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Predicate Calculus

Predicate: A function that returns type boolean, but whose parameters
might not be type boolean.

Example: odd.n 1s a predicate. odd.5 returns true. odd.6 returns false.
The type of function oddis 7Z — B

Example: equals(n,m) 1s a predicate. equals(7, 11) returns false.
The type of function equalsi1s Z X Z — B

Example: sum(n,m) 1s not a predicate. sum(7,11) returns 18.
The type of function sumis Z X Z — Z
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Predicate Calculus

The type of a quantification (xx | R : P) is the type of its body P.

Universal quantification with V and existential quantification with -
are predicates.

Example: (Vi|0 <i<n:bli] =0) is a predicate.
It 1s a function of two free variables n and b.
Its type 1s the type of its body BB.

Example: (Xi| 0 <i<n:bli])is not a predicate.
Its type 1s the type of its body Z.
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THEOREMS OF THE PREDICATE CALCULUS

Universal quantification.

Notation: (xz |: P) means (xz | true : P).

(9.2) Axiom, Trading: (Vz | R: P)= (Vx|: R= P)
(9.3) Trading:

(@ Vx| R:P)=(Vzl: -RV P)
b) Vz| R: P)= (Vzl: RANP=R)
c) Vx| R: P)=(Nx|: RVP=P)

(9.4) Trading:
@ Vz|lQAR:P)=Vz|Q:R= P)
®) (VeI QAR:P)=(Vz | Q:-RV P)
¢ Vzl|QAR:P)=NVxz|1Q:RANP=R)
d VzlIQAR:P)=(Nxz1Q:RVP=P)

(9.4.1)  Universal double trading: (Vx| R: P)= (Vx| =P : —=R)
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Prove (9.4.1) Universal double trading: (Vx|R:P)= (Vx| —-P:—R)
Proof
(Vx| =P : —R)
= ((9.2) Trading)
(Vx|: =P = —R)
= ((3.61) Contrapositive)
(Vx|: R = P)
= ((9.2) Trading)
(Vx|R:P) /I
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9.5)

(9.6)
(9.7)

(9.8)
(9.9)

(9.10)
9.11)
(9.12)
(9.13)
(9.16)

Axiom, Distributivity of \V over V : Provided —occurs(‘z’, ‘P’),
PviVx|lR:Q)=(Nz | R:PVQ)

Provided —occurs(‘z’,‘P’), (Vx| R:P)=PV (Vz|: -R)
Distributivity of A over V: Provided —occurs(‘z’, ‘P’),

~(Vx|: "R)= (Vx| R: PANQ)=PANz | R:Q))

(Vx | R : true) = true

Vx| R:P=Q)= (Vx| R:P)=(Vz | R:Q))

Range weakening/strengthening: (Vx| QV R:P)= (Vz | Q : P)
Body weakening/strengthening: (Vx| R: PAQ)= (Vx| R: P)
Monotonicity of V: (Vx| R: Q= P)= (Vx| R: Q)= (Vz | R: P))
Instantiation: (Vx|: P) = Plx := F]

Metatheorem: P is a theorem iff (Vx |: P) is a theorem.
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(9.16) Metatheorem: P is a theorem iff (Vx|: P) is a theorem.
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Example
p = pVqis atheorem.

Therefore, by (9.16), (Vp,ql: p= pVq) is atheorem.

In other words, p = pV g is true 1n all states.
The theorem p = pV g 1s “Implicitly universally quantified.”

Example
pV q 1s not a theorem.

Therefore, by (9.16), it is not the case that  (Vp,ql: pV¢q) is a theorem.

In other words, pV g 1s not true 1n all states.
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Existential quantification.

9.17)
(9.18)

(9.19)
(9.20)
(9.20.1)
(9.20.2)
(9.21)

(9.22)

Axiom, Generalized De Morgan: (dx | R: P)=—(Vz | R: —P)
Generalized De Morgan:

(@ "(Iz | R:-P)=Mz | R: P)

) =(3z | R: P)= (Vz | R: —P)

c) (x| R:-P)=-(MVzx| R:P)

Trading: (dz | R: P) = (3x|: RA P)

Trading: (Iz | QAR:P)=3z |1 Q: RAP)
Existential double trading: (x| R: P)=(dx | P: R)
(dzl:R)= (Vx| R: P)= (dz | R: P))

Distributivity of A over 3: Provided —occurs(‘z’, ‘P’),
PANEz | R:Q) =3z | R: PNQ)

Provided —occurs(‘z’,*P’), (Jz| R:P)=PA(Jzl: R)
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(9.19) Trading: (dx|R:P)= (Ix|:RAP)

(9.19) Example

0]

[1]

2]

[3]

[4]

[S]

[6]

[7]

[8]

9]

b| 19

-26

17

3

42

-19

35

14

-30

(Fi14<i<8:bli] <0)
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(9.19) Trading: (dx|R:P)= (Ix|:RAP)

(9.19) Example

01 (1 21 31 1[4 51 [61 [71 [8] [9]
b| 19 | -26 | 17 3 42 | -19 8 35 14 | -30

(Fi14<i<8:bli] <0)
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T

This range 1s over all 10 values.
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(9.19) Trading: (dx|R:P)= (dx|:RAP)

Existential quantification trades
with conjunction.
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(9.23)  Distributivity of V over 3: Provided —occurs(‘x’,‘P’),
(IxI:R)= ((IxIR:PVQ)=PV(Ix|IR:Q))
(9.24) (x| R: false) = false
(9.25) Range weakening/strengthening: (Ix|R:P)= (x| QVR:P)
(9.26) Body weakening/strengthening: (3x|R:P)= (Ix|R: PV Q)
(9.26.1) Body weakening/strengthening: (x| R:PAQ)= (Ix|R:P)
(9.27)  Monotonicity of 3: (Vx|R: Q0= P)= ((Ix|R: Q)= (Ix|R: P))
(9.28)  d-Introduction: Plx:=E]|= (dx|: P)
(9.29) Interchange of quantification: Provided —occurs(‘y’,‘R’) and —occurs(‘x’,Q’),
(IxIR: (WyIQ:P)=(VyIQ:(IxIR:P))
(9.30)  Provided —occurs(‘X’,°Q’),
(3x | R: P) = Qis a theorem iff (R A P)[x := %] = Q is a theorem.
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(9.29) Interchange of quantification: Provided —occurs(‘y’,‘R’) and —occurs(‘x’,‘Q’),
(IxIR: (WyIQ:P)= (YIQ:(IxIR:P))

Example

P : The predicate loves(x,y), person x loves person y
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Counterexample for
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a loves d and e. m
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(Vy 1 Q: (3x | R: P)) is true. Everyone in Q is loved by someone in R.
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a loves d and e.
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(9.29) Interchange of quantification: Provided —occurs(‘y’,‘R’) and —occurs(‘x’,‘Q’),
(IxIR: (WyIQ:P)= (YIQ:(IxIR:P))

Counterexample for
(W1Q:(FIR:P))= (IxIR:(Vy|Q:P)) R a b

a loves d and e.

b loves e, g and h. 0
c loves d, f and h. d e f h

(Vy 1 Q: (3x | R: P)) is true. Everyone in Q is loved by someone in R.
(Ix IR : (Wy | Q: P)) is false. No one in R loves everyone in Q.
true = false 1s false.
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Math Predicates

Even

even. x returns frue iff x 1s an even number.

Examples: even.12 returns true. even.3 returns false.
Formal definition of even. x: (Jk:Z|:2 -k =x)

12 1s even because 6 exists. 10 is even because 5 exists.

Odd

odd. x returns frue iff x 1s an odd number.

Examples: odd.17 returns true. odd.6 returns false.
Formal definition of odd. x: (Jk:Z|:2-k+1 =x)

1’7 1s odd because 8 exists. 15 is odd because 7 exists.
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Math Predicates

Multiple of

mult(n,x) returns true iff n is a multiple of x.
Examples:

mult(27,9) returns true.

mult(9,27) returns false.

mult(15, —3) returns true.

Formal definition of mult(n,x) : (Fk:Z|:n=k-x)
2’7 1s a multiple of 9 because 3 exists.
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Math Predicates
Divides

“x divides y” is written with the binary infix operator as x | y.

x | y returns true iff x goes into y with no remainder and a non-negative quotient.
Examples:

3115 = true
3116 = false
—3 |15 = false
3| =15 = false
—3 | =15 = true
Formal definitionof x |y: (Fk:Z|10<k:x-k=y)
Alternate definitionof x | y: (Jk:N[:x-k=1y)
—3 divides —15 because 5 exists and is non-negative.
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An even integer 1s a multiple of two.
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Example

An integer greater than 200 1s also greater than 100.
(Vx:7Z|x>200:x>100)

Example

The square of an integer 1s non-negative.
(Vx: Z]: x* > 0)
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exists, some, there are, thereis, atleast one

Example

There exists an even integer that is a multiple of three.
Some even integer 1s a multiple of three.

There are even integers that are multiples of three.
There 1s an even integer that is a multiple of three.

At least one even integer 1s a multiple of three.

(dx : Z | even. x : mult(x, 3))
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Exercise 9.29 (a)

The natural number 1 is the only natural number that 1s smaller
than positive integer p and divides p.

Rephrase: All natural numbers smaller than positive integer p,
except for 1, do not divide p.

Vd:N|l<d<p:—d|p)

Now, use the definition of divides.
(Vd:N|ll1l<d<p:=(Fk:Z10<k:d-k=Dp))
Alternatively, by (9.18b),
—(Ad:N|1<d<p:(Fk:Z10<k:d-k=p))
Alternatively,
(Vd:Nll<d<p:(Vk:Z10<k:d-k+# p))
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Exercise 9.34 (a)
Define loves(x,y): Person x loves person y.

Everybody loves somebody.
(Vx1: (Fyl: loves(x,y))

Exercise 9.35 (a)
Define fool(p,t): You can fool person p at time ¢.

You can fool some of the people some of the time.

(Apl: (Tt l: fool(p,t))



