Mathematical Induction

Mathematical Induction

P.n: $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

Mathematical Induction

P.n: $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

P.1 :

Mathematical Induction

P.n: $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *P.*1: $1 = 1^2$

Mathematical Induction

true

P.n: $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ $P.1: 1 = 1^2$

Mathematical Induction

P.n: $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *P.1*: $1 = 1^2$ true *P.2*:

Mathematical Induction

P.n: $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ P.1: $1 = 1^2$ true P.2: $1 + 3 = 2^2$

Mathematical Induction

P.n:
$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$$

P.1: $1 = 1^2$ true
P.2: $1 + 3 = 2^2$ true

Mathematical Induction

P.n:
$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$$

P.1: $1 = 1^2$ true
P.2: $1 + 3 = 2^2$ true
P.3:

Mathematical Induction

P.n:
$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$$

P.1: $1 = 1^2$ trueP.2: $1+3=2^2$ trueP.3: $1+3+5=3^2$

Mathematical Induction

P.n:
$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$$

P.1: $1 = 1^2$ trueP.2: $1+3=2^2$ trueP.3: $1+3+5=3^2$ true

Mathematical Induction

P.n:
$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$$

P.1: $1 = 1^2$ trueP.2: $1+3=2^2$ trueP.3: $1+3+5=3^2$ true

How can you prove *P*.*n* is true for all $n \ge 1$, not just $1 \le n \le 3$?

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general.

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general.

Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general.

Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove P.1.

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P*.1. Then, $P.1 \land (P.1 \Rightarrow P.2) \Rightarrow P.2$

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P*.1. Then, $P.1 \land (P.1 \Rightarrow P.2) \Rightarrow P.2$ $P.2 \land (P.2 \Rightarrow P.3) \Rightarrow P.3$

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove P.1. Then, $P.1 \land (P.1 \Rightarrow P.2) \Rightarrow P.2$ $P.2 \land (P.2 \Rightarrow P.3) \Rightarrow P.3$ $P.3 \land (P.3 \Rightarrow P.4) \Rightarrow P.4$

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove P.1. Then, $P.1 \land (P.1 \Rightarrow P.2) \Rightarrow P.2$ $P.2 \land (P.2 \Rightarrow P.3) \Rightarrow P.3$ $P.3 \land (P.3 \Rightarrow P.4) \Rightarrow P.4$

. . .

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove P.1. Then, $P.1 \land (P.1 \Rightarrow P.2) \Rightarrow P.2$ $P.2 \land (P.2 \Rightarrow P.3) \Rightarrow P.3$ $P.3 \land (P.3 \Rightarrow P.4) \Rightarrow P.4$

Conclusion: *P.n* is true for <u>all</u> $n \ge 1$.

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove P.1. Then, $P.1 \land (P.1 \Rightarrow P.2) \Rightarrow P.2$ $P.2 \land (P.2 \Rightarrow P.3) \Rightarrow P.3$ $P.3 \land (P.3 \Rightarrow P.4) \Rightarrow P.4$

Conclusion: *P*.*n* is true for <u>all</u> $n \ge 1$.

Proving *P*.1 is called the <u>base case</u>.

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove P.1. Then, $P.1 \land (P.1 \Rightarrow P.2) \Rightarrow P.2$ $P.2 \land (P.2 \Rightarrow P.3) \Rightarrow P.3$ $P.3 \land (P.3 \Rightarrow P.4) \Rightarrow P.4$

Conclusion: *P.n* is true for <u>all</u> $n \ge 1$.

Proving *P*.1 is called the <u>base case</u>. Proving $P.n \Rightarrow P(n+1)$ by deduction is called the <u>induction case</u>.

<u>Idea:</u> Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove P.1. Then, $P.1 \land (P.1 \Rightarrow P.2) \Rightarrow P.2$ $P.2 \land (P.2 \Rightarrow P.3) \Rightarrow P.3$ $P.3 \land (P.3 \Rightarrow P.4) \Rightarrow P.4$

Conclusion: *P*.*n* is true for <u>all</u> $n \ge 1$.

Proving *P*.1 is called the <u>base case</u>.

Proving $P.n \Rightarrow P(n+1)$ by deduction is called the <u>induction case</u>. The antecedent *P.n*, which you assume, is called the inductive hypothesis.

Prove
$$(\Sigma i | 1 \le i \le n : 2 \cdot i - 1) = n^2$$

Prove
$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$$

Proof

Prove
$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$$

Proof
Base case

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* <u>Base case</u> $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* <u>Base case</u> $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ $= \langle \text{Base case}, n = 1 \rangle$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ Proof <u>Base case</u> $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ $= \langle \text{Base case}, n = 1 \rangle$ $(\Sigma i \mid 1 \le i \le 1 : 2 \cdot i - 1) = 1^2$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ Proof <u>Base case</u> $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ $= \langle Base case, n = 1 \rangle$ $(\Sigma i \mid 1 \le i \le 1 : 2 \cdot i - 1) = 1^2$ $= \langle Math \rangle$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ Proof <u>Base case</u> $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ $= \langle \text{Base case}, n = 1 \rangle$ $(\Sigma i \mid 1 \le i \le 1 : 2 \cdot i - 1) = 1^2$ $= \langle \text{Math} \rangle$ $2 \cdot 1 - 1 = 1$

Prove $(\Sigma i | 1 \le i \le n : 2 \cdot i - 1) = n^2$ Proof Base case $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ = $\langle \text{Base case}, n = 1 \rangle$ $(\Sigma i \mid 1 \le i \le 1 : 2 \cdot i - 1) = 1^2$ $= \langle Math \rangle$ $2 \cdot 1 - 1 = 1$ $= \langle Math \rangle$

Prove $(\Sigma i | 1 \le i \le n : 2 \cdot i - 1) = n^2$ Proof Base case $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ = $\langle \text{Base case}, n = 1 \rangle$ $(\Sigma i \mid 1 \le i \le 1 : 2 \cdot i - 1) = 1^2$ $= \langle Math \rangle$ $2 \cdot 1 - 1 = 1$ $= \langle Math \rangle$ 1 = 1 //

Induction case

Induction case Prove $(\Sigma i \mid 1 \le i \le n+1 : 2 \cdot i - 1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ as the inductive hypothesis.

Induction case Prove $(\Sigma i \mid 1 \le i \le n+1: 2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n: 2 \cdot i-1) = n^2$ as the inductive hypothesis. $(\Sigma i \mid 1 \le i \le n+1: 2 \cdot i-1)$
$\begin{array}{l} \underline{\text{Induction case}} \\ \text{Prove } (\Sigma i \mid 1 \leq i \leq n+1 : 2 \cdot i - 1) = (n+1)^2 \\ \text{assuming } (\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) = n^2 \\ \text{as the inductive hypothesis.} \\ (\Sigma i \mid 1 \leq i \leq n+1 : 2 \cdot i - 1) \\ = & \langle \text{Split off last term} \rangle \end{array}$

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1 : 2 \cdot i - 1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \le i \le n+1: 2 \cdot i - 1)$

$$= \langle \text{Split off last term} \rangle$$

 $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) + 2(n + 1) - 1$

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1 : 2 \cdot i - 1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \le i \le n+1: 2 \cdot i - 1)$

$$=$$
 \langle Split off last term \rangle

 $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) + 2(n+1) - 1$

$$=$$
 \langle Inductive hypothesis \rangle

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1 : 2 \cdot i - 1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1: 2 \cdot i - 1)$

$$=$$
 (Split off last term)

 $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) + 2(n + 1) - 1$

$$=$$
 \langle Inductive hypothesis \rangle

 $n^2 + 2(n+1) - 1$

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1 : 2 \cdot i - 1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1: 2 \cdot i - 1)$

$$=$$
 \langle Split off last term \rangle

 $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) + 2(n + 1) - 1$

$$=$$
 \langle Inductive hypothesis \rangle

 $n^2 + 2(n+1) - 1$

 $= \langle Math \rangle$

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1 : 2 \cdot i - 1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1: 2 \cdot i - 1)$

$$=$$
 \langle Split off last term \rangle

$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) + 2(n + 1) - 1$$

$$=$$
 \langle Inductive hypothesis \rangle

 $n^2 + 2(n+1) - 1$

$$= \langle \text{Math} \rangle$$

 $n^2 + 2n + 1$

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1 : 2 \cdot i - 1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1: 2 \cdot i - 1)$

$$=$$
 \langle Split off last term \rangle

 $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) + 2(n + 1) - 1$

$$=$$
 \langle Inductive hypothesis \rangle

 $n^2 + 2(n+1) - 1$

$$= \langle Math \rangle$$

$$n^2 + 2n + 1$$

$$= \langle Math \rangle$$

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1 : 2 \cdot i - 1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1: 2 \cdot i - 1)$

$$=$$
 (Split off last term)

$$(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) + 2(n + 1) - 1$$

$$=$$
 \langle Inductive hypothesis \rangle

$$n^2 + 2(n+1) - 1$$

$$= \langle Math \rangle$$

$$n^2 + 2n + 1$$

$$= \langle \text{Math} \rangle \\ (n+1)^2 //$$

Prove $(\Sigma i | 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Proof

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof* Base case

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof* <u>Base case</u> $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof* <u>Base case</u>

$$(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$$

= $\langle \text{Base case}, n = 0 \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Proof

Base case

$$(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$$

= $\langle \text{Base case}, n = 0 \rangle$
 $(\Sigma i \mid 0 \le i < 0 : 2^i) = 2^0 - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Proof

Base case

$$(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$$

$$= \langle \text{Base case}, n = 0 \rangle$$
$$(\Sigma i \mid 0 \le i < 0 : 2^i) = 2^0 - 1$$

 $= \langle Math \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Proof

Base case

$$(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$$

= $\langle \text{Base case}, n = 0 \rangle$
 $(\Sigma i \mid 0 \le i < 0 : 2^i) = 2^0 - 1$

$$= \langle \text{Math} \rangle$$
$$(\Sigma i \mid false : 2^i) = 2^0 - 1$$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Proof

Base case

- $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n 1$ = $\langle \text{Base case}, n = 0 \rangle$ $(\Sigma i \mid 0 \le i \le 0, 2^i) = 2^0 - 1$
 - $(\Sigma i \mid 0 \le i < 0 : 2^i) = 2^0 1$
- = $\langle Math \rangle$ $(\Sigma i \mid false : 2^i) = 2^0 - 1$ = $\langle (8.13)$ Empty range rule, and math \rangle

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Proof

Base case

 $(\Sigma i \mid 0 \le i < n : 2^{i}) = 2^{n} - 1$ $= \langle \text{Base case, } n = 0 \rangle$ $(\Sigma i \mid 0 \le i < 0 : 2^{i}) = 2^{0} - 1$ $= \langle \text{Math} \rangle$ $(\Sigma i \mid false : 2^{i}) = 2^{0} - 1$ $= \langle (8.13) \text{ Empty range rule, and math} \rangle$

0 = 0 //

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n+1 : 2^i) = 2^{n+1} - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis.

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 2^i)$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 2^i)$

= \langle Split off last term \rangle

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 2^i)$ $= \langle \text{Split off last term} \rangle$

 $(\Sigma i \mid 0 \le i < n : 2^i) + 2^n$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 2^i)$

 $= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 2^i) + 2^n$

= (Inductive hypothesis)

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 2^i)$ $= \langle \text{Split off last term} \rangle$

- $(\Sigma i \mid 0 \le i < n : 2^i) + 2^n$
- $= \langle \text{Inductive hypothesis} \rangle \\ 2^n 1 + 2^n$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 2^i)$ $= \langle \text{Split off last term} \rangle$

 $(\Sigma i \mid 0 \le i < n : 2^i) + 2^n$

$$= \langle \text{Inductive hypothesis} \rangle$$

2ⁿ - 1 + 2ⁿ

= $\langle Math \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 2^i)$ $= \langle \text{Split off last term} \rangle$ $(\Sigma i \mid 0 \le i < n : 2^i) + 2^n$ $= \langle \text{Inductive hypothesis} \rangle$

$$2^n - 1 + 2^n$$

$$= \langle Math \rangle$$

 $2 \cdot 2^n - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for n > 0Induction case Prove $(\Sigma i \mid 0 \le i < n+1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i | 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n+1:2^i)$ = (Split off last term) $(\Sigma i \mid 0 \le i < n : 2^i) + 2^n$ = (Inductive hypothesis) $2^{n} - 1 + 2^{n}$

$$= \langle Math \rangle$$

$$2 \cdot 2^n - 1$$

 $= \langle Math \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for n > 0Induction case Prove $(\Sigma i \mid 0 \le i < n+1 : 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i | 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n+1:2^i)$ = (Split off last term) $(\Sigma i \mid 0 \le i < n : 2^i) + 2^n$ = (Inductive hypothesis) $2^{n} - 1 + 2^{n}$ = $\langle Math \rangle$ $2 \cdot 2^{n} - 1$ $= \langle Math \rangle$ $2^{n+1} - 1$ //

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Prove $(\Sigma i | 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ *Proof*

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ *Proof* <u>Base case</u>

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Proof <u>Base case</u> $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$
Prove
$$(\Sigma i | 0 \le i < n : 3^i) = (3^n - 1)/2$$
 for $n \ge 0$
Proof

$$(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$$

=
$$\langle \text{Base case}, n = 0 \rangle$$

Prove
$$(\Sigma i | 0 \le i < n : 3^i) = (3^n - 1)/2$$
 for $n \ge 0$
Proof

$$(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$$

$$= \langle \text{Base case}, n = 0 \rangle$$
$$(\Sigma i \mid 0 \le i < 0 : 3^i) = (3^0 - 1)/2$$

Prove
$$(\Sigma i | 0 \le i < n : 3^i) = (3^n - 1)/2$$
 for $n \ge 0$
Proof

$$(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$$

= $\langle \text{Base case}, n = 0 \rangle$
 $(\Sigma i \mid 0 \le i < 0 : 3^i) = (3^0 - 1)/2$

$$(\Sigma i \mid 0 \le i < 0 : 3^i) = (3^0 - 1)/2$$

$$= \langle Math \rangle$$

Prove
$$(\Sigma i | 0 \le i < n : 3^i) = (3^n - 1)/2$$
 for $n \ge 0$
Proof

Base case

$$(\Sigma i \mid 0 \le i < n : 3^{i}) = (3^{n} - 1)/2$$

= $\langle \text{Base case}, n = 0 \rangle$
 $(\Sigma i \mid 0 \le i < 0 : 3^{i}) = (3^{0} - 1)/2$
= $\langle \text{Math} \rangle$

 $(\Sigma i \mid false: 3^i) = (3^0 - 1)/2$

Prove $(\Sigma i | 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ *Proof*

- $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n 1)/2$
- $= \langle \text{Base case}, n = 0 \rangle$ $(\Sigma i \mid 0 \le i < 0 : 3^i) = (3^0 1)/2$
- $= \langle \text{Math} \rangle$ $(\Sigma i \mid false : 3^i) = (3^0 1)/2$
- = $\langle (8.13)$ Empty range rule, and math \rangle

Prove $(\Sigma i | 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ *Proof*

- $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n 1)/2$
- $= \langle \text{Base case}, n = 0 \rangle$ $(\Sigma i \mid 0 \le i < 0 : 3^i) = (3^0 1)/2$
- $= \langle \text{Math} \rangle$ $(\Sigma i \mid false : 3^i) = (3^0 1)/2$
- = $\langle (8.13)$ Empty range rule, and math \rangle 0 = 0 //

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1}-1)/2$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 3^i) = (3^{n+1} - 1)/2$

assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 2^i)$

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 3^i)$ $= \langle \text{Split off last term} \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ <u>Induction case</u> Prove $(\Sigma i \mid 0 \le i < n + 1 : 3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis. $(\Sigma i \mid 0 \le i < n + 1 : 3^i)$ $= \langle \text{Split off last term} \rangle$

 $(\Sigma i \mid 0 \le i < n : 3^i) + 3^n$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1: 3^i) = (3^{n+1}-1)/2$ assuming $(\Sigma i \mid 0 \le i < n: 3^i) = (3^n-1)/2$ as the inductive hypothesis.

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

$$= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 3^i) + 3^n$$

$$=$$
 (Inductive hypothesis)

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1: 3^i) = (3^{n+1}-1)/2$ assuming $(\Sigma i \mid 0 \le i < n: 3^i) = (3^n-1)/2$ as the inductive hypothesis.

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

$$= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 3^i) + 3^n$$

$$= \langle \text{Inductive hypothesis} \rangle (3^n - 1)/2 + 3^n$$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i | 0 \le i < n+1 : 3^i) = (3^{n+1}-1)/2$ assuming $(\Sigma i | 0 \le i < n : 3^i) = (3^n-1)/2$ as the inductive hypothesis.

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

$$= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 3^i) + 3^n$$

$$= \langle \text{Inductive hypothesis} \rangle (3^n - 1)/2 + 3^n$$

= (Math, common denominator)

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i | 0 \le i < n+1 : 3^i) = (3^{n+1}-1)/2$ assuming $(\Sigma i | 0 \le i < n : 3^i) = (3^n-1)/2$ as the inductive hypothesis.

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

$$= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 3^i) + 3^n$$

=
$$\langle$$
Inductive hypothesis \rangle
 $(3^n - 1)/2 + 3^n$

= $\langle \text{Math, common denominator} \rangle$ $(3^n - 1 + 2 \cdot 3^n)/2$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1}-1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

$$= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 3^i) + 3^n$$

$$= \langle \text{Inductive hypothesis} \rangle (3^n - 1)/2 + 3^n$$

 \langle Math, common denominator \rangle $(2^n - 1 + 2 \cdot 3^n)/2$

$$(3^n - 1 + 2 \cdot 3^n)/2$$

 $= \langle Math \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i | 0 \le i < n+1 : 3^i) = (3^{n+1}-1)/2$ assuming $(\Sigma i | 0 \le i < n : 3^i) = (3^n-1)/2$ as the inductive hypothesis.

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

$$= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 3^i) + 3^n$$

$$= \langle \text{Inductive hypothesis} \rangle (3^n - 1)/2 + 3^n$$

= $\langle Math, common denominator \rangle$ $(3^n - 1 + 2 \cdot 3^n)/2$

$$= \langle \text{Math} \rangle \\ (3 \cdot 3^n - 1)/2$$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i | 0 \le i < n+1 : 3^i) = (3^{n+1}-1)/2$ assuming $(\Sigma i | 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

$$= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 3^i) + 3^n$$

$$= \langle \text{Inductive hypothesis} \rangle (3^n - 1)/2 + 3^n$$

- = $\langle \text{Math, common denominator} \rangle$ $(3^n - 1 + 2 \cdot 3^n)/2$
- $= \langle Math \rangle$

$$(3\cdot 3^n - 1)/2$$

 $= \langle Math \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i | 0 \le i < n+1 : 3^i) = (3^{n+1}-1)/2$ assuming $(\Sigma i | 0 \le i < n : 3^i) = (3^n-1)/2$ as the inductive hypothesis.

 $(\Sigma i \mid 0 \le i < n+1:3^i)$

$$= \langle \text{Split off last term} \rangle \\ (\Sigma i \mid 0 \le i < n : 3^i) + 3^n$$

$$= \langle \text{Inductive hypothesis} \rangle (3^n - 1)/2 + 3^n$$

= $\langle Math, common denominator \rangle$ $(3^n - 1 + 2 \cdot 3^n)/2$

$$(3^n - 1 + 2 \cdot 3^n)/2$$

$$= \langle \text{Math} \rangle$$

 $(3, 3^n, 1)$

$$(3\cdot 3^n - 1)/2$$

$$= \langle \text{Math} \rangle \\ (3^{n+1} - 1)/2 \quad //$$

Prove $2n+1 < 2^n$ for $n \ge 3$

Prove $2n + 1 < 2^n$ for $n \ge 3$ *Proof*

Prove $2n + 1 < 2^n$ for $n \ge 3$ *Proof* <u>Base case</u>

Prove $2n + 1 < 2^n$ for $n \ge 3$ *Proof* <u>Base case</u> $2n + 1 < 2^n$

Prove $2n + 1 < 2^n$ for $n \ge 3$ Proof <u>Base case</u> $2n + 1 < 2^n$ $= \langle \text{Base case}, n = 3 \rangle$

Prove $2n + 1 < 2^n$ for $n \ge 3$ *Proof* <u>Base case</u> $2n + 1 < 2^n$ $= \langle Base case, n = 3 \rangle$ $2 \cdot 3 + 1 < 2^3$

Prove $2n + 1 < 2^n$ for $n \ge 3$ Proof <u>Base case</u> $2n + 1 < 2^n$ $= \langle Base case, n = 3 \rangle$ $2 \cdot 3 + 1 < 2^3$ $= \langle Math \rangle$

Prove $2n + 1 < 2^n$ for $n \ge 3$ Proof <u>Base case</u> $2n + 1 < 2^n$ $= \langle Base case, n = 3 \rangle$ $2 \cdot 3 + 1 < 2^3$ $= \langle Math \rangle$ 7 < 8 //

Induction case

 $\frac{\text{Induction case}}{\text{Prove } 2(n+1) + 1 < 2^{n+1}}$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis.

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1}

 $\frac{\text{Induction case}}{\text{Prove } 2(n+1) + 1 < 2^{n+1}}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1} = $\langle \text{Math} \rangle$
$\frac{\text{Induction case}}{\text{Prove } 2(n+1) + 1 < 2^{n+1}}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1} $= \langle \text{Math} \rangle$

•

 $2 \cdot 2^n$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1}

$$= \langle \text{Math} \rangle \\ 2 \cdot 2^n$$

> \langle Inductive hypothesis \rangle

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1}

$$= \langle \text{Math} \rangle \\ 2 \cdot 2^n$$

> \langle Inductive hypothesis \rangle 2 · (2*n*+1)

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1}

$$= \langle \text{Math} \rangle \\ 2 \cdot 2^n$$

> \langle Inductive hypothesis \rangle

$$2 \cdot (2n+1)$$

 $= \langle Math \rangle$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1}

 $= \langle \text{Math} \rangle \\ 2 \cdot 2^n$

> \langle Inductive hypothesis \rangle $2 \cdot (2n+1)$ = \langle Math \rangle 2(n+1) + 1 + 2n - 1

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1}

 $= \langle \text{Math} \rangle \\ 2 \cdot 2^n$

- > \langle Inductive hypothesis \rangle $2 \cdot (2n+1)$ \langle Math \rangle
- $= \langle \text{Math} \rangle$ 2(n+1) + 1 + 2n 1
- > $\langle 2n-1 \text{ is positive for } n \geq 3 \rangle$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n + 1 < 2^n$ as the inductive hypothesis. 2^{n+1}

 $= \langle \text{Math} \rangle \\ 2 \cdot 2^n$

- > \langle Inductive hypothesis \rangle $2 \cdot (2n+1)$
- = $\langle Math \rangle$
 - 2(n+1) + 1 + 2n 1
- > $\langle 2n-1 \text{ is positive for } n \ge 3 \rangle$ 2(n+1)+1 //

Example of a proof by induction. Consider a currency consisting of 2-cent and 5-cent coins. Show that any amount above 3 cents can be represented using these coins.

We write P.n in English as

P.n: Some bag of 2-cent and 5-cent coins has the sum n. Our task is to prove $(\forall n \mid 4 \leq n : P.n)$.

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

Base case

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

<u>Base case</u> The base case is n=4.

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

<u>Base case</u> The base case is n=4.

Must prove that you can make 4 cents using only 2-cent and 5-cent coins.

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

<u>Base case</u> The base case is n=4.

Must prove that you can make 4 cents using only 2-cent and 5-cent coins.

Use two 2-cent coins.//

Induction case

Induction case Must prove

- Induction case
- Must prove
- "n+1 cents is possible with 2-cent and 5-cent coins"

Induction case

Must prove

"n+I cents is possible with 2-cent and 5-cent coins" assuming

Induction case

- Must prove
- "n+I cents is possible with 2-cent and 5-cent coins" assuming
- "n cents is possible with 2-cent and 5-cent coins"

Induction case

Must prove

"n+1 cents is possible with 2-cent and 5-cent coins"

assuming

"n cents is possible with 2-cent and 5-cent coins"

as the inductive hypothesis.

Case I

Case I

You have n cents with at least one 5-cent coin. Remove

Case I

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins.

<u>Case I</u>

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

<u>Case I</u>

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

<u>Case I</u>

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins,

<u>Case I</u>

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must

<u>Case I</u>

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must be more than three cents, you must have at least two 2-

<u>Case I</u>

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must be more than three cents, you must have at least two 2-cent coins. Remove two 2-cent coins and replace them

<u>Case I</u>

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must be more than three cents, you must have at least two 2cent coins. Remove two 2-cent coins and replace them with one 5-cent coin. Now you have n+1 cents with only

<u>Case I</u>

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must be more than three cents, you must have at least two 2-cent coins. Remove two 2-cent coins and replace them with one 5-cent coin. Now you have n+1 cents with only 2-cent and 5-cent coins. //

- (12.11) Definition, *b* to the power *n*: $b^0 = 1$ $b^{n+1} = b \cdot b^n$ for $n \ge 0$ (12.12) *b* to the power *n*: $b^0 = 1$ $b^n = b \cdot b^{n-1}$ for $n \ge 1$ (12.13) Definition, factorial: 0! = 1
 - $n! = n \cdot (n-1)! \quad \text{ for } n > 0$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Proof

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* <u>Base case</u> $n! = (\Pi i \mid 1 \le i \le n : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* <u>Base case</u> $n! = (\Pi i \mid 1 \le i \le n : i)$ $= \langle \text{Base case}, n = 0 \rangle$
Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Proof <u>Base case</u> $n! = (\Pi i \mid 1 \le i \le n : i)$ $= \langle \text{Base case}, n = 0 \rangle$ $0! = (\Pi i \mid 1 \le i \le 0 : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Proof <u>Base case</u> $n! = (\Pi i \mid 1 \le i \le n : i)$ $= \langle \text{Base case}, n = 0 \rangle$ $0! = (\Pi i \mid 1 \le i \le 0 : i)$ $= \langle (12.13) \text{ and math} \rangle$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Proof <u>Base case</u> $n! = (\Pi i \mid 1 \le i \le n : i)$ $= \langle \text{Base case}, n = 0 \rangle$ $0! = (\Pi i \mid 1 \le i \le 0 : i)$ $= \langle (12.13) \text{ and math} \rangle$ $1 = (\Pi i \mid false : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Proof Base case $n! = (\Pi i \mid 1 \le i \le n : i)$ = $\langle \text{Base case}, n = 0 \rangle$ $0! = (\Pi i \mid 1 \le i \le 0:i)$ $= \langle (12.13) \text{ and math} \rangle$ $1 = (\Pi i \mid false:i)$ = $\langle (8.13)$ Empty range rule \rangle

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Proof Base case $n! = (\Pi i \mid 1 \le i \le n : i)$ = $\langle \text{Base case}, n = 0 \rangle$ $0! = (\Pi i \mid 1 \le i \le 0:i)$ $= \langle (12.13) \text{ and math} \rangle$ $1 = (\Pi i \mid false:i)$ = $\langle (8.13)$ Empty range rule \rangle 1 = 1 //

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Induction case

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ <u>Induction case</u> Prove $(n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ <u>Induction case</u> Prove $(n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)$ assuming $n! = (\Pi i \mid 1 \le i \le n : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ <u>Induction case</u> Prove $(n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)$ assuming $n! = (\Pi i \mid 1 \le i \le n : i)$ as the inductive hypothesis.

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0

<u>Induction case</u>

Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)

assuming n! = (\Pi i \mid 1 \le i \le n : i)

as the inductive hypothesis.

(\Pi i \mid 1 \le i \le n+1 : i)
```

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0

<u>Induction case</u>

Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)

assuming n! = (\Pi i \mid 1 \le i \le n : i)

as the inductive hypothesis.

(\Pi i \mid 1 \le i \le n+1 : i)
```

```
= \langleSplit off last term\rangle
```

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0

<u>Induction case</u>

Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)

assuming n! = (\Pi i \mid 1 \le i \le n : i)

as the inductive hypothesis.

(\Pi i \mid 1 \le i \le n+1 : i)
```

$$= \langle \text{Split off last term} \rangle \\ (\Pi i \mid 1 \le i \le n : i) \cdot (n+1)$$

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0

<u>Induction case</u>

Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)

assuming n! = (\Pi i \mid 1 \le i \le n : i)

as the inductive hypothesis.

(\Pi i \mid 1 \le i \le n+1 : i)
```

- $= \langle \text{Split off last term} \rangle \\ (\Pi i \mid 1 \le i \le n : i) \cdot (n+1)$
- = (Inductive hypothesis)

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ <u>Induction case</u> Prove $(n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)$ assuming $n! = (\Pi i \mid 1 \le i \le n : i)$ as the inductive hypothesis. $(\Pi i \mid 1 \le i \le n+1 : i)$

- $= \langle \text{Split off last term} \rangle$ $(\Pi i \mid 1 \le i \le n : i) \cdot (n+1)$
- $= \langle \text{Inductive hypothesis} \rangle$ $n! \cdot (n+1)$

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0

<u>Induction case</u>

Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)

assuming n! = (\Pi i \mid 1 \le i \le n : i)

as the inductive hypothesis.

(\Pi i \mid 1 \le i \le n+1 : i)
```

- $= \langle \text{Split off last term} \rangle \\ (\Pi i \mid 1 \le i \le n : i) \cdot (n+1)$
- $= \langle \text{Inductive hypothesis} \rangle$ $n! \cdot (n+1)$
- = $\langle (12.13 \text{ with } n := n+1, \text{ which is } (n+1)! = (n+1) \cdot n! \rangle$

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0

<u>Induction case</u>

Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)

assuming n! = (\Pi i \mid 1 \le i \le n : i)

as the inductive hypothesis.

(\Pi i \mid 1 \le i \le n+1 : i)
```

- $= \langle \text{Split off last term} \rangle \\ (\Pi i \mid 1 \le i \le n : i) \cdot (n+1)$
- $= \langle \text{Inductive hypothesis} \rangle$ $n! \cdot (n+1)$
- = $\langle (12.13 \text{ with } n := n+1, \text{ which is } (n+1)! = (n+1) \cdot n! \rangle$ (n+1)! //

The Golden Ratio

The golden ratio is $\phi = A/B$

The Golden Ratio

The Golden Ratio

$$\frac{A}{B} = \frac{A+B}{A}$$

The Golden Ratio

$$\frac{A}{B} = \frac{A+B}{A}$$
$$A = \frac{A}{A}$$

$$\frac{1}{B} = 1 + \frac{1}{A}$$

The Golden Ratio

$$\frac{A}{B} = \frac{A+B}{A}$$

$$\frac{A}{B} = 1 + \frac{B}{A}$$

$$\frac{A}{B} = 1 + \frac{1}{A/B}$$

The Golden Ratio

$$\frac{A}{B} = \frac{A+B}{A}$$

$$\frac{A}{B} = 1 + \frac{B}{A}$$

$$\frac{A}{B} = 1 + \frac{1}{A/B}$$

$$\phi = 1 + rac{1}{\phi}$$

$$\phi = 1 + \frac{1}{\phi}$$

$$\phi = 1 + \frac{1}{\phi}$$

$$\phi^2 = \phi + 1$$

$$\phi = 1 + \frac{1}{\phi}$$
$$\phi^2 = \phi + 1$$
$$\phi^2 - \phi - 1 = 0$$

$$\phi = 1 + \frac{1}{\phi}$$

$$\phi^2 = \phi + 1$$

$$\phi^2 - \phi - 1 = 0$$

$$\phi = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)}$$

$$\phi = 1 + \frac{1}{\phi}$$

$$\phi^2 = \phi + 1$$

$$\phi^2 - \phi - 1 = 0$$

$$\phi = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)}$$

$$\phi = \frac{1 \pm \sqrt{5}}{2}$$

The Fibonacci sequence

0 I I 2 3 5 8 F₀ F₁ F₂ F₃ F₄ F₅ F₆

(12.14) **Definition, Fibonacci:**

 $F_0 = 0, \quad F_1 = 1$ $F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 1$

(12.14.1) **Definition, Golden Ratio:** $\phi = (1 + \sqrt{5})/2 \approx 1.618$ $\hat{\phi} = (1 - \sqrt{5})/2 \approx -0.618$ (12.15) $\phi^2 = \phi + 1$ and $\hat{\phi}^2 = \hat{\phi} + 1$ (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ (12.16.1) $\phi^{n-2} \le F_n$ for $n \ge 1$ (12.17) $F_{n+m} = F_m \cdot F_{n+1} + F_{m-1} \cdot F_n$ for $n \ge 0$ and $m \ge 1$

To prove Fibonacci theorems there are two base cases and two inductive hypotheses.
Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ ProofFirst base case

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ *Proof* <u>First base case</u> $F_n \le \phi^{n-1}$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ *Proof* <u>First base case</u> $F_n \le \phi^{n-1}$ $= \langle \text{Base case}, n = 1 \rangle$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ *Proof* <u>First base case</u> $F_n \le \phi^{n-1}$ $= \langle \text{Base case}, n = 1 \rangle$ $F_1 \le \phi^{1-1}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* <u>First base case</u> $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 \leq \phi^{1-1}$ = $\langle (12.14) \rangle$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* <u>First base case</u> $F_n \leq \phi^{n-1}$ $= \langle \text{Base case}, n = 1 \rangle$ $F_1 \leq \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 \le \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ $1 \le 1$ //

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 \le \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ 1 < 1 //

Second base case

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ $1 \le 1$ //

 $\frac{\text{Second base case}}{F_n \le \phi^{n-1}}$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ = $\langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ 1 < 1 //

 $\frac{\text{Second base case}}{F_n \le \phi^{n-1}}$ $= \langle \text{Base case}, n = 2 \rangle$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ = $\langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ 1 < 1 //

 $\frac{\text{Second base case}}{F_n \le \phi^{n-1}} = \langle \text{Base case}, n = 2 \rangle$ $F_2 \le \phi^{2-1}$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ 1 < 1 //

Second base case $F_n \le \phi^{n-1}$ $= \langle \text{Base case}, n = 2 \rangle$ $F_2 \le \phi^{2-1}$ $= \langle (12.14) \text{ and math} \rangle$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ 1 < 1 //

 $\frac{\text{Second base case}}{F_n \le \phi^{n-1}}$ $= \langle \text{Base case}, n = 2 \rangle$ $F_2 \le \phi^{2-1}$ $= \langle (12.14) \text{ and math} \rangle$ $1 + 0 \le \phi$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ 1 < 1 //

Second base case $F_n \le \phi^{n-1}$ $= \langle Base case, n = 2 \rangle$ $F_2 \le \phi^{2-1}$ $= \langle (12.14) \text{ and math} \rangle$ $1+0 \le \phi$ $= \langle (12.14.1) \text{ and math} \rangle$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Proof First base case $F_n \leq \phi^{n-1}$ = $\langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ $= \langle (12.14) \rangle$ $1 < \phi^{1-1}$ $= \langle Math \rangle$ 1 < 1 //

Second base case $F_n \leq \phi^{n-1}$ $= \langle \text{Base case}, n = 2 \rangle$ $F_2 \leq \phi^{2-1}$ $= \langle (12.14) \text{ and math} \rangle$ $1+0 \leq \phi$ $= \langle (12.14.1) \text{ and math} \rangle$ $1 \leq 1.618 //$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Induction case

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ <u>Induction case</u> Prove $F_{n+1} \le \phi^{(n+1)-1}$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ <u>Induction case</u> Prove $F_{n+1} \le \phi^{(n+1)-1}$ assuming $F_n \le \phi^{n-1}$ and $F_{n-1} \le \phi^{(n-1)-1}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ <u>Induction case</u> Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses.

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ <u>Induction case</u> Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1}

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ <u>Induction case</u> Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ <u>Induction case</u> Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ <u>Induction case</u> Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$ $\leq \langle \text{Inductive hypotheses} \rangle$

Prove (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$ Induction case Prove $F_{n+1} \le \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$ \leq (Inductive hypotheses) $\phi^{n-1} + \phi^{n-2}$

Prove (12.16) $F_n < \phi^{n-1}$ for n > 1Induction case Prove $F_{n+1} \le \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$ \leq (Inductive hypotheses) $\phi^{n-1} + \phi^{n-2}$ = \langle Math, factor out $\phi^{n-2} \rangle$

Prove (12.16) $F_n < \phi^{n-1}$ for n > 1Induction case Prove $F_{n+1} \le \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$ \leq (Inductive hypotheses) $\phi^{n-1} + \phi^{n-2}$ = $\langle Math, factor out \phi^{n-2} \rangle$ $\phi^{n-2}(\phi+1)$

Prove (12.16) $F_n < \phi^{n-1}$ for n > 1Induction case Prove $F_{n+1} \le \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$ \leq (Inductive hypotheses) $\phi^{n-1} + \phi^{n-2}$ = $\langle Math, factor out \phi^{n-2} \rangle$ $\phi^{n-2}(\phi+1)$ $= \langle (12.15) \rangle$

Prove (12.16) $F_n < \phi^{n-1}$ for n > 1Induction case Prove $F_{n+1} < \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$ \leq (Inductive hypotheses) $\phi^{n-1} + \phi^{n-2}$ = $\langle Math, factor out \phi^{n-2} \rangle$ $\phi^{n-2}(\phi+1)$ = $\langle (12.15) \rangle$ $\phi^{n-2} \cdot \phi^2$

Prove (12.16) $F_n < \phi^{n-1}$ for n > 1Induction case Prove $F_{n+1} < \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$ \leq (Inductive hypotheses) $\phi^{n-1} + \phi^{n-2}$ = \langle Math, factor out $\phi^{n-2} \rangle$ $\phi^{n-2}(\phi+1)$ $= \langle (12.15) \rangle$ $\phi^{n-2} \cdot \phi^2$ $= \langle Math \rangle$

Prove (12.16) $F_n < \phi^{n-1}$ for n > 1Induction case Prove $F_{n+1} < \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $= \langle (12.14) \text{ with } n := n+1 \rangle$ $F_n + F_{n-1}$ \leq (Inductive hypotheses) $\phi^{n-1} + \phi^{n-2}$ = $\langle Math, factor out \phi^{n-2} \rangle$ $\phi^{n-2}(\phi+1)$ $= \langle (12.15) \rangle$ $\phi^{n-2} \cdot \phi^2$ $= \langle Math \rangle$ $\phi^{(n+1)-1}$ //

Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

Ø is a binary tree, called the empty tree. (d, l, r) is a binary tree, for d: \mathbb{Z} and l, r binary trees.

Ø

Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

Ø is a binary tree, called the empty tree. (d, l, r) is a binary tree, for d: \mathbb{Z} and l, r binary trees.

$$(5, \emptyset, \emptyset)$$

Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

Ø is a binary tree, called the empty tree. (d, l, r) is a binary tree, for d: \mathbb{Z} and l, r binary trees.

 $(5, \emptyset, (3, \emptyset, \emptyset))$
Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

Ø is a binary tree, called the empty tree. (d, l, r) is a binary tree, for d: \mathbb{Z} and l, r binary trees.

$(5, (12, \emptyset, \emptyset), (3, (4, \emptyset, \emptyset), \emptyset))$

(12.31) **Definition, Number of Nodes:**

 $\# \emptyset = 0$

#(d,l,r) = 1 + #l + #r

(12.32) **Definition, Height:**

 $\begin{aligned} height. \emptyset &= 0\\ height. (d, l, r) &= 1 + max(height. l, height. r) \end{aligned}$

(12.32.1) **Definition, Leaf:** A leaf is a node with no children (i.e. two empty subtrees).

(12.32.2) **Definition, Internal node:** An internal node is a node that is not a leaf.

(12.32.3) **Definition, Complete:** A binary tree is complete if every node has either 0 or 2 children.

 $(5, \mathcal{O}, \mathcal{O})$

(12.31) **Definition, Number of Nodes:**

 $\# \emptyset = 0$

#(d,l,r) = 1 + #l + #r

(12.32) **Definition, Height:**

 $\begin{aligned} height. \emptyset &= 0\\ height. (d, l, r) &= 1 + max(height. l, height. r) \end{aligned}$

(12.32.1) **Definition, Leaf:** A leaf is a node with no children (i.e. two empty subtrees).

(12.32.2) **Definition, Internal node:** An internal node is a node that is not a leaf.

(12.32.3) **Definition, Complete:** A binary tree is complete if every node has either 0 or 2 children.

$(5, \emptyset, (3, \emptyset, \emptyset))$

(12.31) **Definition, Number of Nodes:**

 $\# \emptyset = 0$

#(d,l,r) = 1 + #l + #r

(12.32) **Definition, Height:**

 $\begin{aligned} height. \emptyset &= 0\\ height. (d, l, r) &= 1 + max(height. l, height. r) \end{aligned}$

(12.32.1) **Definition, Leaf:** A leaf is a node with no children (i.e. two empty subtrees).

(12.32.2) **Definition, Internal node:** An internal node is a node that is not a leaf.

(12.32.3) **Definition, Complete:** A binary tree is complete if every node has either

0 or 2 children.

- (12.33) The maximum number of nodes in a tree with height n is $2^n 1$ for $n \ge 0$.
- (12.34) The minimum number of nodes in a tree with height n is n for $n \ge 0$.
- (12.35) (a) The maximum number of leaves in a tree with height n is 2^{n-1} for n > 0.
 - (b) The maximum number of internal nodes is $2^{n-1} 1$ for n > 0.
- (12.36) (a) The minimum number of leaves in a tree with height n is 1 for n > 0.
 - (b) The minimum number of internal nodes is n-1 for n > 0.
- (12.37) Every nonempy complete tree has an odd number of nodes.

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Base case

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

<u>Base case</u>(a) The empty tree has zero nodes.

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Base case(a) The empty tree has zero nodes.(b) $2^0 \cdot I = 0$

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Induction case

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Induction case

Must prove "the maximum number of nodes in a tree of height n+1 is $2^{n+1}-1$ "

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Induction case

Must prove "the maximum number of nodes in a tree of height n+1 is $2^{n+1}-1$ " assuming

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Induction case

Must prove "the maximum number of nodes in a tree of height n+1 is $2^{n+1}-1$ "

assuming

"the maximum number of nodes in a tree of height n is $2^{n} \cdot I$ " as the inductive hypothesis.

Prove (12.33) the maximum number of nodes in a tree of height n is 2^{n} -1.

Induction case

Must prove "the maximum number of nodes in a tree of height n+1 is $2^{n+1}-1$ "

assuming

"the maximum number of nodes in a tree of height n is 2ⁿ · I" as the inductive hypothesis.

Proof: A tree height n+1 with the maximum number of nodes must have two children of height n, each with the maximum number of nodes.

By the inductive hypothesis

By the inductive hypothesis I has 2ⁿ-1 nodes

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes.

By the inductive hypothesis I has 2ⁿ-I nodes and r has 2^{n} -1 nodes.

So, including the root node,

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes. So, including the root node,

the total is

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes. So, including the root node, the total is

I + (# in I) + (# in r)

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes. So, including the root node, the total is

I + (# in I) + (# in r) I + (# in I) + (# in r)

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes. So, including the root node, the total is

I + (# in I) + (# in r) = <Ind. hyp.> I + 2ⁿ-I + 2ⁿ-I

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes. So, including the root node, the total is

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes. So, including the root node, the total is

I + (# in I) + (# in r) $= < \ln d . hyp. >$ $I + 2^n - I + 2^n - I$ = < Math > $I + 2 \times 2^n - 2$

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes. So, including the root node, the total is

- - **I** + 2 x 2ⁿ 2
 - <Math>

By the inductive hypothesis I has 2ⁿ-1 nodes and r has 2ⁿ-1 nodes. So, including the root node, the total is

I + (# in I) + (# in r) $= < \ln d h + (\# \text{ in } r)$ $I + 2^n - I + 2^n - I$ = < Math > $I + 2 \times 2^n - 2$ = < Math > $2^{n+1} - I = //$

