
 Th e sign bit is 1, so the number is negative. Converting to decimal gives

 37A (hex) = –134 (dec)

 Notice that the hexadecimal number is not written with a negative sign, even
though it may be interpreted as a negative number. ❚

 ASCII Characters
 Because computer memories are binary, alphabetic characters must be
coded to be stored in memory. A widespread binary code for alphabetic
characters is the American Standard Code for Information Interchange , also
known as ASCII (pronounced askey).

 ASCII contains all the uppercase and lowercase English letters, the 10
numeric digits, and special characters such as punctuation signs. Some of
its symbols are nonprintable and are used mainly to transmit information
between computers or to control peripheral devices.

 ASCII is a seven-bit code. Because there are 2 7 = 128 possible
combinations of seven bits, there are 128 ASCII characters. FIGURE 3.25 shows
all these characters. Th e fi rst column of the table shows the nonprintable
characters, whose meanings are listed at the bottom. Th e rest of the table
lists the printable characters.

 Example 3.30 Th e sequence 000 0111, which stands for bell , causes a
terminal to beep. Two other examples of nonprintable characters are ACK
for acknowledge and NAK for negative acknowledge, which are used by some
data transmission protocols. If the sender sends a packet of information
over the channel that is detected error-free, the receiver sends an ACK back
to the sender, which then sends the next packet. If the receiver detects an
error, it sends a NAK back to the sender, which then resends the packet that
was damaged in the initial transmission. ❚

 Example 3.31 Th e name

 Tom

 would be stored in ASCII as

 101 0100
 110 1111
 110 1101

 If that sequence of bits were sent to an output terminal, the word “Tom”
would be displayed. ❚

 ASCII

146 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 146 29/01/16 8:30 am

 FIGURE 3 . 25
 The American Standard Code for Information Interchange (ASCII).

Char Bin Hex
NUL 000 0000 00
SOH 000 0001 01
STX 000 0010 02
ETX 000 0011 03
EOT 000 0100 04
ENQ 000 0101 05
ACK 000 0110 06
BEL 000 0111 07
BS 000 1000 08
HT 000 1001 09
LF 000 1010 0A
VT 000 1011 0B
FF 000 1100 0C
CR 000 1101 0D
SO 000 1110 0E
SI 000 1111 0F
DLE 001 0000 10
DC1 001 0001 11
DC2 001 0010 12
DC3 001 0011 13
DC4 001 0100 14
NAK 001 0101 15
SYN 001 0110 16
ETB 001 0111 17
CAN 001 1000 18
EM 001 1001 19
SUB 001 1010 1A
ESC 001 1011 1B
FS 001 1100 1C
GS 001 1101 1D
RS 001 1110 1E
US 001 1111 1F

Char Bin Hex
SP 010 0000 20
! 010 0001 21
" 010 0010 22
010 0011 23
$ 010 0100 24
% 010 0101 25
& 010 0110 26
' 010 0111 27
(010 1000 28
) 010 1001 29
* 010 1010 2A
+ 010 1011 2B
, 010 1100 2C
− 010 1101 2D
. 010 1110 2E
/ 010 1111 2F
0 011 0000 30
1 011 0001 31
2 011 0010 32
3 011 0011 33
4 011 0100 34
5 011 0101 35
6 011 0110 36
7 011 0111 37
8 011 1000 38
9 011 1001 39
: 011 1010 3A
; 011 1011 3B
< 011 1100 3C
= 011 1101 3D
> 011 1110 3E
? 011 1111 3F

Char Bin Hex
@ 100 0000 40
A 100 0001 41
B 100 0010 42
C 100 0011 43
D 100 0100 44
E 100 0101 45
F 100 0110 46
G 100 0111 47
H 100 1000 48
I 100 1001 49
J 100 1010 4A
K 100 1011 4B
L 100 1100 4C
M 100 1101 4D
N 100 1110 4E
O 100 1111 4F
P 101 0000 50
Q 101 0001 51
R 101 0010 52
S 101 0011 53
T 101 0100 54
U 101 0101 55
V 101 0110 56
W 101 0111 57
X 101 1000 58
Y 101 1001 59
Z 101 1010 5A
[101 1011 5B
\ 101 1100 5C
] 101 1101 5D
ˆ 101 1110 5E
_ 101 1111 5F

Char Bin Hex
‛ 110 0000 60
a 110 0001 61
b 110 0010 62
c 110 0011 63
d 110 0100 64
e 110 0101 65
f 110 0110 66
g 110 0111 67
h 110 1000 68
i 110 1001 69
j 110 1010 6A
k 110 1011 6B
l 110 1100 6C
m 110 1101 6D
n 110 1110 6E
o 110 1111 6F
p 111 0000 70
q 111 0001 71
r 111 0010 72
s 111 0011 73
t 111 0100 74
u 111 0101 75
v 111 0110 76
w 111 0111 77
x 111 1000 78
y 111 1001 79
z 111 1010 7A
{ 111 1011 7B
| 111 1100 7C
} 111 1101 7D
~ 111 1110 7E
DEL 111 1111 7F

Abbreviations for Control Characters

NUL null, or all zeros
SOH start of heading
STX start of text
ETX end of text
EOT end of transmission
ENQ enquiry
ACK acknowledge
BEL bell
BS backspace
HT horizontal tabulation
LF line feed
VT vertical tabulation

FF form feed
CR carriage return
SO shift out
SI shift in
DLE data link escape
DC1 device control 1
DC2 device control 2
DC3 device control 3
DC4 device control 4
NAK negative acknowledge
SYN synchronous idle
ETB end of transmission block

CAN cancel
EM end of medium
SUB substitute
ESC escape
FS fi le separator
GS group separator
RS record separator
US unit separator
SP space
DEL delete

1473.4 Hexadecimal and Character Representations

9781284079630_CH03_115_182.indd 147 29/01/16 8:30 am

 Example 3.32 Th e street address

 52 Elm

 would be stored in ASCII as

 011 0101
 011 0010
 010 0000
 100 0101
 110 1100
 110 1101

 Th e blank space between 2 and E is a separate ASCII character. ❚

 The End of the Line

 Th e ASCII standard was developed in the early 1960s and
was intended for use on teleprinter machines of that era. A
popular device that used the ASCII code was the Teletype
Model 33, a mechanical printer with a continuous roll of
paper that wrapped around a cylindrical carriage similar
to a typewriter. Th e teleprinter received a stream of
ASCII characters over a telephone line and printed the
characters on paper.

 Th e nonprintable characters are also known as
control characters because they were originally used
to control the mechanical aspects of a teleprinter. In
particular, the ASCII LF control character stands for line
feed. When the teleprinter received the LF character, it
would rotate the carriage enough to advance the paper by
one line. Another control character, CR, which stands for
carriage return, would move the print head to the left most
position of the page. Because these two mechanical
operations were necessary to make the printer mechanism
start at the beginning of a new line, the convention was to
always use CR-LF to mark the beginning of a new line in
a message that was to be sent to a teleprinter.

 When early computer companies, notably Digital
Equipment Corporation, adopted the ASCII code,
they kept this CR-LF convention to denote the end of
a line of text. It was convenient because many of those
early machines used teleprinters as output devices. Th e
convention was picked up by IBM and Microsoft when

they developed the PC DOS and MS-DOS operating
systems. MS-DOS eventually became Microsoft Windows,
and the CR-LF convention has stuck to this day, despite
the disappearance of the old teleprinter for which it was
necessary.

 Multics was an early operating system that was the
forerunner of Unix. To simplify storage and processing
of textual data, it adopted the convention of using
only the LF character to denote the end of a line. Th is
convention was picked up by Unix and continued by
Linux, and is also the convention for OS X because it
is Unix.

 Figure 2.13 is a C program that reads a stream
of characters from the input device and outputs the
same stream of characters but substitutes the newline
character, denoted \n in the string, for each space.
Th e newline character corresponds to the ASCII LF
control character. Th e program in Figure 2.13 works
even if you run it in a Windows environment. Th e C
standard specifi es that if you output the \n character
in a printf() string, the system will convert it to the
convention for the operating system on which you are
executing the program. In a Windows system, the \n
character is converted to two characters, CR-LF, in the
output stream. In a Unix system, it remains LF. If you
ever need to process the CR character explicitly in a C
program, you can write it as \r.

148 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 148 29/01/16 8:30 am

 Unicode Characters
 Th e fi rst electronic computers were developed to perform mathematical
calculations with numbers. Eventually, they processed textual data as well,
and the ASCII code became a widespread standard for processing text with
the Latin alphabet. As computer technology spread around the world, text
processing in languages with diff erent alphabets produced many incompatible
systems. Th e Unicode Consortium was established to collect and catalog all the
alphabets of all the spoken languages in the world, both current and ancient, as
a fi rst step toward a standard system for the worldwide interchange, processing,
and display of texts in these natural languages.

 Strictly speaking, the standard organizes characters into scripts, not
languages. It is possible for one script to be used in multiple languages. For
example, the extended Latin script can be used for many European and
American languages. Version 7.0 of the Unicode standard has 123 scripts
for natural language and 15 scripts for other symbols. Examples of natural
language scripts are Balinese, Cherokee, Egyptian Hieroglyphs, Greek,
Phoenician, and Th ai. Examples of scripts for other symbols are Braille
Patterns, Emoticons, Mathematical Symbols, and Musical Symbols.

 Each character in every script has a unique identifying number,
usually written in hexadecimal, and is called a code point . Th e hexadecimal
number is preceded by “U+” to indicate that it is a Unicode code point.
Corresponding to a code point is a glyph , which is the graphic representation
of the symbol on the page or screen. For example, in the Hebrew script, the
code point U+05D1 has the glyph .

 FIGURE 3.26 shows some example code points and glyphs in the Unicode
standard. Th e CJK Unifi ed script is for the written languages of China, Japan,

 FIGURE 3 . 26
 A few code points and
glyphs from the Unicode
character set.

Code
Point

Glyphs
Unicode Script 0 1 2 3 4 5 6 7
Arabic
Armenian
Braille Patterns

CJK Unified
Cyrillic

Emoticons

Hebrew

Egyptian Hieroglyphs

Basic Latin (ASCII)
Latin-1 Supplement

U+063_
U+054_
U+287_

U+4EB_
U+041_

U+1F61_

U+05D_

U+1300_

U+004_
U+00E_

Cyrillic U+041_

1493.4 Hexadecimal and Character Representations

9781284079630_CH03_115_182.indd 149 29/01/16 8:30 am

and Korea, which share a common character set with some variations. Th ere
are tens of thousands of characters in these Asian writing systems, all based
on a common set of Han characters. To minimize unnecessary duplication,
the Unicode Consortium merged the characters into a single set of unifi ed
characters. Th is Han unifi cation is an ongoing process carried out by a group
of experts from the Chinese-speaking countries, North and South Korea,
Japan, Vietnam, and other countries.

 Code points are backward compatible with ASCII. For example, from
the ASCII table in Figure 3.25, the Latin letter S is stored with seven bits
as 101 0011 (bin), which is 53 (hex). So, the Unicode code point for S is
U+0053. Th e standard requires at least four hex digits following U+,
padding the number with leading zeros if necessary.

 A single code point can have more than one glyph. For example, an
Arabic letter may be displayed with diff erent glyphs depending on its
position in a word. On the other hand, a single glyph might be used to
represent two code points. Th e consecutive Latin code points U+0066 and
U+0069 for f and i are frequently rendered with the ligature glyph fi .

 Th e range of the Unicode code space is 0 to 10FFFF (hex), or 0 to
1 0000 1111 1111 1111 1111 (bin), or 0 to 1,114,111 (dec). About one-fourth
of these million-plus code points have been assigned. Some values are
reserved for private use, and each Unicode standard revision assigns a few
more values to code points. It is theoretically possible to represent each code
point with a single 21-bit number. Because computer memory is normally
organized into eight-bit bytes, it would be possible to use three bytes to store
each code point with the leading three bits unused.

 However, most computers process information in chunks of either
32 bits (4 bytes) or 64 bits (8 bytes). It follows that the most eff ective method
for processing textual information is to store each code point in a 32-bit cell,
even though the leading 11 bits would be unused and always set to zeros.
Th is method of encoding is called UTF-32, where UTF stands for Unicode
Transformation Format. UTF-32 always requires eight hexadecimal
characters to represent its four bytes.

 Example 3.33 To determine how the letter z is stored in UTF-32, look up
its value in the ASCII table as 7A (hex). Because Unicode code points are
backward compatible with ASCII, the code point for the letter z is U+007A.
Th e UTF-32 encoding in binary is obtained by prefi xing zeros for a total of
32 bits as follows:

 0000 0000 0000 0000 0000 0000 0111 1010

 So, U+007A is encoded as 0000 007A (UTF-32). ❚

150 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 150 29/01/16 8:30 am

 Example 3.34 To determine the UTF-32 encoding of the emoticon
with code point U+1F617, simply prefi x the correct number of zeros. Th e
encoding is 0001 F617 (UTF-32). ❚

 Although UTF-32 is eff ective for processing textual information, it is
ineffi cient for storing and transmitting textual information. If you have a
fi le that stores mostly ASCII characters, three-fourths of the fi le space will
be occupied by zeros. UTF-8 is a popular encoding standard that is able to
represent every Unicode character. It uses one to four bytes to store a single
character and therefore takes less storage space than UTF-32. Th e 64 Ki code
points in the range U+0000 to U+FFFF, known as the Basic Multilingual
Plane, contain characters for almost all modern languages. UTF-8 can
represent each of these code points with one to three bytes and uses only a
single byte for an ASCII character.

 FIGURE 3.27 shows the UTF-8 encoding scheme. Th e fi rst column,
labeled Bits, represents the upper limit of the number of bits in the code
point, excluding all leading zeros. Th e x’s in the code represent the rightmost
bits from the code point, which are spread out over one to four bytes.

 Th e fi rst row in the table corresponds to the ASCII characters, which
have an upper limit of seven bits. An ASCII character is stored as a single
byte whose fi rst bit is 0 and whose last seven bits are identical to seven-bit
ASCII. Th e fi rst step in decoding a UTF-8 string is to inspect the fi rst bit of
the fi rst byte. If it is zero, the fi rst character is an ASCII character, which can
be determined from the ASCII table, and the following byte is the fi rst byte
of the next character.

 If the fi rst bit of the fi rst byte is 1, the fi rst character is outside the range
U+0000 to U+007F—that is, it is not an ASCII character, and it occupies
more than one byte. In this case, the number of leading 1’s in the fi rst byte

 FIGURE 3 . 27
 The UTF-8 encoding scheme.

Bits First Code Point Last Code Point Byte 1 Byte 2 Byte 3 Byte 4

7 U+0000 U+007F 0xxxxxxx

11 U+0080 U+07FF 110xxxxx 10xxxxxx

16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+10000 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

7 U+0000 U+007F 0xxxxxxx

1513.4 Hexadecimal and Character Representations

9781284079630_CH03_115_182.indd 151 29/01/16 8:30 am

is equal to the total number of bytes occupied by the character. Some of the
bits from the code point are stored in the fi rst byte and some are stored in
the remaining continuation bytes. Every continuation byte begins with the
string 10 and stores six bits from the code point.

 Example 3.35 To determine the UTF-8 encoding of the emoticon with
code point U+1F617, fi rst determine the upper limit of the number of
bits in the code point. From Figure 3.27, it is in the range U+10000 to
U+1FFFF; thus, the rightmost 21 bits from the code point are spread out
over 4 bytes. Th e rightmost 21 bits from 1F617 (hex) are

 0 0001 1111 0110 0001 0111

 where enough leading zeros are added to total 21 bits. Th e last row in Figure
3.27 shows the fi rst three bits stored in Byte 1, the next six stored in Byte 2,
the next six stored in Byte 3, and the last six stored in Byte 4. Regrouping the
21 bits accordingly yields

 000 011111 011000 010111

 Th e format of Byte 1 from the table is 11110xxx, so insert the fi rst three zeros
in place of the x’s to yield 11110000, and do the same for Bytes 3 and 4. Th e
resulting bit pattern of the four bytes is

 11110000 10011111 10011000 10010111

 So, U+1F617 is encoded as F09F 9897 (UTF-8), which is diff erent from the
four bytes of the UTF-32 encoding in Example 3.34. ❚

 Example 3.36 To determine the sequence of code points from the UTF-8
byte sequence 70 C3 A6 6F 6E, fi rst write the byte sequence in binary as

 01110000 11000011 10100110 01101111 01101110

 You can immediately determine that the fi rst, fourth, and fi ft h bytes are ASCII
characters because the leading bit is zero in those bytes. From the ASCII table,
these bytes correspond to the letters p, o, and n, respectively. Th e leading 110 in
the second byte indicates that 11 bits are spread out over 2 bytes per the second
row in the body of the table in Figure 3.27. Th e leading 10 in the third byte
is consistent, because that prefi x denotes a continuation byte. Extracting the
rightmost 5 bits from the second byte (fi rst byte of the pair) and the rightmost
6 bytes from the third byte (second byte of the pair) yields the 11 bits:

 00011 100110

 Prefi xing this pattern with leading zeros and regrouping yields

 0000 0000 1110 0110

152 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 152 29/01/16 8:30 am

 which is the code point U+00E6 corresponding to Unicode character æ. So,
the original fi ve-byte sequence is a UTF-8 encoding of the four code points
U+0070, U+00E6, U+006F, U+006E and represents the string “pæon”. ❚

 Figure 3.27 shows that UTF-8 does not allow all possible bit patterns.
For example, it is illegal to have the bit pattern

 11100011 01000001

 in a UTF-8–encoded fi le because the 1110 prefi x of the fi rst byte indicates that
it is the fi rst byte of a three-byte sequence, but the leading zero of the second
byte indicates that it is a single ASCII character and not a continuation byte.
If such a pattern is detected in a UTF-8–encoded fi le, the data is corrupted.

 A major benefi t of UTF-8 is its self-synchronization property. A decoder
can uniquely identify the type of any byte in the sequence by inspection of
the prefi x bits. For example, if the fi rst two bits are 10, it is a continuation
byte. Or, if the fi rst four bits are 1110, it is the fi rst byte of a three-byte
sequence. Th is self-synchronization property makes it possible for a UTF-8
decoder to recover most of the text when data corruption does occur.

 UTF-8 is by far the most common encoding standard on the World
Wide Web. It has become the default standard for multilingual applications.
Operating systems are incorporating UTF-8 so that documents and fi les can
be named in the user’s native language. Modern programming languages such
as Python and Swift have UTF-8 built in so a programmer can, for example,
name a variable pæon or even . Text editors that have traditionally
processed only pure ASCII text, as opposed to word processors that have
always been format friendly, are increasingly able to process UTF-8–encoded
text fi les.

 3.5 Floating-Point Representation
 Th e numeric representations described in previous sections of this chapter
are for integer values. C has three numeric types that have fractional parts:

 ❯ float single-precision fl oating point
 ❯ double double-precision fl oating point
 ❯ long double extended-precision fl oating point

 Values of these types cannot be stored at Level ISA3 with two’s
complement binary representation because provisions must be made for
locating the decimal point within the number. Floating-point values are
stored using a binary version of scientifi c notation.

1533.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 153 29/01/16 8:30 am

 Binary Fractions
 Binary fractions have a binary point, which is the base 2 version of the base
10 decimal point.

 Example 3.37 FIGURE 3.28(a) shows the place values for 101.011 (bin).
Th e bits to the left of the binary point have the same place values as the
corresponding bits in unsigned binary representation, as in Figure 3.2.
Starting with the 1/2’s place to the right of the binary point, each place has a
value one-half as great as the previous place value. Figure 3.28(b) shows the
addition that produces the 5.375 (dec) value. ❚

FIGURE 3.29 shows the polynomial representation of numbers with
fractional parts. Th e value of the bit to the left of the radix point is always
the base to the zeroth power, which is always 1. Th e next signifi cant place to
the left is the base to the fi rst power, which is the value of the base itself. Th e
value of the bit to the right of the radix point is the base to the power –1. Th e
next signifi cant place to the right is the base to the power –2. Th e value of
each place to the right is 1/base times the value of the place on its left .

 FIGURE 3 . 28
 Converting from binary to decimal.

(b) Converting 101.011
 (bin) to decimal.

(a) The place values for
 101.011 (bin).

1⁄8’s place
1⁄4’s place
1⁄2’s place

1’s place

2’s place

0 1 0 1 1

0.125

0.25

0.0

1.0

0.0

1

1

0

1

0

1⁄8’s place
1⁄4’s place
1⁄2’s place

1’s place

2’s place

=

=

=

=

=

5.375 (dec)4’s place

1 .

4.01 4’s place =

0.251 1⁄1⁄1 ’s place

1 × 22 + 0 × 21 + 1 × 20 + 0 × 2−1 + 1 × 2−2 + 1 × 2−3

(a) The binary number 101.011.

5 × 102 + 0 × 101 + 6 × 100 + 7 × 10−1 + 2 × 10−2 + 1 × 10−3

(b) The decimal number 506.721.

 FIGURE 3 . 29
 The polynomial representation of fl oating-point numbers.

154 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 154 29/01/16 8:30 am

 Determining the decimal value of a binary fraction requires two steps.
First, convert the bits to the left of the binary point using the technique of
Example 3.3 for converting unsigned binary values. Th en, use the algorithm
of successive doubling to convert the bits to the right of the binary point.

 Example 3.38 FIGURE 3.30 shows the conversion of 6.5859375 (dec) to
binary. Th e conversion of the whole part gives 110 (bin) to the left of the
binary point. To convert the fractional part, write the digits to the right of
the decimal point in the heading of the right column of the table. Double the
fractional part, writing the digit to the left of the decimal point in the column
on the left and the fractional part in the column on the right. Th e next time
you double, do not include the whole number part. For example, the value
0.34375 comes from doubling 0.171875, not from doubling 1.171875. Th e
digits on the left from top to bottom are the bits of the binary fractional part
from left to right. So, 6.5859375 (dec) = 110.1001011 (bin). ❚

 Th e algorithm for converting the fractional part from decimal to binary
is the mirror image of the algorithm for converting the whole part, from
decimal to binary. Figure 3.5 shows that to convert the whole part, you use
the algorithm of successive division by two. Th e bits you generate are the
remainders of the division, and you generate them from right to left starting
at the binary point. To convert the fractional part, you use the algorithm of
successive multiplication by two. Th e bits you generate are the whole part of
the multiplication, and you generate them from left to right starting at the
binary point.

 A number that can be represented with a fi nite number of digits in
decimal may require an endless representation in binary.

 Example 3.39 FIGURE 3.31 shows the conversion of 0.2 (dec) to binary.
Th e fi rst doubling produces 0.4. A few more doublings produce 0.4 again.
It is clear that the process will never terminate and that 0.2 (dec) =
0.001100110011 . . . (bin) with the bit pattern 0011 endlessly repeating. ❚

 Because all computer cells can store only a fi nite number of bits, the
value 0.2 (dec) cannot be stored exactly and must be approximated. You
should realize that if you add 0.2 + 0.2 in a Level HOL6 language like C,
you will probably not get 0.4 exactly because of the roundoff error inherent
in the binary representation of the values. For that reason, good numeric
soft ware rarely tests two fl oating point numbers for strict equality. Instead,
the soft ware maintains a small but nonzero tolerance that represents how
close two fl oating point values must be to be considered equal. If the
tolerance is, say, 0.0001, then the numbers 1.38264 and 1.38267 would be

 FIGURE 3 . 30
 Converting from
decimal to binary.

.5859375

1 .171875
0 .34375
0 .6875
1 .375
0 .75
1 .5
1 .0
(b) Convert the fractional part.

6.5859375

6 (dec) = 110 (bin)
(a) Convert the whole part.

 FIGURE 3 . 31
 A decimal value with
an unending binary
representation.

.2

0 .4
0 .8
1 .6
1 .2
0 .4
0 .8
1 .6

0 .8

1553.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 155 29/01/16 8:30 am

considered equal because their diff erence, which is 0.00003, is less than the
tolerance.

 Excess Representations
 Floating-point numbers are represented with a binary version of the scientifi c
notation common with decimal numbers. A nonzero number is normalized
if it is written in scientifi c notation with the fi rst nonzero digit immediately
to the left of the radix point. Th e number zero cannot be normalized because
it does not have a fi rst nonzero digit.

 Example 3.40 Th e decimal number –328.4 is written in normalized form
in scientifi c notation as –3.284 × 10 2 . Th e eff ect of the exponent 2 as the
power of 10 is to shift the decimal point two places to the right. Similarly,
the binary number –10101.101 is written in normalized form in scientifi c
notation as –1.0101101 × 2 4 . Th e eff ect of the exponent 4 as the power of 2 is
to shift the binary point four places to the right. ❚

 Example 3.41 Th e binary number 0.00101101 is written in normalized
form in scientifi c notation as 1.01101 × 2 –3 . Th e eff ect of the exponent –3 as
the power of 2 is to shift the binary point three places to the left . ❚

 In general, a fl oating point number can be positive or negative, and its
exponent can be a positive or negative integer. FIGURE 3.32 shows a cell
in memory that stores a fl oating point value. Th e cell is divided into three
fi elds. Th e fi rst fi eld stores one bit for the sign of the number. Th e second
fi eld stores the bits representing the exponent of the normalized binary
number. Th e third fi eld, called the signifi cand, stores bits that represent the
magnitude of the value.

 Th e more bits stored in the exponent, the wider the range of fl oating
point values. Th e more bits stored in the signifi cand, the higher the precision
of the representation. A common representation is an 8-bit cell for the
exponent and a 23-bit cell for the signifi cand. To present the concepts of
the fl oating point format, the examples in this section use a 3-bit cell for the
exponent and a 4-bit cell for the signifi cand. Th ese are unrealistically tiny
cell sizes, but they help to illustrate the format without an unwieldy number
of bits.

 Any signed representation for integers could be used to store the
exponent. You might think that two’s complement binary representation
would be used, because that is the representation that most computers use
to store signed integers. However, two’s complement is not used. Instead, a
biased representation is used for a reason that will be explained later.

 FIGURE 3 . 32
 Storage for a fl oating-
point value.

Significand

Exponent

Sign

156 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 156 29/01/16 8:30 am

 An example of a biased representation for a fi ve-bit cell is excess 15.
Th e range of numbers for the cell is –15 to 16 as written in decimal and
00000 to 11111 as written in binary. To convert from decimal to excess 15,
you add 15 to the decimal value and then convert to binary as you would
an unsigned number. To convert from excess 15 to decimal, you write the
decimal value as if it were an unsigned number and subtract 15 from it. In
excess 15, the fi rst bit denotes whether a value is positive or negative. But
unlike two’s complement representation, 1 signifi es a positive value, and 0
signifi es a negative value.

 Example 3.42 For a fi ve-bit cell, to convert 5 from decimal to excess 15,
add 5 + 15 = 20. Th en convert 20 to binary as if it were unsigned, 20 (dec) =
10100 (bin). Th erefore, 5 (dec) = 10100 (excess 15). Th e fi rst bit is 1,
indicating a positive value. ❚

 Example 3.43 To convert 00011 from excess 15 to decimal, convert 00011
as an unsigned value, 00011 (bin) = 3 (dec). Th en subtract decimal values
3 – 15 = –12. So, 00011 (excess 15) = –12 (dec). ❚

 FIGURE 3.33 shows the bit patterns for a three-bit cell that stores integers
with excess 3 representation compared to two’s complement representation.
Each representation stores eight values. Th e excess 3 representation has
a range of –3 to 4 (dec), while the two’s complement representation has a
range of –4 to 3 (dec).

 FIGURE 3 . 33
 The signed integers for
a three-bit cell.

Decimal Excess 3 Two’s Complement

−4 100

−3 000 101

−2 001 110

−1 010 111

0 011 000

1 100 001

2 101 010

3 110 011

4 111

1573.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 157 29/01/16 8:30 am

 The Hidden Bit
 Figure 3.32 shows one bit reserved for the sign of the number but no bit
reserved for the binary point. A bit for the binary point is unnecessary
because numbers are stored normalized, so the system can assume that
the fi rst 1 is to the left of the binary point. Furthermore, because there will
always be a 1 to the left of the binary point, there is no need to store the
leading 1 at all. To store a decimal value, fi rst convert it to binary, write it in
normalized scientifi c notation, store the exponent in excess representation,
drop the leading 1, and store the remaining bits of the magnitude in the
signifi cand. Th e bit that is assumed to be to the left of the binary point but
that is not stored explicitly is called the hidden bit.

 Example 3.44 Assuming a three-bit exponent using excess 3 and a four-bit
signifi cand, how is the number 3.375 stored? Converting the whole number
part gives 3 (dec) = 11 (bin). Converting the fractional part gives 0.375
(dec) = 0.011. Th e complete binary number is 3.375 (dec) = 11.011 (bin),
which is 1.1011 × 2 1 in normalized binary scientifi c notation. Th e number is
positive, so the sign bit is 0. Th e exponent is 1 (dec) = 100 (excess 3) from
Figure 3.33. Dropping the leading 1, the four bits to the right of the binary
point are .1011. So, 3.375 is stored as 0100 1011. ❚

 Of course, the hidden bit is assumed, not ignored. When you read a
decimal fl oating point value from memory, the compiler assumes that the
hidden bit is not stored. It generates code to insert the hidden bit before it
performs any computation with the full number of bits. Th e fl oating point
hardware even adds a few extra bits of precision called guard digits that it
carries throughout the computation. Aft er the computation, the system
discards the guard digits and the assumed hidden bit and stores as many bits
to the right of the binary point as the signifi cand will hold.

 Not storing the leading 1 allows for greater precision. In the previous
example, the bits for the magnitude are 1.1011. Using a hidden bit, you drop
the leading 1 and store .1011 in the four-bit signifi cand. In a representation
without a hidden bit, you would store the most signifi cant bits, 1.011, in the
four-bit signifi cand and be forced to discard the least signifi cant 0.0001 value.
Th e result would be a value that only approximates the decimal value 3.375.

 Because every memory cell has a fi nite number of bits, approximations
are unavoidable even with a hidden bit. Th e system approximates by
rounding off the least signifi cant bits it must discard using a rule called “round
to nearest, ties to even.” FIGURE 3.34 shows how the rule works for decimal
and binary numbers. You round off 23.499 to 23 because 23.499 is closer to
23 than it is to 24. Similarly, 23.501 is closer to 24 than it is to 23. However,
23.5 is just as close to 23 as it is to 24, which is a tie. It rounds to 24 because 24

158 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 158 29/01/16 8:30 am

is even. Similarly, the binary number 1011.1 is just as close to 1011 as it is to
1100, which is a tie. It rounds to 1100 because 1100 is even.

 Example 3.45 Assuming a three-bit exponent using excess 3 and a four-
bit signifi cand, how is the number –13.75 stored? Converting the whole
number part gives 13 (dec) = 1101 (bin). Converting the fractional part
gives 0.75 (dec) = 0.11. Th e complete binary number is 13.75 (dec) =
1101.11 (bin), which is 1.10111 × 2 3 in normalized binary scientifi c notation.
Th e number is negative, so the sign bit is 1. Th e exponent is 3 (dec) = 110
(excess 3). Dropping the leading 1, the fi ve bits to the right of the binary
point are .10111. However, only four bits can be stored in the signifi cand.
Furthermore, .10111 is just as close to .1011 as it is to .1100, and the tie rule
is in eff ect. Because 1011 is odd and 1100 is even, round to .1100. So, –13.75
is stored as 1110 1100. ❚

 Special Values
 Some real values require special treatment. Th e most obvious is zero, which
cannot be normalized because there is no 1 bit in its binary representation.
You must set aside a special bit pattern for zero. Standard practice is to put
all 0’s in the exponent fi eld and all 0’s in the signifi cand as well. What do you
put for the sign? Most common is to have two representations for zero, one
positive and one negative. For a three-bit exponent and four-bit signifi cand,
the bit patterns are

 1 000 0000 (bin) = – 0.0 (dec)
 0 000 0000 (bin) = +0.0 (dec)

Decimal
Decimal
Rounded Binary

Binary
Rounded

23.499 23 1011.011 1011

23.5 24 1011.1 1100

23.501 24 1011.101 1100

24.499 24 1100.011 1100

24.5 24 1100.1 1100

24.501 25 1100.101 1101

 FIGURE 3 . 34
 Round to nearest, ties to even.

1593.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 159 29/01/16 8:30 am

 Th is solution for storing zero has ramifi cations for some other bit patterns. If
the bit pattern for +0.0 were not special, then 0 000 0000 would be interpreted
with the hidden bit as 1.0000 × 2 –3 (bin) = 0.125, the smallest positive value
that could be stored had the value not been reserved for zero. If this pattern is
reserved for zero, then the smallest positive value that can be stored is

 0 000 0001 = 1.0001 × 2 –3 (bin) = 0.1328125

 which is slightly larger. Th e negative number with the smallest possible
magnitude is identical but with a 1 in the sign bit. Th e largest positive
number that can be stored is the bit pattern with the largest exponent and
the largest signifi cand. Th e bit pattern for the largest value is

 0 111 1111 (bin) = +31.0 (dec)

 FIGURE 3.35 shows the number line for the representation where zero
is the only special value. As with integer representations, there is a limit to
how large a value you can store. If you try to multiply 9.5 times 12.0, both of
which are in range, the true value is 114.0, which is in the positive overfl ow
region.

 Unlike integer values, however, the real number line has an underfl ow
region. If you try to multiply 0.145 times 0.145, which are both in range,
the true value is 0.021025, which is in the positive underfl ow region. Th e
smallest positive value that can be stored is 0.132815.

 Numeric calculations with approximate floating point values need
to have results that are consistent with what would be expected when
calculations are done with exact precision. For example, suppose you
multiply 9.5 and 12.0. What should be stored for the result? Suppose you
store the largest possible value, 31.0, as an approximation. Suppose further
that this is an intermediate value in a longer computation. If you later need
to compute half of the result, you will get 15.5, which is far from what the
correct value would have been.

 FIGURE 3 . 35
 The real number line
with zero as the only
special value.

–31.0 –0.1328125 0.1328125 31.00.0

N
eg

at
iv

e
ov

er
fl

ow

N
eg

at
iv

e
no

rm
al

iz
ed

N
eg

at
iv

e
un

de
rf

lo
w

Z
er

o

Po
si

tiv
e

un
de

rf
lo

w

Po
si

tiv
e

no
rm

al
iz

ed

Po
si

tiv
e

ov
er

fl
ow

N
eg

at
iv

e
ov

er
fl

ow

N
eg

at
iv

e
no

rm
al

iz
ed

N
eg

at
iv

e
un

de
rf

lo
w

Po
si

tiv
e

un
de

rf
lo

w

Po
si

tiv
e

no
rm

al
iz

ed

Po
si

tiv
e

ov
er

fl
ow

160 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 160 29/01/16 8:30 am

 Th e same problem occurs in the underfl ow region. If you store 0.0 as an
approximation of 0.021025, and you later want to multiply the value by 12.0,
you will get 0.0. You risk being misled by what appears to be a reasonable value.

 Th e problems encountered with overfl ow and underfl ow are alleviated
somewhat by introducing more special values for the bit patterns. As is the
case with zero, you must use some bit patterns that would otherwise be used
to represent other values on the number line. In addition to zero, three special
values are common—infi nity, not a number (NaN), and denormalized
numbers. FIGURE 3.36 lists the four special values for fl oating-point
representation and their bit patterns.

 Infi nity is used for values that are in the overfl ow regions. If the result of an
operation overfl ows, the bit pattern for infi nity is stored. If further operations
are done on this bit pattern, the result is what you would expect for an infi nite
value. For example, 3/∞ = 0, 5 + ∞ = ∞, and the square root of infi nity is
infi nity. You can produce infi nity by dividing by 0. For example, 3/0 = ∞, and
–4/0 = –∞. If you ever do a computation with real numbers and get infi nity,
you know that an overfl ow occurred somewhere in your intermediate results.

 A bit pattern for a value that is not a number is called a NaN (rhymes
with plan). NaNs are used to indicate fl oating point operations that are illegal.
For example, taking the square root of a negative number produces NaN,
and so does dividing 0/0. Any fl oating point operation with at least one NaN
operand produces NaN. For example, 7 + NaN = NaN, and 7/NaN = NaN.

 Both infi nity and NaN use the largest possible value of the exponent for
their bit patterns. Th at is, the exponent fi eld is all 1’s. Th e signifi cand is all
0’s for infi nity and can be any nonzero pattern for NaN. Reserving these bit
patterns for infi nity and NaN has the eff ect of reducing the range of values
that can be stored. For a three-bit exponent and four-bit signifi cand, the bit
patterns for the largest magnitudes and their decimal values are

 1 111 0000 (bin) = – ∞
 1 110 1111 (bin) = –15.5 (dec)
 0 110 1111 (bin) = +15.5 (dec)
 0 111 0000 (bin) = +∞

 Infi nity

 Not a number

 FIGURE 3 . 36
 The special values
in fl oating-point
representation.

Special Value Exponent Signifi cand

Zero All zeros All zeros

Denormalized All zeros Nonzero

Infi nity All ones All zeros

Not a number All ones Nonzero

Infi nity All ones All zeros

1613.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 161 29/01/16 8:30 am

 Th ere is no single infi nitesimal value for the underfl ow region in Figure
3.35 that corresponds to the infi nite value in the overfl ow region. Instead,
there is a set of values called denormalized values that alleviate the problem
of underfl ow. FIGURE 3.37 is a drawing to scale of the fl oating point values
for a binary representation without denormalized special values (top) and
with denormalized values (bottom) for a system with a three-bit exponent
and four-bit signifi cand. Th e fi gure shows three complete sequences of
values for exponent fi elds of 000, 001, and 010 (excess 3), which represent
–3, –2, and –1 (dec), respectively.

 For normalized numbers in general, the gap between successive values
doubles with each unit increase of the exponent. For example, in the number
line on the top, the group of 16 values between 0.125 and 0.25 corresponds to
numbers written in binary scientifi c notation with a multiplier of 2 –3 . Th e 16
numbers between 0.25 and 0.5 are spaced twice as far apart and correspond
to numbers written in binary scientifi c notation with a multiplier of 2 –2 .

 Without denormalized special values, the gap between +0.0 and the
smallest positive value is excessive compared to the gaps in the smallest
sequence. Denormalized special values make the gap between successive
values for the fi rst sequence equal to the gap between successive values for the
second sequence. It spreads these values out evenly as they approach +0.0
from the right. On the left half of the number line, not shown in the fi gure,
the negative values are spread out evenly as they approach –0.0 from the left .

 Th is behavior of denormalized values is called gradual underfl ow . With
gradual underfl ow, the gap between the smallest positive value and zero
is reduced considerably. Th e idea is to take the nonzero values that would
be stored with an exponent fi eld of all 0’s (in excess representation) and
distribute them evenly in the underfl ow gap.

 Because the exponent fi eld of all 0’s is reserved for denormalized
numbers, the smallest positive normalized number becomes

 0 001 0000 = 1.000 × 2 –2 (bin) = 0.25 (dec)

 It might appear that we have made matters worse because the smallest
positive normalized number with 000 in the exponent fi eld is 0.1328125.

 Denormalized numbers

Gradual underfl ow

 FIGURE 3 . 37
 The real number line with and without denormalized numbers.

+0.0 1.00.5
Denormalized

Normalized
. . .

. . .

0.250.125

162 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 162 29/01/16 8:30 am

But, the denormalized values are spread throughout the gap in such a way
as to actually reduce it.

 When the exponent fi eld is all 0’s and the signifi cand contains at
least one 1, special rules apply to the representation. Assuming a three-bit
exponent and a four-bit signifi cand,

 ❯ Th e hidden bit to the left of the binary point is assumed to be 0
instead of 1.

 ❯ Th e exponent is assumed to be stored in excess 2 instead of excess 3.

 Example 3.46 For a representation with a three-bit exponent and four-bit
signifi cand, what decimal value is represented by 0 000 0110? Because the
exponent is all 0’s and the signifi cand contains at least one 1, the number
is denormalized. Its exponent is 000 (excess 2) = 0 – 2 = –2 (dec), and
its hidden bit is 0, so its binary scientifi c notation is 0.0110 × 2 –2 . Th e
exponent is in excess 2 instead of excess 3 because this is the special case of
a denormalized number. Converting to decimal yields 0.09375. ❚

 To see how much better the underfl ow gap is, compute the values having
the smallest possible magnitudes, which are denormalized.

 1 000 0001 (bin) = – 0.015625 (dec)
 1 000 0000 (bin) = – 0.0
 0 000 0000 (bin) = +0.0
 0 000 0001 (bin) = +0.015625 (dec)

 Without denormalized numbers, the smallest positive number is 0.1328125,
so the gap has been reduced considerably.

 FIGURE 3.38 shows some of the key values for a three-bit exponent
and a four-bit signifi cand using all four special values. Th e values are listed
in numeric order from smallest to largest. Th e fi gure shows why an excess
representation is common for fl oating point exponents. Consider all the
positive numbers from +0.0 to +∞, ignoring the sign bit. You can see that
if you treat the rightmost seven bits to be a simple unsigned integer, the
successive values increase by one all the way from 000 0000 for 0 (dec) to
111 0000 for ∞. To do a comparison of two positive fl oating point values, say
in a C statement like

 if (x < y)

 the computer does not need to extract the exponent fi eld or insert the hidden
bit. It can simply compare the rightmost seven bits as if they represented an
integer to determine which fl oating point value has the larger magnitude.
Th e circuitry for integer operations is considerably faster than that for

Representation rules for
denormalized numbers

1633.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 163 29/01/16 8:30 am

Binary Scientifi c Notation Decimal

Not a number 1 111 nonzero

Negative infi nity 1 111 0000 −∞

Negative
normalized

1 110 1111
1 110 1110
. . .
1 011 0001
1 011 0000
1 010 1111
. . .
1 001 0001
1 001 0000

−1.1111 × 23

−1.1110 × 23

. . .
−1.0001 × 20

−1.0000 × 20

−1.1111 × 2−1

. . .
−1.0001 × 2−2

−1.0000 × 2−2

−15.5
−15.0
. . .
−1.0625
−1.0
−0.96875
. . .
−0.265625
−0.25

Negative
denormalized

1 000 1111
1 000 1110
. . .
1 000 0010
1 000 0001

−0.1111 × 2−2

−0.1110 × 2−2

. . .
−0.0010 × 2−2

−0.0001 × 2−2

−0.234375
−0.21875
. . .
−0.03125
−0.015625

Negative zero 1 000 0000 −0.0

Positive zero 0 000 0000 +0.0

Positive
denormalized

0 000 0001
0 000 0010
. . .
0 000 1110
0 000 1111

0.0001 × 2−2

0.0010 × 2−2

. . .
0.1110 × 2−2

0.1111 × 2−2

0.015625
0.03125
. . .
0.21875
0.234375

Positive
normalized

0 001 0000
0 001 0001
. . .
0 010 1111
0 011 0000
0 011 0001
. . .
0 110 1110
0 110 1111

1.0000 × 2−2

1.0001 × 2−2

. . .
1.1111 × 2−1

1.0000 × 20

1.0001 × 20

. . .
1.1110 × 23

1.1111 × 23

0.25
0.265625
. . .
0.96875
1.0
1.0625
. . .
15.0
15.5

Positive infi nity 0 111 0000 +∞

Not a number 0 111 nonzero

 FIGURE 3 . 38
 Floating-point values for a three-bit exponent and four-bit signifi cand.

Not a number 1 111 nonzero

164 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 164 29/01/16 8:30 am

fl oating point operations, so using an excess representation for the exponent
really improves performance.

 Th e same pattern occurs for the negative numbers. Th e rightmost seven
bits can be treated like an unsigned integer to compare magnitudes of the
negative quantities. Floating-point quantities would not have this property
if the exponents were stored using two’s complement representation.

 Figure 3.38 shows that – 0.0 and +0.0 are distinct. At this low level of
abstraction, negative zero is stored diff erently from positive zero. However,
programmers at a higher level of abstraction expect the set of real number
values to have only one zero, which is neither positive nor negative. For
example, if the value of x has been computed as – 0.0 vand y as +0.0, then
the programmer should expect x to have the value 0 and y to have the value
0, and the expression (x < y) to be false. Computers must be programmed
to return false in this special case, even though the bit patterns indicate that
x is negative and y is positive. Th e system hides the fact that there are two
representations of zero at a low level of abstraction from the programmer at
a higher level of abstraction.

 With denormalization, to convert from decimal to binary you must
fi rst check if a decimal value is in the denormalized range to determine its
representation. From Figure 3.38, for a three-bit exponent and a four-bit
signifi cand, the smallest positive normalized value is 0.25. Any value less
than 0.25 is stored with the denormalized format.

 Example 3.47 For a representation with a three-bit exponent and four-bit
signifi cand, how is the decimal value – 0.078 stored? Because 0.078 is less
than 0.25, the representation is denormalized, the exponent is all zeros, and
the hidden bit is 0. Converting to binary, 0.078 (dec) = 0.000100111. . . .
Because the exponent is all zeros and the exponent is stored in excess 2
representation, the multiplier must be 2 –2 . In binary scientifi c notation with
a multiplier of 2 –2 , 0.000100111 . . . = 0.0100111 . . . × 2 –2 . As expected, the
digit to the left of the binary point is 0, which is the hidden bit. Th e bits to be
stored in the signifi cand are the fi rst four bits of .0100111 . . ., which rounds off
to .0101. So the fl oating point representation for –0.078 is 1000 0101. ❚

 The IEEE 754 Floating-Point Standard
 Th e Institute of Electrical and Electronic Engineers, Inc. (IEEE), is a
professional society supported by its members that provides services in
various engineering fi elds, one of which is computer engineering. Th e
society has various groups that propose standards for the industry. Before
the IEEE proposed its standard for fl oating point numbers, every computer
manufacturer designed its own representation for fl oating point values, and
they all diff ered from each other. In the early days before networks became

1653.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 165 29/01/16 8:30 am

prevalent and little data was shared between computers, this arrangement
was tolerated.

 Even without the widespread sharing of data, however, the lack of a
standard hindered research and development in numerical computations.
It was possible for two identical programs to run on two separate machines
with the same input and produce diff erent results because of the diff erent
approximations of the representations.

 Th e IEEE set up a committee to propose a fl oating point standard,
which it did in 1985. Th ere are two standards: number 854, which is more
applicable to handheld calculators than to other computing devices, and
number 754, which was widely adopted for computers. Th e standard was
revised with little change in 2008. Virtually every computer manufacturer
now provides fl oating point numbers for their computers that conform to
the IEEE 754 standard.

 Th e fl oating point representation described earlier in this section
is identical to the IEEE 754 standard except for the number of bits in the
exponent fi eld and in the signifi cand. FIGURE 3.39 shows the two formats for
the standard. Th e single-precision format has an 8-bit cell for the exponent
using excess 127 representation (except for denormalized numbers, which use
excess 126) and 23 bits for the signifi cand. It corresponds to C type float.
Th e double-precision format has an 11-bit cell for the exponent using excess
1023 representation (except for denormalized numbers, which use excess
1022) and a 52-bit cell for the signifi cand. It corresponds to C type double.

 Th e single-precision format has the following bit values. Positive infi nity is

 0 1111 1111 000 0000 0000 0000 0000 0000

 Th e hexadecimal abbreviation for the full 32-bit pattern arranges the bits
into groups of four as

 0111 1111 1000 0000 0000 0000 0000 0000

Bits 1 8 23

52111Bits

(a) Single precision.

(b) Double precision.

 FIGURE 3 . 39
 The IEEE 754 fl oating-point standard.

(a) Single precision.

166 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 166 29/01/16 8:30 am

 which is written 7F80 0000 (hex). Th e largest positive value is

 0 1111 1110 111 1111 1111 1111 1111 1111

 or 7F7F FFFF (hex). It is exactly 2 128 – 2 104 , which is approximately 2 128 or
3.4 × 10 38 . Th e smallest positive normalized number is

 0 0000 0001 000 0000 0000 0000 0000 0000

 or 0080 0000 (hex). It is exactly 2 –126 , which is approximately 1.2 × 10 –38 . Th e
smallest positive denormalized number is

 0 0000 0000 000 0000 0000 0000 0000 0001

 or 0000 0001 (hex). It is exactly 2 –149 , which is approximately 1.4 × 10 –45 .

 Example 3.48 What is the hexadecimal representation of –47.25 in single-
precision fl oating point? Th e integer 47 (dec) = 101111 (bin), and the fraction
0.25 (dec) = 0.01 (bin). So, 47.25 (dec) = 101111.01 = 1.0111101 × 2 5 . Th e
number is negative, so the fi rst bit is 1. Th e exponent 5 is converted to
excess 127 by adding 5 + 127 = 132 (dec) = 1000 0100 (excess 127). Th e
signifi cand stores the bits to the right of the binary point, 0111101. So, the
bit pattern is

 1 1000 0100 011 1101 0000 0000 0000 0000

 which is C23D 0000 (hex). ❚

 Example 3.49 What is the number, as written in binary scientifi c notation,
whose hexadecimal representation is 3CC8 0000? Th e bit pattern is

 0 0111 1001 100 1000 0000 0000 0000 0000

 Th e sign bit is zero, so the number is positive. Th e exponent is 0111 1001
(excess 127) = 121 (unsigned) = 121 – 127 = –6 (dec). From the signifi cand,
the bits to the right of the binary point are 1001. Th e hidden bit is 1, so the
number is 1.1001 × 2 –6 . ❚

 Example 3.50 What is the number, as written in binary scientifi c notation,
whose hexadecimal representation is 0050 0000? Th e bit pattern is

 0 0000 0000 101 0000 0000 0000 0000 0000

 Th e sign bit is 0, so the number is positive. Th e exponent fi eld is all 0’s, so
the number is denormalized. Th e exponent is 0000 0000 (excess 126) = 0
(unsigned) = 0 – 126 = –126 (dec). Th e hidden bit is 0 instead of 1, so the
number is 0.101 × 2 –126 . ❚

1673.5 Floating-Point Representation

9781284079630_CH03_115_182.indd 167 29/01/16 8:30 am

 Th e double-precision format has both wider range and greater precision
because of the larger exponent and signifi cand fi elds. Th e largest double
value is approximately 2 1023 , or 1.8 × 10 308 . Th e smallest positive normalized
number is approximately 2.2 × 10 –308 , and the smallest denormalized number
is approximately 4.9 × 10 –324 .

 Figure 3.37, which shows the denormalized special values, applies to
IEEE 754 values with a few modifi cations. For single precision, the exponent
fi eld has eight bits. Th us, the three sequences in the top fi gure correspond to
multipliers of 2 –127 , 2 –126 , and 2 –125 . Because the signifi cand has 23 bits, each
of the three sequences has 2 23 = 8,388,608 values instead of 16 values. It is
still the case that the spacing between successive values in each sequence is
double the spacing between successive values in the preceding sequence.

 For double precision, the exponent fi eld has 11 bits. So, the three
sequences in the top fi gure correspond to multipliers of 2 –1023 , 2 –1022 , and
2 –1021 . Because the signifi cand has 52 bits, each of the three sequences
has 2 52 = 4,503,599,627,370,496 values instead of 16 values. With
denormalization, each of the 4.5 quadrillion values in the left group are
spread out evenly as they approach +0.0 from the right.

 3.6 Models
 A model is a simplifi ed representation of some physical system. Workers
in every scientifi c discipline, including computer science, construct models
and investigate their properties. Consider some models of the solar system
that astronomers have constructed and investigated.

 Aristotle, who lived in Greece about 350 bc , proposed a model in which
the earth was at the center of the universe. Surrounding the earth were 55
celestial spheres. Th e sun, moon, planets, and stars were each carried around
the heavens on one of these spheres.

 How well did this model match reality? It was successful in explaining
the appearance of the sky, which looks like the top half of a sphere. It was also
successful in explaining the approximate motion of the planets. Aristotle’s
model was accepted as accurate for hundreds of years.

 Then in 1543 the Polish astronomer Copernicus published De
 Revolutionibus . In it he modeled the solar system with the sun at the center.
Th e planets revolved around the sun in circles. Th is model was a better
approximation to the physical system than the earth-centered model.

 In the latter part of the 16th century, the Danish astronomer Tycho Brahe
made a series of precise astronomical observations that showed a discrepancy
in Copernicus’s model. Th en in 1609 Johannes Kepler proposed a model in
which the earth and all the planets revolved around the sun not in circles, but

168 CHAPTER 3 Information Representation

9781284079630_CH03_115_182.indd 168 29/01/16 8:30 am

