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Out of Bounds
Gerard J. Holzmann

RELIABLE CODE

IN SOFTWARE CERTIFICATION 
courses at JPL we emphasize that 
writing reliable code requires the 
development of a keen sensitivity 
to system bounds. In any computer 
only a finite amount of memory is 
available to perform computations, 
only a finite amount of time is 
available to do so, and every object 
we store and modify is necessarily 
finite. All resources are bounded. 
Stacks are bounded, queues are 
bounded, file system capacity is 
bounded, and, yes, even numbers 
are bounded. This makes the world 
of computer science very different 
from the world of mathematics, 
but too few people take this into 
account when they write code. Per-
haps the problem is that in most 
cases it doesn’t matter much if 

you’re aware of the limitations of 
your computer because things will 
work correctly anyway, most of 
the time.

There’s a great Peanuts strip in 
which Peppermint Patty explains to 
a schoolmate that algebra isn’t re-
ally all that hard: “x is almost al-
ways eleven, and y is almost always 
nine,” she explains patiently. In 
math, if x and y are both positive, 
then it’s clear that their sum must 
be larger than both x and y. Not in 
a computer. If we use signed 32-bit 
integers, this property holds only if 
the sum is less than about two bil-
lion. Because that will be true most 
of the time, it’s safe to say that when 
we increment x with a positive value, 
the result will “almost always” be 
greater than the original.

Almost Always
Assume we’re maintaining a signed 
32-bit counter. We start it off at zero 
and increment it once every second. 
If we keep doing that, the counter 
will take about 68 years to over� ow. 
This is in fact how the number of 
seconds was stored in the original 
Unix operating system, with a clock 
value of zero corresponding, by con-
vention, to 1 January 1970. This 
method for recording time clearly 
has limitations. The 32-bit Unix 
clock can record only a time span 
of about 136 years: from December 
1901 (recorded as negative numbers 
counting seconds before January 
1970) until January 2038. If we keep 
a Unix box running long enough, the 
equivalent of the Y2K problem will 
occur on Tuesday, 19 January 2038, 
when time will appear to switch 
back to 13 December 1901.

Fixing the Unix clock isn’t hard. 
If we simply move the counter to a 
64-bit number, the over� ow won’t 
occur for about 293 billion years. 
Even though this amount of time 
isn’t unbounded, it’s likely long 
enough, given that our solar system 
is expected to come to a � ery end 
before this counter can reach a mere 
� ve billion years.

Things change if we start count-
ing time at a � ner resolution than 
seconds. If, for instance, we incre-
ment our 32-bit counter once every 
100 ms, a signed counter will over-
� ow in about 6.8 years, an unsigned 
one in 13.6 years. If we increase the 
precision to one increment every 10 
ms, a signed counter will over� ow in 
248.6 days, an unsigned one in 497.1 
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days. Remember those numbers; 
we’ll see them again. Table 1 sum-
marizes them.

Spacecraft Time
The Deep Impact mission launched 
in January 2005. Its embedded con-
troller calculated time as the number 
of 100-ms intervals that had elapsed 
since 1 January 2000. Adding 13.6 
years gives us a date in August 2013, 
well beyond the originally intended 
lifetime for this mission. The space-
craft was designed to launch an im-
pactor to collide with the comet Tem-
pel 1 and study its composition from 
the resulting dust cloud. The space-
craft completed that mission on 4 
July 2005.

Spacecraft often pick up addi-
tional duties after successfully com-
pleting their primary mission, pro-
vided they have sufficient resources 
left. On a first extended mission, 
Deep Impact completed a flyby of 
the comet Hartley 2 in November 
2010. After that, it still had enough 
fuel for another extended mission, a 
flyby of asteroid 2002 GT. If all had 
gone well, the now-renamed space-
craft EPOXI would have reached 
that asteroid in 2020.

But it was not to be. The clock 
counter on the spacecraft overflowed 
on 13 August 2013, which triggered 
an exception. The exception tripped 
a reset of the spacecraft that should 
have put it into its safe mode. Natu-
rally, the reset cleared everything in 
memory except the spacecraft clock, 
which meant that the spacecraft 
ended up in a reset cycle. Even in this 
desperate mode, ground controllers 
can do things to recover a spacecraft 
by issuing “hardware commands” 
that bypass the main CPU. How-
ever, this type of intervention must 
be done quickly, before the space-
craft loses track of earth and can no 

longer receive commands. The help 
didn’t come in time, and the space-
craft was declared lost on 20 Septem-
ber 2013—killed by a 32-bit counter.

It is, alas, not the only example 
of integer overflow causing problems 
even in safety-critical systems.

Airplanes
A Boeing 787 passenger plane (the 
Dreamliner) has many parts, many 
of which have embedded controllers. 
Those controllers are likely to have 
internal clocks and count time. The 
embedded controllers in the Boe-
ing’s GCUs (generator control units) 
maintain time in 10-ms increments. 
The corresponding counters are 
stored as signed 32-bit numbers. At 
this point, you might want to glance 
back at Table 1 before reading on.

On 9 July 2015, the US Federal 
Aviation Administration issued an 
airworthiness directive (AD) to 
all airlines instructing them to re-
boot the GCUs on all Boeing 787s 
at least once every 248 days.1 The 
directive said, “We are issuing this 
AD to prevent loss of all AC elec-
trical power, which could result in 
loss of control of the airplane.” It 
explained, “This AD was prompted 
by the determination that a Model 
787 airplane that has been powered 
continuously for 248 days can lose 
all alternating current (AC) electri-
cal power due to the generator con-
trol units (GCUs) simultaneously 
going into failsafe mode. This con-
dition is caused by a software coun-
ter internal to the GCUs … that 

will overflow after 248 days of con-
tinuous power.”

We already know where the 248 
days came from, but it’s still re-
markable to see how often this type 
of programming flaw can occur in 
practice, even in systems that have 
passed fairly rigorous certification. 
The software for a commercial air-
plane is generally developed and 
tested with great care. The develop-
ment process must comply with the 
stipulations of the DO-178B stan-
dard (and its successor DO-178C). 
The Boeing 787 software was cer-
tainly not written in a rush. The 
first 787 was shown publically on 8 
July 2007, and the first flight took 
place on 15 December 2009. The 
first commercial flight was two years 
later. We can assume that the plane, 
and its control software, had been in 
development for a good number of 
years at that point. When the over-
flow problem was discovered in early 
2015, close to 300 of the planes were 
in operation.

Resource Limits
It seems counterintuitive that fail-
ures in highly complex systems can 
have these embarrassingly simple 
causes. The reason might be that the 
really difficult design issues typically 
get ample attention; it’s the simple 
stuff that can get neglected. This 
can explain why hitting a known re-
source bound can bring a system to 
the brink of failure. Examples are 
easy to find; here I describe two that 
were in the news fairly recently.
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 1 How time resolution affects counter overflow.

If you increment a 32-
bit counter once every

A signed counter will 
overflow in

An unsigned counter 
will overflow in

1 s 68.1 yrs. 136.2 yrs.

100 ms 6.8 yrs. 13.6 yrs.

10 ms 248.6 days = 0.68 yrs. 497.1 days = 1.36 yrs.
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LightSail
On 20 May 2015, the Planetary So-
ciety launched a small spacecraft 
for a test flight. The mission, called 
LightSail, aimed to test a large solar 
sail. The test flight hit a snag in just 
two days. A mission update from 26 
May described the problem: “Light-
Sail is likely now frozen, not unlike 
the way a desktop computer sud-
denly stops responding.”2

The cause was relatively simple. 
An onboard log file stored a record 
of all telemetry data transmitted by 
the craft; when that file exceeded 
32 Mbytes, it crashed the flight sys-
tem. Why 32 Mbytes? This wasn’t 
explained in the press releases, but 
this limit matches a limit of the old 
FAT12 file system, which some em-
bedded systems still use. The FAT12 
design used 16-bit addresses to store 
sequences of 512-byte blocks in the 
file system, and yes, 216 × 512 bytes 
comes out to 32 Mbytes.

Curiosity
Another example is much closer to 
home for me. The Mars Science Labo-
ratory was designed and built at the lab 
where I work. It successfully landed 
Curiosity, a large rover, on the surface 
of Mars on 6 August 2012. Since then, 
the rover has been functioning reliably, 
but its software has experienced a few 
glitches along the way.

One of those glitches occurred 
almost six months after the land-
ing, on 27 February 2013. The trig-
ger was the sudden failure of a bank 
of flash memory. The rover software 
uses flash memory to maintain a file 
system for storing temporary data 
files, containing telemetry and im-
ages from the mission, before they’re 
downlinked to earth. The software 
was designed to place the flash file 
system in read-only mode when 
something unexpected happens. So, 
when the bank failed, that’s precisely 
what happened.

During normal operation of the 
rover, many tasks use the file sys-
tem to store temporary data prod-
ucts. Because the flash hardware can 
be slow and a large amount of data 
must be stored, the software uses a 
buffering method that can tempo-
rarily store data in RAM before it’s 
migrated to the flash file system and 
then downlinked to earth. All this 
worked perfectly, almost always.

Knowing that all resources in 
an embedded system are bounded, 
we can ask, what happens when the 
RAM fills up? If this system is de-
signed properly this should happen 
rarely, and it shouldn’t last long be-
cause the data temporarily stored in 
RAM will eventually drain to flash 
memory. So, in this rare case, the 
rover computer suspends the data-
producing tasks until enough RAM 
frees up for them to resume executing.

We can also ask, what happens 
when the flash memory fills up? This 
event should be even rarer because 
mission managers are required to 
keep a substantial margin of flash 
memory free throughout the mission. 
However, if it does happen, the soft-
ware is designed to start freeing flash 
memory by deleting low-priority files 
until a sufficient margin is restored. 
The higher-priority files that live 
in flash memory eventually will be 
transmitted to earth, and the space 
they occupy can be freed again.

All of that looked solid enough 
to pass all design reviews, code re-
views, and unit tests that try to push 
the known resource limits. But one 
case wasn’t tested—the one that hap-
pened on Mars in February 2013. 
When the flash memory is in read-
only mode owing to a hardware er-
ror, no further changes can be made: 
it can’t add or delete any more data. 
The RAM now slowly fills up with 
new data products, waiting for those 
data products to migrate to flash 
memory. At some point the RAM 

can’t accommodate any more data. 
The data-producing tasks are now 
suspended one by one, until all activ-
ity on the rover freezes.

If this story has an upside, it’s 
that even in this seemingly desperate 
case, the ground controllers recov-
ered the spacecraft and restored nor-
mal operations within days. And our 
log of lessons learned grew by one 
more item. We can only hope that 
the log will be bounded, too.

S hould you be worried? Pro-
grammers do, of course, 
know that all the resources 

they work with are bounded. But it 
can be hard to keep reminding our-
selves of this sobering fact. Given 
the frequency with which bounds-
related problems happen, it’s wise 
to plan for them. Perform deliberate 
unit and system tests that reach, and 
try to exceed, known system limits. 
When using a 32-bit clock, perform 
tests with the clock set forward 248 
days, 1.3 years, and 13.6 years, and 
see whether the system still works 
correctly. Of course you’ll have a 
long time to think about it if you 
forget one of these tests, but you’ll 
surely sleep better if you don’t.
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