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Induction case
Prove (Zi|0<i<n+41:3")=3"T1-1)/2
assuming (Xi |0 <i<n:3")=(3"-1)/2
as the inductive hypothesis.
(Zil0<i<n+1:3)
= (Split off last term)
(Zil0<i<n:3")+3"
= (Inductive hypothesis)
(3" —1)/2+ 3"
= (Math, common denominator)
(3"—1+2-3")/2
= (Math)
(3:3"—1)/2
= (Math)
3 —1)/2 1
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Prove 2n+1 < 2" forn >3
Proof
Base case
2n+1 < 2"
= (Base case,n = 3)
2-3+1<23
= (Math)
7<8 [/
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Induction case
Prove 2(n+1) +1 < 27+!
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Induction case
Prove 2(n+1) +1 < 27+!
assuming 2n+ 1 < 2"

as the inductive hypothesis.
2n—|—1
(Math)
2-2"
> (Inductive hypothesis)
2-(2n+1)
(Math)
2(n+1)+1+2n—1
> (2n—1 is positive for n > 3)
2(n+1)4+1 //



A Logical Approach to Discrete Math

Example of a proof by induction. Consider a currency consisting of
2-cent and 5-cent coins. Show that any amount above 3 cents can be rep-
resented using these coins.

We write P.n in English as

P.n : Some bag of 2-cent and 5-cent coins has the sum n.

Our task is to prove (Vn |4 <n: Pn).
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Prove any amount more than 3 cents is possible using
only 2-cent and 5-cent coins.

Base case
The base case is h=4.

Must prove that you can make 4 cents using only 2-cent
and 5-cent coins.

Use two 2-cent coins. //
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Induction case
Must prove

"n+1 cents is possible with 2-cent and 5-cent coins”

assuming
"n cents is possible with 2-cent and 5-cent coins”

as the inductive hypothesis.
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Case 2
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Case |

You have n cents with at least one 5-cent coin. Remove
one 5-cent coin and replace it with three 2-cent coins.
Now you have n+| cents with only 2-cent and 5-cent
coins.

Case 2

You have no five cent coins. If you have no 5-cents coins,
they must all be 2-cent coins. Because the amount must
be more than three cents, you must have at least two 2-
cent coins. Remove two 2-cent coins and replace them
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Case |

You have n cents with at least one 5-cent coin. Remove
one 5-cent coin and replace it with three 2-cent coins.
Now you have n+| cents with only 2-cent and 5-cent
coins.

Case 2

You have no five cent coins. If you have no 5-cents coins,
they must all be 2-cent coins. Because the amount must
be more than three cents, you must have at least two 2-
cent coins. Remove two 2-cent coins and replace them
with one 5-cent coin. Now you have n+| cents with only
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Case |

You have n cents with at least one 5-cent coin. Remove
one 5-cent coin and replace it with three 2-cent coins.
Now you have n+| cents with only 2-cent and 5-cent
coins.

Case 2

You have no five cent coins. If you have no 5-cents coins,
they must all be 2-cent coins. Because the amount must
be more than three cents, you must have at least two 2-
cent coins. Remove two 2-cent coins and replace them
with one 5-cent coin. Now you have n+| cents with only
2-cent and 5-cent coins. //




A Logical Approach to Discrete Math

(12.11) Definition, b to the power n:

W =1

brtl =b.p"  forn >0
(12.12) b to the power n:

W =1

b =b-b""1  forn>1
(12.13) Definition, factorial:

ol=1

nl=n-(n—-1) forn>0
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Proven!=(Ili|1<i<n:i) forn>0
Proof
Base case
nl=IL|1<i<n:i
= (Base case,n =0)
0l = ([Ii| 1 <i<0:i)
—  ((12.13) and math)
1 = (I1i | false: i)
= ((8.13) Empty range rule)
1=1 //
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Proven!=(Ili|1<i<n:i) forn>0
Induction case

Prove (n+1)!=(ILi|1<i<n+1:i)
assuming n! = (Ili | 1 <i<n:i)

as the inductive hypothesis.
(IL1<i<n+1:i)
= (Split off last term)
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Proven!=(Ili|1<i<n:i) forn>0
Induction case

Prove (n+1)!=(ILi|1<i<n+1:i)
assuming n! = (Ili | 1 <i<n:i)

as the inductive hypothesis.
(IL1<i<n+1:i)
= (Split off last term)
(Mil1<i<n:i)-(n+1)
= (Inductive hypothesis)
n!-(n+41)
—  ((12.13 with n:=n+1, whichis (n41)! = (n+1) - n!)
(n+1)! /1
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A B
The golden ratio is ¢ =A/B
A By definition
A A+B
B A
A 1+B
B A
A - 1
B A/B
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The Golden Ratio

The golden ratio is ¢ =A/B
A By definition
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The Fibonacci sequence

0 | | 2 3 5 8
Fo FI F» F3 F4 Fs Fg
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(12.14) Definition, Fibonacci:
Fp=0, F =1
F,=F, 1+ F, o forn>1
(12.14.1) Definition, Golden Ratio: ¢ = (1++/5)/2~1.618 ¢ = (1 —+/5)/2~ —0.618
(12.15) ¢>=¢+1 and @2 =¢o+1
(12.16) F, < ¢ forn>1
(12.16.1) p""2 < F,, forn > 1
(12.17) Fupym =Fm - Fng1 + F—1 - Fyy forn>0andm > 1



A Logical Approach to Discrete Math

To prove Fibonacci theorems
there are two base cases
and two inductive hypotheses.
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Prove (12.16) F, < q)”_l forn>1
Proof

First base case Second base case

F, < ¢n_1 F, < ¢n—l
= (Basecase,n=1)

= (Base case,n=2)

Fr<¢'™! Py < 927!

= <(121-1‘1‘)> —  ((12.14) and math)
1<¢~ 1+0< ¢

= (Math) _

((12.14.1) and math)
<1 7 1<1.618 /f
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(12.33) The maximum number of nodes in a tree with height n is 2 — 1 for n > 0.
(12.34) The minimum number of nodes in a tree with height n is n for n > 0.
(12.35) (a) The maximum number of leaves in a tree with height n is 271 forn > 0.
(b) The maximum number of internal nodes is 27~ — 1 forn > 0.
(12.36) (a) The minimum number of leaves in a tree with height n 1s 1 for n > 0.
(b) The minimum number of internal nodes is n — 1 forn > 0.

(12.37) Every nonempy complete tree has an odd number of nodes.
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Prove (12.33) the maximum number of nodes in a tree of
height n is 2n-1.

Induction case

Must prove “the maximum number of nodes in a tree of
height n+1 is 2n*1-]”

assuming

“the maximum number of nodes in a tree of

height n is 2n-1” as the inductive hypothesis.

Proof: A tree height n+| with the maximum number of
nodes must have two children of height n, each with the
maximum number of nodes.
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