
unsigned decimal integer.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

(b) One nondeterministic FSM that recognizes a hexadecimal
constant or an unsigned integer token.

xx

 FIGURE 7 . 23
 Transforming the FSM of Figure 7.22(b).

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

0

1..9

(a) Removing the empty transitions.

hexdigit
B

x
X

C D

digitF

hexdigit

G

0

1..9

(b) Removing the inaccessible states.

416 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 416 29/01/16 8:06 pm

 To construct an FSM that will recognize both the hexadecimal constant
and the unsigned integer, draw a new start state for the combined machine,
state G in Figure 7 . 22 (b). Th en draw empty transitions from the new start
state to the start state of each individual machine—in this example, from G
to A and G to E. Th e result is one nondeterministic FSM that will recognize
either token. Th e fi nal state on termination tells you what token you have
recognized. Aft er the parse, if you terminate in state D, you have detected a
hexadecimal constant, and if you terminate in state F, you have detected an
unsigned integer.

 To get the machine into a more useful form, you should eliminate the
empty transitions. FIGURE 7.23(a) shows removal of the empty transitions
for the FSM of Figure 7 . 22 (b). Aft er their removal, states A and E are

FIGURE 7.22
Combining two machines to construct one FSM that recognizes both tokens.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

ε

ε

(a) Separate machines for a hexadecimal constant and an
unsigned decimal integer.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

(b) One nondeterministic FSM that recognizes a hexadecimal
constant or an unsigned integer token.

xx

 FIGURE 7 . 23
 Transforming the FSM of Figure 7.22(b).

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

0

1..9

(a) Removing the empty transitions.

hexdigit
B

x
X

C D

digitF

hexdigit

G

0

1..9

(b) Removing the inaccessible states.

416 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 416 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.22

 To construct an FSM that will recognize both the hexadecimal constant
and the unsigned integer, draw a new start state for the combined machine,
state G in Figure 7 . 22 (b). Th en draw empty transitions from the new start
state to the start state of each individual machine—in this example, from G
to A and G to E. Th e result is one nondeterministic FSM that will recognize
either token. Th e fi nal state on termination tells you what token you have
recognized. Aft er the parse, if you terminate in state D, you have detected a
hexadecimal constant, and if you terminate in state F, you have detected an
unsigned integer.

 To get the machine into a more useful form, you should eliminate the
empty transitions. FIGURE 7.23(a) shows removal of the empty transitions
for the FSM of Figure 7 . 22 (b). Aft er their removal, states A and E are

FIGURE 7.22
Combining two machines to construct one FSM that recognizes both tokens.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

ε

ε

(a) Separate machines for a hexadecimal constant and an
unsigned decimal integer.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

(b) One nondeterministic FSM that recognizes a hexadecimal
constant or an unsigned integer token.

xx

 FIGURE 7 . 23
 Transforming the FSM of Figure 7.22(b).

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

0

1..9

(a) Removing the empty transitions.

hexdigit
B

x
X

C D

digitF

hexdigit

G

0

1..9

(b) Removing the inaccessible states.

416 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 416 29/01/16 8:06 pm

 To construct an FSM that will recognize both the hexadecimal constant
and the unsigned integer, draw a new start state for the combined machine,
state G in Figure 7 . 22 (b). Th en draw empty transitions from the new start
state to the start state of each individual machine—in this example, from G
to A and G to E. Th e result is one nondeterministic FSM that will recognize
either token. Th e fi nal state on termination tells you what token you have
recognized. Aft er the parse, if you terminate in state D, you have detected a
hexadecimal constant, and if you terminate in state F, you have detected an
unsigned integer.

 To get the machine into a more useful form, you should eliminate the
empty transitions. FIGURE 7.23(a) shows removal of the empty transitions
for the FSM of Figure 7 . 22 (b). Aft er their removal, states A and E are

FIGURE 7.22
Combining two machines to construct one FSM that recognizes both tokens.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

ε

ε

(a) Separate machines for a hexadecimal constant and an
unsigned decimal integer.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

(b) One nondeterministic FSM that recognizes a hexadecimal
constant or an unsigned integer token.

xx

 FIGURE 7 . 23
 Transforming the FSM of Figure 7.22(b).

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

0

1..9

(a) Removing the empty transitions.

hexdigit
B

x
X

C D

digitF

hexdigit

G

0

1..9

(b) Removing the inaccessible states.

416 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 416 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.23

 To construct an FSM that will recognize both the hexadecimal constant
and the unsigned integer, draw a new start state for the combined machine,
state G in Figure 7 . 22 (b). Th en draw empty transitions from the new start
state to the start state of each individual machine—in this example, from G
to A and G to E. Th e result is one nondeterministic FSM that will recognize
either token. Th e fi nal state on termination tells you what token you have
recognized. Aft er the parse, if you terminate in state D, you have detected a
hexadecimal constant, and if you terminate in state F, you have detected an
unsigned integer.

 To get the machine into a more useful form, you should eliminate the
empty transitions. FIGURE 7.23(a) shows removal of the empty transitions
for the FSM of Figure 7 . 22 (b). Aft er their removal, states A and E are

FIGURE 7.22
Combining two machines to construct one FSM that recognizes both tokens.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

ε

ε

(a) Separate machines for a hexadecimal constant and an
unsigned decimal integer.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

(b) One nondeterministic FSM that recognizes a hexadecimal
constant or an unsigned integer token.

xx

 FIGURE 7 . 23
 Transforming the FSM of Figure 7.22(b).

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

0

1..9

(a) Removing the empty transitions.

hexdigit
B

x
X

C D

digitF

hexdigit

G

0

1..9

(b) Removing the inaccessible states.

416 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 416 29/01/16 8:06 pm

 To construct an FSM that will recognize both the hexadecimal constant
and the unsigned integer, draw a new start state for the combined machine,
state G in Figure 7 . 22 (b). Th en draw empty transitions from the new start
state to the start state of each individual machine—in this example, from G
to A and G to E. Th e result is one nondeterministic FSM that will recognize
either token. Th e fi nal state on termination tells you what token you have
recognized. Aft er the parse, if you terminate in state D, you have detected a
hexadecimal constant, and if you terminate in state F, you have detected an
unsigned integer.

 To get the machine into a more useful form, you should eliminate the
empty transitions. FIGURE 7.23(a) shows removal of the empty transitions
for the FSM of Figure 7 . 22 (b). Aft er their removal, states A and E are

FIGURE 7.22
Combining two machines to construct one FSM that recognizes both tokens.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

ε

ε

(a) Separate machines for a hexadecimal constant and an
unsigned decimal integer.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

(b) One nondeterministic FSM that recognizes a hexadecimal
constant or an unsigned integer token.

xx

 FIGURE 7 . 23
 Transforming the FSM of Figure 7.22(b).

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

0

1..9

(a) Removing the empty transitions.

hexdigit
B

x
X

C D

digitF

hexdigit

G

0

1..9

(b) Removing the inaccessible states.

416 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 416 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.23

 To construct an FSM that will recognize both the hexadecimal constant
and the unsigned integer, draw a new start state for the combined machine,
state G in Figure 7 . 22 (b). Th en draw empty transitions from the new start
state to the start state of each individual machine—in this example, from G
to A and G to E. Th e result is one nondeterministic FSM that will recognize
either token. Th e fi nal state on termination tells you what token you have
recognized. Aft er the parse, if you terminate in state D, you have detected a
hexadecimal constant, and if you terminate in state F, you have detected an
unsigned integer.

 To get the machine into a more useful form, you should eliminate the
empty transitions. FIGURE 7.23(a) shows removal of the empty transitions
for the FSM of Figure 7 . 22 (b). Aft er their removal, states A and E are

FIGURE 7.22
Combining two machines to construct one FSM that recognizes both tokens.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

ε

ε

(a) Separate machines for a hexadecimal constant and an
unsigned decimal integer.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

(b) One nondeterministic FSM that recognizes a hexadecimal
constant or an unsigned integer token.

xx

 FIGURE 7 . 23
 Transforming the FSM of Figure 7.22(b).

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

0

1..9

(a) Removing the empty transitions.

hexdigit
B

x
X

C D

digitF

hexdigit

G

0

1..9

(b) Removing the inaccessible states.

416 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 416 29/01/16 8:06 pm

 To construct an FSM that will recognize both the hexadecimal constant
and the unsigned integer, draw a new start state for the combined machine,
state G in Figure 7 . 22 (b). Th en draw empty transitions from the new start
state to the start state of each individual machine—in this example, from G
to A and G to E. Th e result is one nondeterministic FSM that will recognize
either token. Th e fi nal state on termination tells you what token you have
recognized. Aft er the parse, if you terminate in state D, you have detected a
hexadecimal constant, and if you terminate in state F, you have detected an
unsigned integer.

 To get the machine into a more useful form, you should eliminate the
empty transitions. FIGURE 7.23(a) shows removal of the empty transitions
for the FSM of Figure 7 . 22 (b). Aft er their removal, states A and E are

FIGURE 7.22
Combining two machines to construct one FSM that recognizes both tokens.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

ε

ε

(a) Separate machines for a hexadecimal constant and an
unsigned decimal integer.

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

(b) One nondeterministic FSM that recognizes a hexadecimal
constant or an unsigned integer token.

xx

 FIGURE 7 . 23
 Transforming the FSM of Figure 7.22(b).

hexdigit
A 0 B

x
X

C D

digitE
1..9

F

hexdigit

G

0

1..9

(a) Removing the empty transitions.

hexdigit
B

x
X

C D

digitF

hexdigit

G

0

1..9

(b) Removing the inaccessible states.

416 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 416 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

inaccessible; that is, you can never reach them starting from the start state,
regardless of the input string. Consequently, they can never aff ect the parse
and can be eliminated from the machine, as shown in Figure 7 . 23 (b).

 As another example of when the translator needs to recognize multiple
tokens, consider the assembler’s job when confronted with the following two
source lines:

 NOTE: LDWA this,d ;comment 1
 NOTA ;comment 2

 Th e fi rst token on the fi rst line is a symbol defi nition. Th e fi rst token on
the second line is a mnemonic for a unary instruction. At the beginning
of each line, the translator needs an FSM to recognize a symbol defi nition,
which is in the form of an identifi er followed immediately by a colon, or
a mnemonic, which is in the form of an identifi er. FIGURE 7.24 shows the
appropriate multiple-token FSM.

 In the fi rst line, this machine makes the following transitions:

 A to B on N
 B to B on O
 B to B on T
 B to B on E
 B to C on :

 aft er which the translator halts in fi nal state C and therefore has detected a
symbol defi nition. In the second line, it makes the transitions

 A to B on N
 B to B on O
 B to B on T
 B to B on A

 Because the next input character is not a colon, the FSM does not make the
transition to state C. Th e translator halts in fi nal state B and therefore has
detected an identifi er.

 Grammars Versus FSMs
 Grammars and FSMs are not equivalent in power. Of the two, grammars
are more powerful than FSMs. Th at is, there are some languages whose
syntax rules are so complex that, even though they can be specifi ed with
a grammar, they cannot be specifi ed with an FSM. On the other hand, any
language whose syntax rules are simple enough to be specifi ed by an FSM
can also be specifi ed by a grammar.

 Figure 7 . 1 is the grammar for an identifi er, and Figure 7 . 13 is the FSM
for an identifi er. Th e rules for forming a valid identifi er are that the fi rst

 FIGURE 7 . 24
 An FSM to parse a Pep/9
assembly language
identifi er or symbol
defi nition.

CB

letter

digit

A
Start :letter

4177.2 Finite-State Machines

9781284079630_CH07_391_466.indd 417 29/01/16 8:06 pm

Figure 7.24

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

character must be a letter and the remaining characters must be letters or
digits. Th ese rules are so simple that an identifi er can be specifi ed by either
a grammar or an FSM.

 Figure 7 . 5 is a grammar for an expression. Th e language of expressions
is so complex that it is mathematically impossible to specify an FSM that can
parse an expression. Th e problem with FSMs for expressions is that you can
have unlimited nested parentheses. Once the FSM scans a left parenthesis,
it must transition to a state knowing that it is nested one level deep. If it
scans another left parenthesis, it must transition to a state knowing that it
is now nested two levels deep. If it then scans a right parenthesis, it must
transition back to a state representing one level deep. It continues scanning
left and right parentheses, transitioning to appropriate states for each level
of nesting. To detect a valid expression, the fi nal states must be ones with
no nesting.

 Th ere is no mathematical limit in the grammar to the nesting level
of an expression. Th erefore, to construct an equivalent FSM, there would
be no limit to the number of states. However, an FSM must have a fi nite
number of states. Th erefore, it is impossible to specify an FSM for an
expression.

 Although a description of regular expressions is beyond the scope of
this text, how powerful are they? It turns out that for every regular expression
there is an equivalent FSM, and for every FSM there is an equivalent regular
expression. Consequently, FSMs and regular expressions are equal in power
and are both less powerful than grammars. FIGURE 7.25 shows the power
relationship between the three methods for specifying the syntax of a
language.

 7.3 Implementing Finite-State Machines
 Th e remainder of this chapter shows how language translators convert a
source program into an object program. It uses the Java language rather than
C to illustrate the translation techniques. Th e syntax of the Java language is

Grammars

Finite-state machines Regular expressions Less powerful

More powerful

FIGURE 7.25
The power of grammars, FSMs, and regular expressions.

418 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 418 29/01/16 8:06 pm

Figure 7.25

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

similar to that of C, and it has the advantage of being object-oriented. Java
provides an extensive library of graphical user interface (GUI) elements for
input and output. Th e programs in this chapter get their input as a string of
terminal characters from a single input window and send the results of the
translation to the standard output window. Th e GUI programming details
are not shown but are available with the soft ware for this text.

 Java itself is an interpreted language based on the Java Virtual Machine
(JVM). FIGURE 7.26 shows the diff erence between a compiled language and
an interpreted language. Part (a) shows the translation process for a compiled
language like C. Every run in the computation process executes a machine
language program with input and output. In the fi rst run, a C compiler
converts the source code in a high-level language to the object code in machine
language. In the second run, the machine language object code executes,
processing the application input and producing the application output.

 Part (b) shows the translation process for an interpreted language like
Java and Pep/9, both of which are based on virtual machines. In the fi rst

 FIGURE 7 . 26
 The difference between compilation and interpretation.

Source
High-order language

Translator
Machine language

Input Processing

Object
Byte code

Output

Object
Byte code Application

output
Virtual Machine

Machine languageApplication
input

(b) Interpretation.

Source
High-order language

Translator
Machine language

Input Processing

Object
Machine language

Output

Application
input

Application
output

Object
Machine language

(a) Compilation.

4197.3 Implementing Finite-State Machines

9781284079630_CH07_391_466.indd 419 29/01/16 8:06 pm

Figure 7.26

Compilation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

similar to that of C, and it has the advantage of being object-oriented. Java
provides an extensive library of graphical user interface (GUI) elements for
input and output. Th e programs in this chapter get their input as a string of
terminal characters from a single input window and send the results of the
translation to the standard output window. Th e GUI programming details
are not shown but are available with the soft ware for this text.

 Java itself is an interpreted language based on the Java Virtual Machine
(JVM). FIGURE 7.26 shows the diff erence between a compiled language and
an interpreted language. Part (a) shows the translation process for a compiled
language like C. Every run in the computation process executes a machine
language program with input and output. In the fi rst run, a C compiler
converts the source code in a high-level language to the object code in machine
language. In the second run, the machine language object code executes,
processing the application input and producing the application output.

 Part (b) shows the translation process for an interpreted language like
Java and Pep/9, both of which are based on virtual machines. In the fi rst

 FIGURE 7 . 26
 The difference between compilation and interpretation.

Source
High-order language

Translator
Machine language

Input Processing

Object
Byte code

Output

Object
Byte code Application

output
Virtual Machine

Machine languageApplication
input

(b) Interpretation.

Source
High-order language

Translator
Machine language

Input Processing

Object
Machine language

Output

Application
input

Application
output

Object
Machine language

(a) Compilation.

4197.3 Implementing Finite-State Machines

9781284079630_CH07_391_466.indd 419 29/01/16 8:06 pm

Figure 7.26
(continued)

Interpretation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

run, the object code is byte code instead of machine language. In the second
run, the object code does not execute directly. Instead, the virtual machine
executes with two sources of input, the object byte code from the fi rst run
and the application input.

Advantages of interpretation include fast compilation time and ease of
portability. It is faster to compile into byte code because byte code is at a
higher level of abstraction than machine code and thus easier to translate.
 Figure 2 . 3 shows how a compiled language like C achieves its platform
independence. Th e language maintainers must have a compiler for every
platform. With an interpreted language like Java, the same compiler
works for all platforms. Th e language maintainers need only to provide a
virtual machine for every platform, a simpler task than providing separate
compilers.

 A disadvantage of interpretation is slow execution speed compared to
compilation. During execution time, the application is not executing directly.
Instead, the virtual machine is executing. Th is extra layer of abstraction
provided by the virtual machine during run time makes execution of
interpreted programs generally slower than execution of equivalent compiled
programs.

 The Compilation Process
 Th e syntax of a programming language is usually specifi ed by a formal
grammar, which forms the basis of the parsing algorithm for the translator.
Rather than specifying all the syntax, as the grammar in Figure 7 . 8 does, the
formal grammar frequently specifi es an upper level of abstraction and leaves
the lower level to be specifi ed by regular expressions or FSMs.

FIGURE 7.27 shows the steps in a typical compilation process. Th e low-
level syntax analysis is called lexical analysis , and the high-level syntax
analysis is called parsing . (Th is is a more specialized meaning of the word
parse . It is sometimes used in a more general sense to include all syntax
analysis.) In most translators for artifi cial languages, the lexical analyzer
is based on a deterministic FSM whose input is a string of characters. Th e
parser is usually based on a grammar whose input is the sequence of tokens
taken from the lexical analyzer.

Advantage of interpretation

Disadvantage of
interpretation

FIGURE 7.27
Steps in the compilation process.

Source
program

Lexical analyzer
(deterministic FSM)

Parser
(grammar)

Code
generator

Object
program

scitnameSxatnyS

420 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 420 29/01/16 8:06 pm

Figure 7.27

Stages of translation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Stages of translation
• Input of lexical analyzer – string of terminal

characters

• Output of lexical analyzer and input of
parser – stream of tokens

• Output of parser and input of code
generator – syntax tree and/or program in
low-level language

• Output of code generator – object program

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

FSM implementation
techniques

• Table-lookup

• Direct-code

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

A table-lookup
implementation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 An FSM to Parse an Identifi er
 FIGURE 7.11 shows an FSM that parses an identifi er as defi ned by the
grammar in Figure 7 . 1 . Th e set of states is {A, B, C}. A is the start state, and B
is the fi nal state. Th ere is a transition from A to B on a letter, from A to C on
a digit, from B to B on a letter or a digit, and from C to C on a letter or a digit.

 To use the FSM, imagine that the input string is written on a piece of
paper tape. Start in the start state, and scan the characters on the input tape
from left to right. Each time you scan the next character on the tape, make a
transition to another state of the FSM. Use only the transition that is allowed
by the arc corresponding to the character you have just scanned. Aft er
scanning all the input characters, if you are in a fi nal state, the characters are
a valid identifi er. Otherwise they are not.

 Example 7.4 To parse the string cab3 , you would make the following
transitions:

 Current state: A Input: cab3 Scan c and go to B.
 Current state: B Input: ab3 Scan a and go to B.
 Current state: B Input: b3 Scan b and go to B.
 Current state: B Input: 3 Scan 3 and go to B.
 Current state: B Input: Check for fi nal state.

 Because there is no more input and the last state is B, a fi nal state, cab3 is a
valid identifi er. ❚

 You can also represent an FSM by its state transition table. FIGURE 7.12

is the state transition table for the FSM of Figure 7 . 11 . Th e table lists the next
state reached by the transition from a given current state on a given input
symbol.

 FIGURE 7 . 11
 An FSM to parse an identifi er.

B

C

letter

digit

digit

letter

digit

A

letter
Start

digit

 FIGURE 7 . 12
 The state transition
table for the FSM of
Figure 7.11.

Current
State

Next State

Letter Digit

A B C

B B B

C C C

4097.2 Finite-State Machines

9781284079630_CH07_391_466.indd 409 29/01/16 8:06 pm

Figure 7.12

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Console output
cab3 is a valid identifier.

Console output
3cab is not a valid identifier.

Figure 7.28

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

package fig0728;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Figure 7.28 of J Stanley Warford, <i>Computer Systems</i>, Fifth edition,
 * Jones & Bartlett, 2017.
 *
 * <p>
 * Implementation of the FSM of Figure 7.11 with the table-lookup technique.
 *
 * <p>
 * File: <code>Fig0728Main.java</code>
 *
 * @see <i>Computer Systems</i>
 * book home page,
 * course
 * home page.
 * @author J. Stanley Warford
 */

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Javadoc

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class Fig0728Main implements ActionListener {

 final JFrame mainWindowFrame;
 final JPanel inputPanel;
 final JLabel label;
 final JTextField textField;
 final JPanel buttonPanel;
 final JButton button;

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public Fig0728Main() {
 // Set up the main window.
 mainWindowFrame = new JFrame("Figure 7.28");
 mainWindowFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 mainWindowFrame.setSize(new Dimension(240, 120));

 // Lay out the label and text field input panel from top to bottom.
 inputPanel = new JPanel();
 inputPanel.setLayout(new BoxLayout(inputPanel, BoxLayout.PAGE_AXIS));
 label = new JLabel("Enter a string of letters and digits:");
 inputPanel.add(label);
 textField = new JTextField(20);
 inputPanel.add(textField);
 inputPanel.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));

 // Lay out the button from left to right.
 buttonPanel = new JPanel();
 buttonPanel.setLayout(new BoxLayout(buttonPanel, BoxLayout.LINE_AXIS));
 buttonPanel.setBorder(BorderFactory.createEmptyBorder(0, 10, 10, 10));
 buttonPanel.add(Box.createHorizontalGlue());
 button = new JButton("Parse");
 buttonPanel.add(button);
 buttonPanel.add(Box.createRigidArea(new Dimension(10, 0)));

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 // Combine the input panel and the button panel in the main window.
 mainWindowFrame.add(inputPanel, BorderLayout.CENTER);
 mainWindowFrame.add(buttonPanel, BorderLayout.PAGE_END);

 textField.addActionListener(this);
 button.addActionListener(this);

 mainWindowFrame.pack();
 mainWindowFrame.setVisible(true);
}

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

private static void createAndShowGUI() {
 JFrame.setDefaultLookAndFeelDecorated(true);
 new Fig0728Main();
}

public static void main(String[] args) {
 javax.swing.SwingUtilities.invokeLater(Fig0728Main::createAndShowGUI);
}

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 public static boolean isAlpha(char ch) {
 return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z');
 }
 // States
 static final int S_A = 0;
 static final int S_B = 1;
 static final int S_C = 2;
 // Alphabet
 static final int T_LETTER = 0;
 static final int T_DIGIT = 1;
 // State transition table
 static final int[][] FSM = {
 {S_B, S_C},
 {S_B, S_B},
 {S_C, S_C}
 };

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 @Override
 public void actionPerformed(ActionEvent event) {
 String line = textField.getText();
 char ch;
 int FSMChar;
 int state = S_A;
 for (int i = 0; i < line.length(); i++) {
 ch = line.charAt(i);
 FSMChar = isAlpha(ch) ? T_LETTER : T_DIGIT;
 state = FSM[state][FSMChar];
 }
 if (state == S_B) {
 System.out.printf("%s is a valid identifier.\n", line);
 } else {
 System.out.printf("%s is not a valid identifier.\n", line);
 }
 }
}

Figure 7.28
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

A direct-code
implementation

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

to state Z on a , you can eliminate the empty transition if you construct a
transition from state X to state Z on a . If you are in X, you might just as well
go to Z directly on a . Th e state and remaining input will be the same as if you
went from X to Z via Y on ε. ❚

 Example 7.8 FIGURE 7.20 shows this transformation on the FSM of
 Figure 7 . 17 . Th e empty transition from I to F is replaced by the transition
from I to M on digit, because there is a transition from F to M on digit. ❚

 In Example 7.8, there is only one transition from F to M, so the empty
transition from I to F is replaced by only one transition from I to M. If an
FSM has more than one transition from the destination state of the empty
transition, you must add more than one transition when you eliminate the
empty transition.

 Example 7.9 To eliminate the empty transition from W to X in FIGURE 7.21(a) ,
you need to replace it with two transitions, one from W to Y on a and one from
W to Z on b . In this example, because X is a fi nal state in Figure 7 . 21 (a), W
becomes a fi nal state in the equivalent machine of Figure 7 . 21 (b) in accordance
with the second step of the algorithm. ❚

 Removing the empty transition from Figure 7 . 17 produced a
deterministic machine. In general, however, removing all the empty
transitions does not guarantee that the FSM is deterministic. Even though

 FIGURE 7 . 19
 Removing an empty
transition. ZYX

Start

c

(a) The original FSM.

a
ZYX

Start

c

a

(b) The equivalent FSM without an
 empty transition.

a
ε

The original FSM. The equivalent FSM without an

 FIGURE 7 . 20
 Removing the
empty transition
from the FSM of
Figure 7.17.

digit

F

digit

I
Start

+

M

-

digit

(a) The original FSM.

F

digit

I
Start

+

M

-

digit

(b) The empty transition removed.

ε

FI FI

414 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 414 29/01/16 8:06 pm

Figure 7.20(b)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Console output
Invalid entry.

Console output
Number = -58

Figure 7.29

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class Fig0729Main implements ActionListener {

 final JFrame mainWindowFrame;
 final JPanel inputPanel;
 final JLabel label;
 final JTextField textField;
 final JPanel buttonPanel;
 final JButton button;

...

 @Override
 public void actionPerformed(ActionEvent event) {
 String line = textField.getText();
 Parser parser = new Parser();
 parser.parseNum(line);
 if (parser.getValid()) {
 System.out.printf("Number = %d\n", parser.getNumber());
 } else {
 System.out.print("Invalid entry.\n");
 }
 }
}

Figure 7.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

package fig0729;

enum State {
 S_I, S_F, S_M, S_STOP
}

Figure 7.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

package fig0729;

public class Parser {

 private boolean valid = false;
 private int number = 0;

 public boolean getValid() {
 return valid;
 }

 public int getNumber() {
 return number;
 }

 private boolean isDigit(char ch) {
 return ('0' <= ch) && (ch <= '9');
 }

Figure 7.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 public void parseNum(String line) {
 line = line + '\n';
 int lineIndex = 0;
 char nextChar;
 int sign = +1;
 valid = true;
 State state = State.S_I;
 do {
 nextChar = line.charAt(lineIndex++);
 switch (state) {
 case S_I:
 if (nextChar == '+') {
 sign = +1;
 state = State.S_F;
 } else if (nextChar == '-') {
 sign = -1;
 state = State.S_F;
 } else if (isDigit(nextChar)) {
 sign = +1;
 number = nextChar - '0';
 state = State.S_M;
 } else {
 valid = false;
 }
 break;

Figure 7.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case S_F:
 if (isDigit(nextChar)) {
 number = nextChar - '0';
 state = State.S_M;
 } else {
 valid = false;
 }
 break;
 case S_M:
 if (isDigit(nextChar)) {
 number = 10 * number + nextChar - '0';
 } else if (nextChar == '\n') {
 number = sign * number;
 state = State.S_STOP;
 } else {
 valid = false;
 }
 break;
 }
 } while ((state != State.S_STOP) && valid);
 }
}

Figure 7.29
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

An input buffer
• Used to process one character at a time

from a Java String as if from an input stream

• Provides a special feature needed by
multiple-token parsers

• Ability to back up a character into the input
stream after being scanned

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class InBuffer {

 private String inString;
 private String line;
 private int lineIndex;

 public InBuffer(String string) {
 inString = string + "\n\n";
 // To guarantee inString.length() == 0 eventually
 }

Figure 7.30

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 public void getLine() {
 int i = inString.indexOf('\n');
 line = inString.substring(0, i + 1);
 inString = inString.substring(i + 1);
 lineIndex = 0;
 }

 public boolean inputRemains() {
 return inString.length() != 0;
 }

 public char advanceInput() {
 return line.charAt(lineIndex++);
 }

 public void backUpInput() {
 lineIndex--;
 }
}

Figure 7.30
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

A multiple-token parser

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

digit

space +

-

letter

Start

Ident

Sign

Int

digit

letter

digit

digit

Figure 7.31

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Console output
Identifier = Here
Identifier = is
Identifier = A47
Integer = 48
Identifier = B
Empty token
Identifier = C
Integer = -49
Identifier = ALongIdentifier
Integer = 50
Identifier = D16
Integer = -51
Empty token

Figure 7.32

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Console output
Identifier = Here
Identifier = is
Identifier = A47
Syntax error
Identifier = C
Integer = 49
Empty token
Empty token
Identifier = ALongIdentifier
Empty token

Figure 7.32
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

to Start, aft er which the i and s characters produce the recognition of a
second identifi er, as shown in the sample output. Similarly, A47 is recognized
as an identifi er.

 For the next token, the initial 4 sends the machine into the Integer state.
Th e 8 makes the transition to the same state. Now the machine inputs the B .
Th ere is no transition from state Integer on the terminal B . Because the machine
is in the fi nal state for integers, it concludes that an integer has been scanned. It
puts the B terminal, which it could not use in this state, back into the input for
use as the fi rst terminal for the next token. It then declares that an integer has
been scanned. Notice that B is detected as an identifi er the next time around.

 Th e machine continues recognizing tokens until it gets to the end of
the line, at which point it recognizes the empty token. It will recognize the
empty token whether or not there are trailing spaces in the input because the
buff er appends two newline characters to the input string.

 Th e second sample input shows how the machine handles a string of
characters that contains a syntax error. Aft er recognizing Here , is , and
 A47 , on the next call, the FSM gets the + and goes to state Sign. Because the
next character is space, and there is no transition from Sign on space, the
FSM returns the invalid token.

 Like all multiple-token recognizers, this machine operates on the
following design principle:

 ❯ You can never fail once you reach a fi nal state. Instead, if the fi nal
state does not have a transition from it on the terminal just input, you
have recognized a token and should back up the input. Th e character
will then be available as the fi rst terminal for the next token.

 Th e machine handles an empty line (or a line with only spaces) correctly,
returning the empty token on the fi rst call.

 FIGURE 7.33 is a Unifi ed Modeling Language (UML) diagram of the class
structure of a token. AToken is an abstract token with no attributes and one
public abstract operation, getDescription() . Th e plus sign in front of the

 A design principle for
multiple-token recognizers

TEmpty TInvalid

AToken

TIdentifier
– stringValue: String

+ TIdentifier (StringBuffer: stringBuffer)

TInteger
 – intValue: int

+ TInteger (i: int)

+ getDescription(): String

 FIGURE 7 . 33
 The UML diagram of the class structure of AToken.

430 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 430 29/01/16 8:06 pm

Figure 7.33

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

abstract public class AToken {
 public abstract String getDescription();
}

public class TEmpty extends AToken {

 @Override
 public String getDescription() {
 return "Empty token";
 }
}

public class TInvalid extends AToken {

 @Override
 public String getDescription() {
 return "Syntax error";
 }
}

Figure 7.34

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class TInteger extends AToken {
 private final int intValue;

 public TInteger(int i) {
 intValue = i;
 }

 @Override
 public String getDescription() {
 return String.format("Integer = %d", intValue);
 }
}

public class TIdentifier extends AToken {
 private final String stringValue;

 public TIdentifier(StringBuffer stringBuffer) {
 stringValue = new String(stringBuffer);
 }

 @Override
 public String getDescription() {
 return String.format("Identifier = %s", stringValue);
 }
}

Figure 7.34
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class Util {

 public static boolean isDigit(char ch) {
 return ('0' <= ch) && (ch <= '9');
 }

 public static boolean isAlpha(char ch) {
 return (('a' <= ch) && (ch <= 'z') || ('A' <= ch) && (ch <= 'Z'));
 }
}

public enum LexState {
 LS_START, LS_IDENT, LS_SIGN, LS_INTEGER, LS_STOP
}

Figure 7.35

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class Tokenizer {

 private final InBuffer b;

 public Tokenizer(InBuffer inBuffer) {
 b = inBuffer;
 }

 public AToken getToken() {
 char nextChar;
 StringBuffer localStringValue = new StringBuffer("");
 int localIntValue = 0;
 int sign = +1;
 AToken aToken = new TEmpty();
 LexState state = LexState.LS_START;

Figure 7.35
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 do {
 nextChar = b.advanceInput();
 switch (state) {
 case LS_START:
 if (Util.isAlpha(nextChar)) {
 localStringValue.append(nextChar);
 state = LexState.LS_IDENT;
 } else if (nextChar == '-') {
 sign = -1;
 state = LexState.LS_SIGN;
 } else if (nextChar == '+') {
 sign = +1;
 state = LexState.LS_SIGN;
 } else if (Util.isDigit(nextChar)) {
 localIntValue = nextChar - '0';
 state = LexState.LS_INTEGER;
 } else if (nextChar == '\n') {
 state = LexState.LS_STOP;
 } else if (nextChar != ' ') {
 aToken = new TInvalid();
 }
 break;

Figure 7.35
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case LS_IDENT:
 if (Util.isAlpha(nextChar) || Util.isDigit(nextChar)) {
 localStringValue.append(nextChar);
 } else {
 b.backUpInput();
 aToken = new TIdentifier(localStringValue);
 state = LexState.LS_STOP;
 }
 break;
 case LS_SIGN:
 if (Util.isDigit(nextChar)) {
 localIntValue = 10 * localIntValue + nextChar - '0';
 state = LexState.LS_INTEGER;
 } else {
 aToken = new TInvalid();
 }
 break;

Figure 7.35
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case LS_INTEGER:
 if (Util.isDigit(nextChar)) {
 localIntValue = 10 * localIntValue + nextChar - '0';
 } else {
 b.backUpInput();
 aToken = new TInteger(sign * localIntValue);
 state = LexState.LS_STOP;
 }
 break;
 }
 } while ((state != LexState.LS_STOP) && !(aToken instanceof TInvalid));
 return aToken;
 }
}

Figure 7.35
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 public void actionPerformed(ActionEvent event) {
 InBuffer inBuffer = new InBuffer(textArea.getText());
 Tokenizer t = new Tokenizer(inBuffer);
 AToken aToken;
 inBuffer.getLine();
 while (inBuffer.inputRemains()) {
 do {
 aToken = t.getToken();
 System.out.println(aToken.getDescription());
 } while (!(aToken instanceof TEmpty)
 && !(aToken instanceof TInvalid));
 inBuffer.getLine();
 }
 }
}

Figure 7.36

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Console output
Planet Mars is red.
Enumerated output: P_MARS
Ordinal output: 3

Console output
Texas is not a planet.

Java map demo

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public enum Planet {
 P_MERCURY, P_VENUS, P_EARTH, P_MARS, P_JUPITER, P_SATURN,
 P_URANUS, P_NEPTUNE, P_PLUTO
}

public class Maps {

 public static final Map<String, Planet> planetTable;
 public static final Map<Planet, String> planetStringTable;

 static {
 planetTable = new HashMap<>();
 planetTable.put("mercury", Planet.P_MERCURY);
 planetTable.put("venus", Planet.P_VENUS);
 planetTable.put("earth", Planet.P_EARTH);
 planetTable.put("mars", Planet.P_MARS);
 planetTable.put("jupiter", Planet.P_JUPITER);
 planetTable.put("saturn", Planet.P_SATURN);
 planetTable.put("uranus", Planet.P_URANUS);
 planetTable.put("neptune", Planet.P_NEPTUNE);
 planetTable.put("pluto", Planet.P_PLUTO);

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 planetStringTable = new EnumMap<>(Planet.class);
 planetStringTable.put(Planet.P_MERCURY, "Mercury");
 planetStringTable.put(Planet.P_VENUS, "Venus");
 planetStringTable.put(Planet.P_EARTH, "Earth");
 planetStringTable.put(Planet.P_MARS, "Mars");
 planetStringTable.put(Planet.P_JUPITER, "Jupiter");
 planetStringTable.put(Planet.P_SATURN, "Saturn");
 planetStringTable.put(Planet.P_URANUS, "Uranus");
 planetStringTable.put(Planet.P_NEPTUNE, "Neptune");
 planetStringTable.put(Planet.P_PLUTO, "Pluto");
 }
}

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 public void actionPerformed(ActionEvent event) {
 String line = textField.getText();
 if (Maps.planetTable.containsKey(line.toLowerCase())) {
 Planet planet = Maps.planetTable.get(line.toLowerCase());
 String planetString = Maps.planetStringTable.get(planet);
 switch (planet) {
 case P_MERCURY:
 case P_VENUS:
 System.out.printf("%s is close to the sun.\n", planetString);
 break;
 case P_EARTH:
 System.out.printf("The %s is indeed a planet.\n", planetString);
 break;
 case P_MARS:
 System.out.printf("Planet %s is red.\n", planetString);
 break;
 case P_JUPITER:
 case P_SATURN:
 System.out.printf("%s is a big planet.\n", planetString);
 break;
 case P_URANUS:
 case P_NEPTUNE:
 case P_PLUTO:
 System.out.printf("%s is far from the sun.\n", planetString);
 }

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 System.out.printf("Enumerated output: %s\n", planet);
 System.out.printf("Ordinal output: %d\n", planet.ordinal());
 } else {
 System.out.println(line + " is not a planet.");
 }
 }
}

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

A language translator

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Input
set (Time, 15)
set (Accel, 3)
set (TSquared , Time)
 MUL (TSquared, Time)
set (Position, TSquared)
mul (Position, Accel)
dIV(Position,2)
stop
end

Output
Object code:
Time <- 15
Accel <- 3
TSquared <- Time
TSquared <- TSquared * Time
Position <- TSquared
Position <- Position * Accel
Position <- Position / 2
stop

Program listing:
set (Time, 15)
set (Accel, 3)
set (TSquared, Time)
mul (TSquared, Time)
set (Position, TSquared)
mul (Position, Accel)
div (Position, 2)
stop
end

Figure 7.37

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Input
set (Alpha,, 123)
set (Alpha)
sit (Alpha, 123)
set, (Alpha)
mul (Alpha, Beta
set (123, Alpha)
neg (Alpha, Beta)
set (Alpha, 123) x

Output
9 errors were detected.

Program listing:
ERROR: Second argument not an identifier or integer.
ERROR: Comma expected after first argument.
ERROR: Line must begin with function identifier.
ERROR: Left parenthesis expected after function.
ERROR: Right parenthesis expected after argument.
ERROR: First argument not an identifier.
ERROR: Right parenthesis expected after argument.
ERROR: Illegal trailing character.
ERROR: Missing "end" sentinel.

Figure 7.37
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public enum Mnemon {
 M_ADD, M_SUB, M_MUL, M_DIV, M_NEG, M_ABS, M_SET, M_STOP, M_END
}

public final class Maps {

 public static final Map<String, Mnemon> unaryMnemonTable;
 public static final Map<String, Mnemon> nonUnaryMnemonTable;
 public static final Map<Mnemon, String> mnemonStringTable;

 static {
 unaryMnemonTable = new HashMap<>();
 unaryMnemonTable.put("stop", Mnemon.M_STOP);
 unaryMnemonTable.put("end", Mnemon.M_END);

 nonUnaryMnemonTable = new HashMap<>();
 nonUnaryMnemonTable.put("neg", Mnemon.M_NEG);
 nonUnaryMnemonTable.put("abs", Mnemon.M_ABS);
 nonUnaryMnemonTable.put("add", Mnemon.M_ADD);
 nonUnaryMnemonTable.put("sub", Mnemon.M_SUB);
 nonUnaryMnemonTable.put("mul", Mnemon.M_MUL);
 nonUnaryMnemonTable.put("div", Mnemon.M_DIV);
 nonUnaryMnemonTable.put("set", Mnemon.M_SET);

Figure 7.38

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 mnemonStringTable = new EnumMap<>(Mnemon.class);
 mnemonStringTable.put(Mnemon.M_NEG, "neg");
 mnemonStringTable.put(Mnemon.M_ABS, "abs");
 mnemonStringTable.put(Mnemon.M_ADD, "add");
 mnemonStringTable.put(Mnemon.M_SUB, "sub");
 mnemonStringTable.put(Mnemon.M_MUL, "mul");
 mnemonStringTable.put(Mnemon.M_DIV, "div");
 mnemonStringTable.put(Mnemon.M_SET, "set");
 mnemonStringTable.put(Mnemon.M_STOP, "stop");
 mnemonStringTable.put(Mnemon.M_END, "end");
 }
}

Figure 7.38
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

program listing continues in the following fi gures. Figure 7 . 38 shows the
setup of three Java maps used by the translator. Th e fi rst two maps, one
for unary instructions and one for nonunary instructions, take the string
representation of a reserved word as the key and return the enumerated
mnemonic representation. Th e third table uses enumerated mnemonic
values as the key to look up the string symbol to place in the generated
code. Th e maps use the lowercase string representation of the source code
reserved word.

 FIGURE 7.39 is the UML diagram of an abstract argument, and
 FIGURE 7.40 is its Java implementation. Because an argument in the source
code can be either an identifi er or an integer, the program stores a general
argument as an AArg , which at run time is either an IdentArg or an
 IntArg . Class AArg defi nes the abstract method generateCode() , which
contributes to code generation when the value of an argument must be
output.

 FIGURE 7.41 is the UML diagram of an abstract token, and FIGURE 7.42
is a partial listing of its Java implementation. Th e implementations of
 TLeftParen , TRightParen , TEmpty , and TInvalid are identical to the
implementation of TComma and are not shown in the fi gure. Th is structure
of a token is similar to the one in Figure 7 . 33 of the previous section. Classes
 TIdentifier and TInteger have getter methods to retrieve the values of
their attributes.

 Th e lexical analyzer returns an identifi er when it encounters a reserved
word and when it encounters an argument. When it encounters a reserved
word, the parser needs to look up the word in the mnemonic map. It uses
 getStringValue() to get the identifi er value from the token.

 FIGURE 7.43 is the UML diagram of the abstract code class ACode , and
 FIGURE 7.44 is a complete listing of its Java implementation. An object of class

 FIGURE 7 . 39
 The UML diagram of the class structure of AArg.

+ generateCode(): String

AArg

IdentArg
– identValue: String

+ IdentArg (str: String)

IntArg
– intValue: int

+ IntArg (i: int)

4397.4 Code Generation

9781284079630_CH07_391_466.indd 439 29/01/16 8:06 pm

Figure 7.39

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

abstract public class AArg {
 abstract public String generateCode();
}

public class IdentArg extends AArg {
 private final String identValue;
 public IdentArg(String str) {
 identValue = str;
 }
 @Override
 public String generateCode() {
 return identValue;
 }
}

public class IntArg extends AArg {
 private final int intValue;
 public IntArg(int i) {
 intValue = i;
 }
 @Override
 public String generateCode() {
 return String.format("%d", intValue);
 }
}

Figure 7.40

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 7 . 41
 The UML diagram of the class structure of AToken.

TComma

AToken

TRightParen

TLeftParen TEmpty

TInvalidTIdentifier
– stringValue: String

+ TIdentifier (stringBuffer: StringBuffer)
+ getStringValue(): String

TInteger
– intValue: int
+ TInteger(i: int)
+ getIntValue(): int

FIGURE 7.40
The Java implementation of class AArg in Figure 7.39.

abstract public class AArg {
 abstract public String generateCode();
}

public class IdentArg extends AArg {
 private final String identValue;
 public IdentArg(String str) {
 identValue = str;
 }
 public String generateCode() {
 return identValue;
 }
}

public class IntArg extends AArg {
 private final int intValue;
 public IntArg(int i) {
 intValue = i;
 }
 public String generateCode() {
 return String.format("%d", intValue);
 }
}

 abstract public String generateCode();

440 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 440 29/01/16 8:06 pm

Figure 7.41

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

abstract public class AToken {
}

public class TIdentifier extends AToken {
 private final String stringValue;
 public TIdentifier(StringBuffer stringBuffer) {
 stringValue = new String(stringBuffer);
 }
 public String getStringValue() {
 return stringValue;
 }
}

public class TInteger extends AToken {
 private final int intValue;
 public TInteger(int i) {
 intValue = i;
 }
 public int getIntValue() {
 return intValue;
 }
}

public class TComma extends AToken {
}

Figure 7.42

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Figure 7.43
 FIGURE 7 . 43
 The UML diagram of the class structure of ACode.

+ generateCode (): String
+ generateListing (): String

ACode

– errorMessage: String
Error

+ generateCode (): String
AArg

+ IntArg (i: int)
– intValue: int

IntArg

+ IdentArg (str: String)
– identValue: String

IdentArg

– mnemonic: Mnemon
UnaryInstr

+ OneArgInstr (mn: Mnemon, aArg: AArg)

– mnemonic: Mnemon
– aArg: AArg

OneArgInstr

+ TwoArgInstr (mn: Mnemon, fArg: AArg, sArg: AArg)

TwoArgInstr
– mnemonic: Mnemon
– firstArg: AArg
– secondArg: AArg

EmptyInstr

442
C

H
A

PTER
 7 Language Translation Principles

9781284079630_C
H

07_391_466.indd 442
29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

abstract public class ACode {
 abstract public String generateCode();
 abstract public String generateListing();
}

public class Error extends ACode {
 private final String errorMessage;
 public Error(String errMessage) {
 errorMessage = errMessage;
 }

 @Override
 public String generateListing() {
 return "ERROR: " + errorMessage + "\n";
 }

 @Override
 public String generateCode() {
 return "";
 }
}

Figure 7.44

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class EmptyInstr extends ACode {
 // For an empty source line.

 @Override
 public String generateListing() {
 return "\n";
 }

 @Override
 public String generateCode() {
 return "";
 }
}

Figure 7.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class UnaryInstr extends ACode {
 private final Mnemon mnemonic;
 public UnaryInstr(Mnemon mn) {
 mnemonic = mn;
 }

 @Override
 public String generateListing() {
 return Maps.mnemonStringTable.get(mnemonic) + "\n";
 }

 @Override
 public String generateCode() {
 switch (mnemonic) {
 case M_STOP:
 return "stop\n";
 case M_END:
 return "";
 default:
 return ""; // Should not occur.
 }
 }
}

Figure 7.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class OneArgInstr extends ACode {
 private final Mnemon mnemonic;
 private final AArg aArg;
 public OneArgInstr(Mnemon mn, AArg aArg) {
 mnemonic = mn;
 this.aArg = aArg;
 }
 @Override
 public String generateListing() {
 return String.format("%s (%s)\n",
 Maps.mnemonStringTable.get(mnemonic), aArg.generateCode());
 }
 @Override
 public String generateCode() {
 switch (mnemonic) {
 case M_ABS:
 return String.format("%s <- |%s|\n",
 aArg.generateCode(), aArg.generateCode());
 case M_NEG:
 return String.format("%s <- -%s\n",
 aArg.generateCode(), aArg.generateCode());
 default:
 return ""; // Should not occur.
 }
 }
}

Figure 7.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public class TwoArgInstr extends ACode {
 private final Mnemon mnemonic;
 private final AArg firstArg;
 private final AArg secondArg;
 public TwoArgInstr(Mnemon mn, AArg fArg, AArg sArg) {
 mnemonic = mn;
 firstArg = fArg;
 secondArg = sArg;
 }

 @Override
 public String generateListing() {
 return String.format("%s (%s, %s)\n",
 Maps.mnemonStringTable.get(mnemonic),
 firstArg.generateCode(),
 secondArg.generateCode());
 }

Figure 7.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 @Override
 public String generateCode() {
 switch (mnemonic) {
 case M_SET:
 return String.format("%s <- %s\n",
 firstArg.generateCode(),
 secondArg.generateCode());
 case M_ADD:
 return String.format("%s <- %s + %s\n",
 firstArg.generateCode(),
 firstArg.generateCode(),
 secondArg.generateCode());
 case M_SUB:
 return String.format("%s <- %s - %s\n",
 firstArg.generateCode(),
 firstArg.generateCode(),
 secondArg.generateCode());
 case M_MUL:
 return String.format("%s <- %s * %s\n",
 firstArg.generateCode(),
 firstArg.generateCode(),
 secondArg.generateCode());

Figure 7.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case M_DIV:
 return String.format("%s <- %s / %s\n",
 firstArg.generateCode(),
 firstArg.generateCode(),
 secondArg.generateCode());
 default:
 return ""; // Should not occur.
 }
 }
}

Figure 7.44
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public enum LexState {
 LS_START, LS_IDENT, LS_SIGN, LS_INTEGER, LS_STOP
}

public class Tokenizer {

 private final InBuffer b;

 public Tokenizer(InBuffer inBuffer) {
 b = inBuffer;
 }

 public AToken getToken() {
 char nextChar;
 StringBuffer localStringValue = new StringBuffer("");
 int localIntValue = 0;
 int sign = +1;
 AToken aToken = new TEmpty();
 LexState state = LexState.LS_START;

Figure 7.45

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 do {
 nextChar = b.advanceInput();
 switch (state) {
 case LS_START:
 if (Util.isAlpha(nextChar)) {
 localStringValue.append(nextChar);
 state = LexState.LS_IDENT;
 } else if (nextChar == '-') {
 sign = -1;
 state = LexState.LS_SIGN;
 } else if (nextChar == '+') {
 sign = +1;
 state = LexState.LS_SIGN;
 } else if (Util.isDigit(nextChar)) {
 localIntValue = nextChar - '0';
 state = LexState.LS_INTEGER;
 } else if (nextChar == ',') {
 aToken = new TComma();
 state = LexState.LS_STOP;
 } else if (nextChar == '(') {
 aToken = new TLeftParen();
 state = LexState.LS_STOP;
 } else if (nextChar == ')') {
 aToken = new TRightParen();
 state = LexState.LS_STOP;

Figure 7.45
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 } else if (nextChar == '\n') {
 state = LexState.LS_STOP;
 } else if (nextChar != ' ') {
 aToken = new TInvalid();
 }
 break;
 case LS_IDENT:
 if (Util.isAlpha(nextChar) || Util.isDigit(nextChar)) {
 localStringValue.append(nextChar);
 } else {
 b.backUpInput();
 aToken = new TIdentifier(localStringValue);
 state = LexState.LS_STOP;
 }
 break;
 case LS_SIGN:
 if (Util.isDigit(nextChar)) {
 localStringValue.append(nextChar);
 state = LexState.LS_INTEGER;
 } else {
 aToken = new TInvalid();
 }
 break;

Figure 7.45
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case LS_INTEGER:
 if (Util.isDigit(nextChar)) {
 localIntValue = 10 * localIntValue + nextChar - '0';
 } else {
 b.backUpInput();
 aToken = new TInteger(localIntValue);
 state = LexState.LS_STOP;
 }
 break;
 }
 } while ((state != LexState.LS_STOP) && !(aToken instanceof TInvalid));
 return aToken;
 }
}

Figure 7.45
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 FIGURE 7 . 46
 The FSM for the parser processSourceLine of Figure 7.47.

PS_START

T_IDENTIFIER

PS_FUNCTION

T_EMPTY T_EMPTY

T_EMPTY

T_EMPTY

T_RIGHT_PAREN

T_LEFT_PAREN

PS_OPEN

T_IDENTIFIER

PS_1ST_OPRND

T_COMMA

PS_COMMA

T_IDENTIFIER
T_INTEGER

PS_2ND_OPRND

Note 1: Only the identifiers stop and end.
Note 2: Only the identifiers set, add, sub, mul, div, neg, and abs.
Note 3: Only for mnemonics M_NEG and M_ABS.
Note 4: Only for mnemonics M_SET, M_ADD, M_SUB,and M_MUL, M_DIV.

PS_UNARY

PS_FINISHPS_NON_UNARY1

PS_NON_UNARY2

2

T_IDENTIFIER1

4

T_RIGHT_PAREN 3

 Figure 7 . 41 . Th e fi nal state PS_FINISH can be reached only by input of token
 T_EMPTY . Th e transition from PS_START to PS_FINISH will occur if there
is a blank line or if there is a line that contains only spaces. Th e terminal
strings end and stop are the only identifi ers that make the transition from
 PS_START to PS_UNARY . Th e identifi ers that correspond to the other
reserved words— set , add , sub , mul , div , neg , and abs —make the
transition from PS_START to PS_FUNCTION . All other identifi ers are
invalid when detected in the PS_START state.

 FIGURE 7.47 is a partial listing of the translator that implements the
FSM of Figure 7 . 46 . Class Translator has two methods, private method
 parseLine() and public method translate() , which calls parseLine()
in a loop that executes once per source line.

4497.4 Code Generation

9781284079630_CH07_391_466.indd 449 29/01/16 8:06 pm

Figure 7.46

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

public enum ParseState {
 PS_START, PS_UNARY, PS_FUNCTION, PS_OPEN, PS_1ST_OPRND, PS_NONUNARY1,
 PS_COMMA, PS_2ND_OPRND, PS_NON_UNARY2, PS_FINISH
}

public class Translator {
 private final InBuffer b;
 private Tokenizer t;
 private ACode aCode;

 public Translator(InBuffer inBuffer) {
 b = inBuffer;
 }

 // Sets aCode and returns boolean true if end statement is processed.
 private boolean parseLine() {
 boolean terminate = false;
 AArg localFirstArg = new IntArg(0);
 AArg localSecondArg;
 // Compiler requires following useless initialization.
 Mnemon localMnemon = Mnemon.M_END;
 AToken aToken;
 aCode = new EmptyInstr();
 ParseState state = ParseState.PS_START;

Figure 7.47

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 do {
 aToken = t.getToken();
 switch (state) {
 case PS_START:
 if (aToken instanceof TIdentifier) {
 TIdentifier localTIdentifier = (TIdentifier) aToken;
 String tempStr = localTIdentifier.getStringValue();
 if (Maps.unaryMnemonTable.containsKey(
 tempStr.toLowerCase())) {
 localMnemon = Maps.unaryMnemonTable.get(
 tempStr.toLowerCase());
 aCode = new UnaryInstr(localMnemon);
 terminate = localMnemon == Mnemon.M_END;
 state = ParseState.PS_UNARY;
 } else if (Maps.nonUnaryMnemonTable.containsKey(
 tempStr.toLowerCase())) {
 localMnemon = Maps.nonUnaryMnemonTable.get(
 tempStr.toLowerCase());
 state = ParseState.PS_FUNCTION;
 } else {
 aCode = new Error(
 "Line must begin with function identifier.");
 }

Figure 7.47
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 } else if (aToken instanceof TEmpty) {
 aCode = new EmptyInstr();
 state = ParseState.PS_FINISH;
 } else {
 aCode = new Error(
 "Line must begin with function identifier.");
 }
 break;
...

Figure 7.47
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case PS_FUNCTION:
 if (aToken instanceof TLeftParen) {
 state = ParseState.PS_OPEN;
 } else {
 aCode = new Error(
 "Left parenthesis expected after function.");
 }
 break;
 case PS_OPEN:
 if (aToken instanceof TIdentifier) {
 TIdentifier localTIdentifier = (TIdentifier) aToken;
 localFirstArg = new IdentArg(
 localTIdentifier.getStringValue());
 state = ParseState.PS_1ST_OPRND;
 } else {
 aCode = new Error("First argument not an identifier.");
 }
 break;

Not in
Figure 7.47

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case PS_1ST_OPRND:
 if (localMnemon == Mnemon.M_NEG
 || localMnemon == Mnemon.M_ABS) {
 if (aToken instanceof TRightParen) {
 aCode = new OneArgInstr(localMnemon, localFirstArg);
 state = ParseState.PS_NONUNARY1;
 } else {
 aCode = new Error(
 "Right parenthesis expected after argument.");
 }
 } else if (aToken instanceof TComma) {
 state = ParseState.PS_COMMA;
 } else {
 aCode = new Error(
 "Comma expected after first argument.");
 }
 break;

Not in
Figure 7.47

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case PS_COMMA:
 if (aToken instanceof TIdentifier) {
 TIdentifier localTIdentifier = (TIdentifier) aToken;
 localSecondArg = new IdentArg(
 localTIdentifier.getStringValue());
 aCode = new TwoArgInstr(
 localMnemon, localFirstArg, localSecondArg);
 state = ParseState.PS_2ND_OPRND;
 } else if (aToken instanceof TInteger) {
 TInteger localTInteger = (TInteger) aToken;
 localSecondArg = new IntArg(localTInteger.getIntValue());
 aCode = new TwoArgInstr(
 localMnemon, localFirstArg, localSecondArg);
 state = ParseState.PS_2ND_OPRND;
 } else {
 aCode = new Error(
 "Second argument not an identifier or integer.");
 }
 break;

Figure 7.47
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case PS_2ND_OPRND:
 if (aToken instanceof TRightParen) {
 state = ParseState.PS_NON_UNARY2;
 } else {
 aCode = new Error(
 "Right parenthesis expected after argument.");
 }
 break;

Not in
Figure 7.47

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 case PS_NON_UNARY2:
 if (aToken instanceof TEmpty) {
 state = ParseState.PS_FINISH;
 } else {
 aCode = new Error("Illegal trailing character.");
 }
 break;
 }
 } while (state != ParseState.PS_FINISH && !(aCode instanceof Error));
 return terminate;
 }

Figure 7.47
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 public void translate() {
 ArrayList<ACode> codeTable = new ArrayList<>();
 int numErrors = 0;
 t = new Tokenizer(b);
 boolean terminateWithEnd = false;
 b.getLine();
 while (b.inputRemains() && !terminateWithEnd) {
 terminateWithEnd = parseLine(); // Sets aCode and returns boolean.
 codeTable.add(aCode);
 if (aCode instanceof Error) {
 numErrors++;
 }
 b.getLine();
 }
 if (!terminateWithEnd) {
 aCode = new Error("Missing \"end\" sentinel.");
 codeTable.add(aCode);
 numErrors++;
 }

Figure 7.47
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 if (numErrors == 0) {
 System.out.printf("Object code:\n");
 for (int i = 0; i < codeTable.size(); i++) {
 System.out.printf("%s", codeTable.get(i).generateCode());
 }
 }
 if (numErrors == 1) {
 System.out.printf("One error was detected.\n");
 } else if (numErrors > 1) {
 System.out.printf("%d errors were detected.\n", numErrors);
 }
 System.out.printf("\nProgram listing:\n");
 for (int i = 0; i < codeTable.size(); i++) {
 System.out.printf("%s", codeTable.get(i).generateListing());
 }
 }
}

Figure 7.47
(continued)

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

 public void actionPerformed(ActionEvent event) {
 InBuffer inBuffer = new InBuffer(textArea.getText());
 Translator tr = new Translator(inBuffer);
 tr.translate();
 }

Figure 7.48

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

Translation phases
• Lexical analyzer – getToken()

• Parser– parseLine()

• Code generator– generateCode()

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

9. For the grammar of Figure 7 . 8 , draw the syntax tree for <translation-
unit> from the following string, assuming that alpha , beta , gamma ,
and main are valid <identifi er>s and C1 , S1 , and S2 are <expression>s:

 int main()
 { int gamma;
 alpha (gamma);
 if (C1)
 S1;
 else
 S2;
 }

10. Th e question this exercise poses is “Can two diff erent grammars produce
the same language?” Th e grammars in FIGURE 7.49 and FIGURE 7.50 are
not the same because they have diff erent nonterminal sets and diff erent
production rules. Experiment with these two grammars by deriving
some terminal strings. From your experiments, describe the languages
produced by these grammars. Is it possible to derive a valid string of
terminals with the grammar in Figure 7 . 49 that is not in 7.50 or vice
versa? Prove your conjecture.

 Section 7.2

11. For each of the machines shown in FIGURE 7.51 , (1) state whether the
FSM is deterministic or nondeterministic, and (2) identify any states
that are inaccessible.

12. Remove the empty transitions to produce the equivalent machine for
each of the FSMs in FIGURE 7.52 .

13. Draw a deterministic FSM that recognizes strings of 1’s and 0’s specifi ed
by each of the following criteria. Each FSM should reject any characters

 FIGURE 7 . 49
 A grammar for
Exercise 10.

N = { A , B }
T = { 0 , 1 }
P = the productions
 1. A → 0 B
 2. B → 1 0 B
 3. B → ε
S = A

N { A , B }

N = { C }
T = { 0 , 1 }
P = the productions
 1. C → C 10
 2. C → 0
S = C

FIGURE 7.50
Another grammar for
Exercise 10.

N { C }

 FIGURE 7 . 51
 The FSMs for Exercise 11.

XW

Y

a

a

*(a)

ac b

Z

XW

Y

a

c

(b)

b

Z

XW

Y

a

a

(c)

a

Z

XW

Y

a

b

a

a c

(d)

b

cb

Z

cc bc bc bac ba b a a ca c

459Exercises

9781284079630_CH07_391_466.indd 459 29/01/16 8:06 pm

Figures 7.49, 7.50

9. For the grammar of Figure 7 . 8 , draw the syntax tree for <translation-
unit> from the following string, assuming that alpha , beta , gamma ,
and main are valid <identifi er>s and C1 , S1 , and S2 are <expression>s:

 int main()
 { int gamma;
 alpha (gamma);
 if (C1)
 S1;
 else
 S2;
 }

10. Th e question this exercise poses is “Can two diff erent grammars produce
the same language?” Th e grammars in FIGURE 7.49 and FIGURE 7.50 are
not the same because they have diff erent nonterminal sets and diff erent
production rules. Experiment with these two grammars by deriving
some terminal strings. From your experiments, describe the languages
produced by these grammars. Is it possible to derive a valid string of
terminals with the grammar in Figure 7 . 49 that is not in 7.50 or vice
versa? Prove your conjecture.

 Section 7.2

11. For each of the machines shown in FIGURE 7.51 , (1) state whether the
FSM is deterministic or nondeterministic, and (2) identify any states
that are inaccessible.

12. Remove the empty transitions to produce the equivalent machine for
each of the FSMs in FIGURE 7.52 .

13. Draw a deterministic FSM that recognizes strings of 1’s and 0’s specifi ed
by each of the following criteria. Each FSM should reject any characters

 FIGURE 7 . 49
 A grammar for
Exercise 10.

N = { A , B }
T = { 0 , 1 }
P = the productions
 1. A → 0 B
 2. B → 1 0 B
 3. B → ε
S = A

N { A , B }

N = { C }
T = { 0 , 1 }
P = the productions
 1. C → C 10
 2. C → 0
S = C

FIGURE 7.50
Another grammar for
Exercise 10.

N { C }

 FIGURE 7 . 51
 The FSMs for Exercise 11.

XW

Y

a

a

*(a)

ac b

Z

XW

Y

a

c

(b)

b

Z

XW

Y

a

a

(c)

a

Z

XW

Y

a

b

a

a c

(d)

b

cb

Z

cc bc bc bac ba b a a ca c

459Exercises

9781284079630_CH07_391_466.indd 459 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

9. For the grammar of Figure 7 . 8 , draw the syntax tree for <translation-
unit> from the following string, assuming that alpha , beta , gamma ,
and main are valid <identifi er>s and C1 , S1 , and S2 are <expression>s:

 int main()
 { int gamma;
 alpha (gamma);
 if (C1)
 S1;
 else
 S2;
 }

10. Th e question this exercise poses is “Can two diff erent grammars produce
the same language?” Th e grammars in FIGURE 7.49 and FIGURE 7.50 are
not the same because they have diff erent nonterminal sets and diff erent
production rules. Experiment with these two grammars by deriving
some terminal strings. From your experiments, describe the languages
produced by these grammars. Is it possible to derive a valid string of
terminals with the grammar in Figure 7 . 49 that is not in 7.50 or vice
versa? Prove your conjecture.

 Section 7.2

11. For each of the machines shown in FIGURE 7.51 , (1) state whether the
FSM is deterministic or nondeterministic, and (2) identify any states
that are inaccessible.

12. Remove the empty transitions to produce the equivalent machine for
each of the FSMs in FIGURE 7.52 .

13. Draw a deterministic FSM that recognizes strings of 1’s and 0’s specifi ed
by each of the following criteria. Each FSM should reject any characters

 FIGURE 7 . 49
 A grammar for
Exercise 10.

N = { A , B }
T = { 0 , 1 }
P = the productions
 1. A → 0 B
 2. B → 1 0 B
 3. B → ε
S = A

N { A , B }

N = { C }
T = { 0 , 1 }
P = the productions
 1. C → C 10
 2. C → 0
S = C

FIGURE 7.50
Another grammar for
Exercise 10.

N { C }

 FIGURE 7 . 51
 The FSMs for Exercise 11.

XW

Y

a

a

*(a)

ac b

Z

XW

Y

a

c

(b)

b

Z

XW

Y

a

a

(c)

a

Z

XW

Y

a

b

a

a c

(d)

b

cb

Z

cc bc bc bac ba b a a ca c

459Exercises

9781284079630_CH07_391_466.indd 459 29/01/16 8:06 pm

Figure 7.51

9. For the grammar of Figure 7 . 8 , draw the syntax tree for <translation-
unit> from the following string, assuming that alpha , beta , gamma ,
and main are valid <identifi er>s and C1 , S1 , and S2 are <expression>s:

 int main()
 { int gamma;
 alpha (gamma);
 if (C1)
 S1;
 else
 S2;
 }

10. Th e question this exercise poses is “Can two diff erent grammars produce
the same language?” Th e grammars in FIGURE 7.49 and FIGURE 7.50 are
not the same because they have diff erent nonterminal sets and diff erent
production rules. Experiment with these two grammars by deriving
some terminal strings. From your experiments, describe the languages
produced by these grammars. Is it possible to derive a valid string of
terminals with the grammar in Figure 7 . 49 that is not in 7.50 or vice
versa? Prove your conjecture.

 Section 7.2

11. For each of the machines shown in FIGURE 7.51 , (1) state whether the
FSM is deterministic or nondeterministic, and (2) identify any states
that are inaccessible.

12. Remove the empty transitions to produce the equivalent machine for
each of the FSMs in FIGURE 7.52 .

13. Draw a deterministic FSM that recognizes strings of 1’s and 0’s specifi ed
by each of the following criteria. Each FSM should reject any characters

 FIGURE 7 . 49
 A grammar for
Exercise 10.

N = { A , B }
T = { 0 , 1 }
P = the productions
 1. A → 0 B
 2. B → 1 0 B
 3. B → ε
S = A

N { A , B }

N = { C }
T = { 0 , 1 }
P = the productions
 1. C → C 10
 2. C → 0
S = C

FIGURE 7.50
Another grammar for
Exercise 10.

N { C }

 FIGURE 7 . 51
 The FSMs for Exercise 11.

XW

Y

a

a

*(a)

ac b

Z

XW

Y

a

c

(b)

b

Z

XW

Y

a

a

(c)

a

Z

XW

Y

a

b

a

a c

(d)

b

cb

Z

cc bc bc bac ba b a a ca c

459Exercises

9781284079630_CH07_391_466.indd 459 29/01/16 8:06 pm

Computer Systems F I F T H E D I T I O N

Copyright © 2017 by Jones & Bartlett Learning, LLC an Ascend Learning Company

that are not 0 or 1. *(a) Th e string of three characters, 101 . (b) All strings
of arbitrary length that end in 101 . For example, the FSM should accept
 1101 but reject 1011 . (c) All strings of arbitrary length that begin with
101 . For example, the FSM should accept 1010 but reject 0101 . (d) All
strings of arbitrary length that contain a 101 at least once anywhere. For
example, the FSM should accept all the strings mentioned in parts (a),
(b), and (c), as well as strings such as 11100001011111100111 .

 Section 7.4

14. Design a grammar that describes the source language of the translator
in Figure 7 . 47 .

 Problems

 Section 7.3

15. Improve the program in Figure 7 . 28 as suggested in the text by defi ning
a third enumeration in Alphabet called T_OTHER , which represents a
symbol that is neither a letter nor a digit.

16. Implement each FSM in Exercise 13 using the table-lookup technique of
the program in Figure 7 . 28 . Classify a character as B_ONE , B_ZERO , or
B_OTHER in the transition table.

17. Implement each FSM in Exercise 13 using the direct-code technique of
the program in Figure 7 . 29 . Write a procedure called parsePat() for
a parse pattern that corresponds to parseNum() . Do not include the
attribute number or method getNumber() in class Parser .

18. A hexadecimal digit is ' 0 '..' 9 ', or ' a '..' f ', or ' A '..' F '. A hexadecimal
constant is a sequence of hexadecimal digits. Examples include 3 ,
 a , 0d , and FF4e . Use the direct-code technique for implementing
an FSM as in the program of Figure 7 . 29 to parse a hexadecimal
constant and convert it to a nonnegative integer. Th e input/output
should be similar to that in the fi gure, with invalid input producing
an error message and a valid hexadecimal input string producing the
nonnegative integer value.

 Section 7.4

19. Write an assembler for Pep/9 assembly language. Complete the following
milestones in the order they are listed.

 FIGURE 7 . 52
 The FSMs for
Exercise 12.

a
X

Z

W
b

c
b

a

c

(a)

Y

ε

b
X

Z

W
a

c

(b)

Y
b

c

a

ε

460 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 460 29/01/16 8:06 pm

Figure 7.52

that are not 0 or 1. *(a) Th e string of three characters, 101 . (b) All strings
of arbitrary length that end in 101 . For example, the FSM should accept
 1101 but reject 1011 . (c) All strings of arbitrary length that begin with
101 . For example, the FSM should accept 1010 but reject 0101 . (d) All
strings of arbitrary length that contain a 101 at least once anywhere. For
example, the FSM should accept all the strings mentioned in parts (a),
(b), and (c), as well as strings such as 11100001011111100111 .

 Section 7.4

14. Design a grammar that describes the source language of the translator
in Figure 7 . 47 .

 Problems

 Section 7.3

15. Improve the program in Figure 7 . 28 as suggested in the text by defi ning
a third enumeration in Alphabet called T_OTHER , which represents a
symbol that is neither a letter nor a digit.

16. Implement each FSM in Exercise 13 using the table-lookup technique of
the program in Figure 7 . 28 . Classify a character as B_ONE , B_ZERO , or
B_OTHER in the transition table.

17. Implement each FSM in Exercise 13 using the direct-code technique of
the program in Figure 7 . 29 . Write a procedure called parsePat() for
a parse pattern that corresponds to parseNum() . Do not include the
attribute number or method getNumber() in class Parser .

18. A hexadecimal digit is ' 0 '..' 9 ', or ' a '..' f ', or ' A '..' F '. A hexadecimal
constant is a sequence of hexadecimal digits. Examples include 3 ,
 a , 0d , and FF4e . Use the direct-code technique for implementing
an FSM as in the program of Figure 7 . 29 to parse a hexadecimal
constant and convert it to a nonnegative integer. Th e input/output
should be similar to that in the fi gure, with invalid input producing
an error message and a valid hexadecimal input string producing the
nonnegative integer value.

 Section 7.4

19. Write an assembler for Pep/9 assembly language. Complete the following
milestones in the order they are listed.

 FIGURE 7 . 52
 The FSMs for
Exercise 12.

a
X

Z

W
b

c
b

a

c

(a)

Y

ε

b
X

Z

W
a

c

(b)

Y
b

c

a

ε

460 CHAPTER 7 Language Translation Principles

9781284079630_CH07_391_466.indd 460 29/01/16 8:06 pm

Figure 7.53

 (a) Write class Tokenizer with method getToken() , to implement
the FSM of FIGURE 7.53 . Use class InBuffer from Figure 7 . 30 .
Implement method getDescription() for each concrete
token and output the tokens with a nested do loop as in
 actionPerformed() of Figure 7 . 36 .

 Integers are stored in two bytes. When considered unsigned,
the range is 0..65535. When considered signed, the range is
−32768..32767. Your program must accept integers in the range
−32768..65535. Each time you scan a decimal digit and update the
total value, check it against this range. If inputting a decimal digit
makes the total value go out of this range, return the invalid token.

LS_ADDR1 LS_ADDR2letter

LS_IDENT

LS_START

LS_DOT1

LS_INT2

LS_INT1

LS_SIGN

LS_HEX2

LS_DOT2letter

letter

.

,

digit

digit

letter

letter
digit

digit

space

letter

hexdigit

hexdigit

space

0

1..9

x
X

+
–

LS_HEX1

 FIGURE 7 . 53
 The FSM for getToken in Problem 19(a).

461Problems

9781284079630_CH07_391_466.indd 461 29/01/16 8:06 pm

