
24 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Gerard J. Holzmann
NASA/JPL
gholzmann@acm.org

Out of Bounds
Gerard J. Holzmann

RELIABLE CODE

IN SOFTWARE CERTIFICATION
courses at JPL we emphasize that
writing reliable code requires the
development of a keen sensitivity
to system bounds. In any computer
only a finite amount of memory is
available to perform computations,
only a finite amount of time is
available to do so, and every object
we store and modify is necessarily
finite. All resources are bounded.
Stacks are bounded, queues are
bounded, file system capacity is
bounded, and, yes, even numbers
are bounded. This makes the world
of computer science very different
from the world of mathematics,
but too few people take this into
account when they write code. Per-
haps the problem is that in most
cases it doesn’t matter much if

you’re aware of the limitations of
your computer because things will
work correctly anyway, most of
the time.

There’s a great Peanuts strip in
which Peppermint Patty explains to
a schoolmate that algebra isn’t re-
ally all that hard: “x is almost al-
ways eleven, and y is almost always
nine,” she explains patiently. In
math, if x and y are both positive,
then it’s clear that their sum must
be larger than both x and y. Not in
a computer. If we use signed 32-bit
integers, this property holds only if
the sum is less than about two bil-
lion. Because that will be true most
of the time, it’s safe to say that when
we increment x with a positive value,
the result will “almost always” be
greater than the original.

Almost Always
Assume we’re maintaining a signed
32-bit counter. We start it off at zero
and increment it once every second.
If we keep doing that, the counter
will take about 68 years to over� ow.
This is in fact how the number of
seconds was stored in the original
Unix operating system, with a clock
value of zero corresponding, by con-
vention, to 1 January 1970. This
method for recording time clearly
has limitations. The 32-bit Unix
clock can record only a time span
of about 136 years: from December
1901 (recorded as negative numbers
counting seconds before January
1970) until January 2038. If we keep
a Unix box running long enough, the
equivalent of the Y2K problem will
occur on Tuesday, 19 January 2038,
when time will appear to switch
back to 13 December 1901.

Fixing the Unix clock isn’t hard.
If we simply move the counter to a
64-bit number, the over� ow won’t
occur for about 293 billion years.
Even though this amount of time
isn’t unbounded, it’s likely long
enough, given that our solar system
is expected to come to a � ery end
before this counter can reach a mere
� ve billion years.

Things change if we start count-
ing time at a � ner resolution than
seconds. If, for instance, we incre-
ment our 32-bit counter once every
100 ms, a signed counter will over-
� ow in about 6.8 years, an unsigned
one in 13.6 years. If we increase the
precision to one increment every 10
ms, a signed counter will over� ow in
248.6 days, an unsigned one in 497.1

RELIABLE CODE

 NOVEMBER/DECEMBER 2015 | IEEE SOFTWARE 25

days. Remember those numbers;
we’ll see them again. Table 1 sum-
marizes them.

Spacecraft Time
The Deep Impact mission launched
in January 2005. Its embedded con-
troller calculated time as the number
of 100-ms intervals that had elapsed
since 1 January 2000. Adding 13.6
years gives us a date in August 2013,
well beyond the originally intended
lifetime for this mission. The space-
craft was designed to launch an im-
pactor to collide with the comet Tem-
pel 1 and study its composition from
the resulting dust cloud. The space-
craft completed that mission on 4
July 2005.

Spacecraft often pick up addi-
tional duties after successfully com-
pleting their primary mission, pro-
vided they have sufficient resources
left. On a first extended mission,
Deep Impact completed a flyby of
the comet Hartley 2 in November
2010. After that, it still had enough
fuel for another extended mission, a
flyby of asteroid 2002 GT. If all had
gone well, the now-renamed space-
craft EPOXI would have reached
that asteroid in 2020.

But it was not to be. The clock
counter on the spacecraft overflowed
on 13 August 2013, which triggered
an exception. The exception tripped
a reset of the spacecraft that should
have put it into its safe mode. Natu-
rally, the reset cleared everything in
memory except the spacecraft clock,
which meant that the spacecraft
ended up in a reset cycle. Even in this
desperate mode, ground controllers
can do things to recover a spacecraft
by issuing “hardware commands”
that bypass the main CPU. How-
ever, this type of intervention must
be done quickly, before the space-
craft loses track of earth and can no

longer receive commands. The help
didn’t come in time, and the space-
craft was declared lost on 20 Septem-
ber 2013—killed by a 32-bit counter.

It is, alas, not the only example
of integer overflow causing problems
even in safety-critical systems.

Airplanes
A Boeing 787 passenger plane (the
Dreamliner) has many parts, many
of which have embedded controllers.
Those controllers are likely to have
internal clocks and count time. The
embedded controllers in the Boe-
ing’s GCUs (generator control units)
maintain time in 10-ms increments.
The corresponding counters are
stored as signed 32-bit numbers. At
this point, you might want to glance
back at Table 1 before reading on.

On 9 July 2015, the US Federal
Aviation Administration issued an
airworthiness directive (AD) to
all airlines instructing them to re-
boot the GCUs on all Boeing 787s
at least once every 248 days.1 The
directive said, “We are issuing this
AD to prevent loss of all AC elec-
trical power, which could result in
loss of control of the airplane.” It
explained, “This AD was prompted
by the determination that a Model
787 airplane that has been powered
continuously for 248 days can lose
all alternating current (AC) electri-
cal power due to the generator con-
trol units (GCUs) simultaneously
going into failsafe mode. This con-
dition is caused by a software coun-
ter internal to the GCUs … that

will overflow after 248 days of con-
tinuous power.”

We already know where the 248
days came from, but it’s still re-
markable to see how often this type
of programming flaw can occur in
practice, even in systems that have
passed fairly rigorous certification.
The software for a commercial air-
plane is generally developed and
tested with great care. The develop-
ment process must comply with the
stipulations of the DO-178B stan-
dard (and its successor DO-178C).
The Boeing 787 software was cer-
tainly not written in a rush. The
first 787 was shown publically on 8
July 2007, and the first flight took
place on 15 December 2009. The
first commercial flight was two years
later. We can assume that the plane,
and its control software, had been in
development for a good number of
years at that point. When the over-
flow problem was discovered in early
2015, close to 300 of the planes were
in operation.

Resource Limits
It seems counterintuitive that fail-
ures in highly complex systems can
have these embarrassingly simple
causes. The reason might be that the
really difficult design issues typically
get ample attention; it’s the simple
stuff that can get neglected. This
can explain why hitting a known re-
source bound can bring a system to
the brink of failure. Examples are
easy to find; here I describe two that
were in the news fairly recently.

TA
B

L
E

 1 How time resolution affects counter overflow.

If you increment a 32-
bit counter once every

A signed counter will
overflow in

An unsigned counter
will overflow in

1 s 68.1 yrs. 136.2 yrs.

100 ms 6.8 yrs. 13.6 yrs.

10 ms 248.6 days = 0.68 yrs. 497.1 days = 1.36 yrs.

26 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

RELIABLE CODE

LightSail
On 20 May 2015, the Planetary So-
ciety launched a small spacecraft
for a test flight. The mission, called
LightSail, aimed to test a large solar
sail. The test flight hit a snag in just
two days. A mission update from 26
May described the problem: “Light-
Sail is likely now frozen, not unlike
the way a desktop computer sud-
denly stops responding.”2

The cause was relatively simple.
An onboard log file stored a record
of all telemetry data transmitted by
the craft; when that file exceeded
32 Mbytes, it crashed the flight sys-
tem. Why 32 Mbytes? This wasn’t
explained in the press releases, but
this limit matches a limit of the old
FAT12 file system, which some em-
bedded systems still use. The FAT12
design used 16-bit addresses to store
sequences of 512-byte blocks in the
file system, and yes, 216 × 512 bytes
comes out to 32 Mbytes.

Curiosity
Another example is much closer to
home for me. The Mars Science Labo-
ratory was designed and built at the lab
where I work. It successfully landed
Curiosity, a large rover, on the surface
of Mars on 6 August 2012. Since then,
the rover has been functioning reliably,
but its software has experienced a few
glitches along the way.

One of those glitches occurred
almost six months after the land-
ing, on 27 February 2013. The trig-
ger was the sudden failure of a bank
of flash memory. The rover software
uses flash memory to maintain a file
system for storing temporary data
files, containing telemetry and im-
ages from the mission, before they’re
downlinked to earth. The software
was designed to place the flash file
system in read-only mode when
something unexpected happens. So,
when the bank failed, that’s precisely
what happened.

During normal operation of the
rover, many tasks use the file sys-
tem to store temporary data prod-
ucts. Because the flash hardware can
be slow and a large amount of data
must be stored, the software uses a
buffering method that can tempo-
rarily store data in RAM before it’s
migrated to the flash file system and
then downlinked to earth. All this
worked perfectly, almost always.

Knowing that all resources in
an embedded system are bounded,
we can ask, what happens when the
RAM fills up? If this system is de-
signed properly this should happen
rarely, and it shouldn’t last long be-
cause the data temporarily stored in
RAM will eventually drain to flash
memory. So, in this rare case, the
rover computer suspends the data-
producing tasks until enough RAM
frees up for them to resume executing.

We can also ask, what happens
when the flash memory fills up? This
event should be even rarer because
mission managers are required to
keep a substantial margin of flash
memory free throughout the mission.
However, if it does happen, the soft-
ware is designed to start freeing flash
memory by deleting low-priority files
until a sufficient margin is restored.
The higher-priority files that live
in flash memory eventually will be
transmitted to earth, and the space
they occupy can be freed again.

All of that looked solid enough
to pass all design reviews, code re-
views, and unit tests that try to push
the known resource limits. But one
case wasn’t tested—the one that hap-
pened on Mars in February 2013.
When the flash memory is in read-
only mode owing to a hardware er-
ror, no further changes can be made:
it can’t add or delete any more data.
The RAM now slowly fills up with
new data products, waiting for those
data products to migrate to flash
memory. At some point the RAM

can’t accommodate any more data.
The data-producing tasks are now
suspended one by one, until all activ-
ity on the rover freezes.

If this story has an upside, it’s
that even in this seemingly desperate
case, the ground controllers recov-
ered the spacecraft and restored nor-
mal operations within days. And our
log of lessons learned grew by one
more item. We can only hope that
the log will be bounded, too.

S hould you be worried? Pro-
grammers do, of course,
know that all the resources

they work with are bounded. But it
can be hard to keep reminding our-
selves of this sobering fact. Given
the frequency with which bounds-
related problems happen, it’s wise
to plan for them. Perform deliberate
unit and system tests that reach, and
try to exceed, known system limits.
When using a 32-bit clock, perform
tests with the clock set forward 248
days, 1.3 years, and 13.6 years, and
see whether the system still works
correctly. Of course you’ll have a
long time to think about it if you
forget one of these tests, but you’ll
surely sleep better if you don’t.

References
 1. “Airworthiness Directives; the Boeing

Company Airplanes,” Federal Register,
vol. 80, no. 84, 2015; http://rgl.faa.gov
/Regulatory_and_Guidance_Library/rgad
.nsf/0/584c7ee3b270fa3086257e38004d0f
3e/$FILE/2015-09-07.pdf.

 2. M. Wall, “LightSail Solar Sail Test Flight
Stalled by Software Glitch,” Space.com,
27 May 2015; www.space.com/29502
-lightsail-solar-sail-software-glitch.html.

GERARD J. HOLZMANN works at the Jet
Propulsion Laboratory on developing stronger
methods for software analysis, code review, and
testing. Contact him at gholzmann@acm.org.

