Mathematical Induction

Mathematical Induction

P.n : $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) = n^2$

Mathematical Induction

P.n : $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) = n^2$

P.1:

Mathematical Induction

P.n : $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) = n^2$

 $P \cdot 1$: 1 = 1²

Mathematical Induction

P.n : $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) = n^2$

 $P \cdot 1 : 1 = 1^2$ *true*

Mathematical Induction

P.n : $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) = n^2$ $P \cdot 1 : 1 = 1^2$ *true P*.2 :

Mathematical Induction

P.n : $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) = n^2$ $P \cdot 1 : 1 = 1^2$ *true* $P \cdot 2$: 1+3=2²

Mathematical Induction

P.n:
$$
(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2
$$

\n*P.1*: $1 = 1^2$ *true*
\n*P.2*: $1 + 3 = 2^2$ *true*

Mathematical Induction

P.n:
$$
(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2
$$

\n*P.1*: $1 = 1^2$ true
\n*P.2*: $1 + 3 = 2^2$ true
\n*P.3*:

Mathematical Induction

$$
P.n: (\Sigma i \mid 1 \leq i \leq n: 2 \cdot i - 1) = n^2
$$

 $P \cdot 1 : 1 = 1^2$ *true* $P \cdot 2: 1+3=2^2$ *true* $P \cdot 3$: 1+3+5 = 3²

Mathematical Induction

P.n:
$$
(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2
$$

 $P \cdot 1 : 1 = 1^2$ *true* $P.2: 1+3=2^2$ *true* $P \cdot 3: 1+3+5=3^2$ *true*

Mathematical Induction

$$
P.n: (\Sigma i \mid 1 \leq i \leq n: 2 \cdot i - 1) = n^2
$$

 $P \cdot 1 : 1 = 1^2$ *true* $P \cdot 2: 1+3=2^2$ *true* $P \cdot 3: 1+3+5=3^2$ *true*

How can you prove *P.n* is true for all $n \geq 1$, not just $1 \leq n \leq 3$?

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general.

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general.

Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general.

Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1.

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1. Then, $P \cdot 1 \wedge (P \cdot 1 \Rightarrow P \cdot 2) \Rightarrow P \cdot 2$

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1. Then, $P \cdot 1 \wedge (P \cdot 1 \Rightarrow P \cdot 2) \Rightarrow P \cdot 2$ $P \cdot 2 \wedge (P \cdot 2 \Rightarrow P \cdot 3) \Rightarrow P \cdot 3$

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1. Then, $P \cdot 1 \wedge (P \cdot 1 \Rightarrow P \cdot 2) \Rightarrow P \cdot 2$ $P \cdot 2 \wedge (P \cdot 2 \Rightarrow P \cdot 3) \Rightarrow P \cdot 3$ $P \cdot 3 \wedge (P \cdot 3 \Rightarrow P \cdot 4) \Rightarrow P \cdot 4$

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1. Then, $P \cdot 1 \wedge (P \cdot 1 \Rightarrow P \cdot 2) \Rightarrow P \cdot 2$ $P \cdot 2 \wedge (P \cdot 2 \Rightarrow P \cdot 3) \Rightarrow P \cdot 3$ $P \cdot 3 \wedge (P \cdot 3 \Rightarrow P \cdot 4) \Rightarrow P \cdot 4$

...

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1. Then, $P \cdot 1 \wedge (P \cdot 1 \Rightarrow P \cdot 2) \Rightarrow P \cdot 2$ $P \cdot 2 \wedge (P \cdot 2 \Rightarrow P \cdot 3) \Rightarrow P \cdot 3$ $P \cdot 3 \wedge (P \cdot 3 \Rightarrow P \cdot 4) \Rightarrow P \cdot 4$

... Conclusion: *P.n* is true for all $n \geq 1$.

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1. Then, $P \cdot 1 \wedge (P \cdot 1 \Rightarrow P \cdot 2) \Rightarrow P \cdot 2$ $P \cdot 2 \wedge (P \cdot 2 \Rightarrow P \cdot 3) \Rightarrow P \cdot 3$ $P \cdot 3 \wedge (P \cdot 3 \Rightarrow P \cdot 4) \Rightarrow P \cdot 4$

...

Conclusion: *P.n* is true for all $n > 1$.

Proving *P.*1 is called the base case.

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1. Then, $P \cdot 1 \wedge (P \cdot 1 \Rightarrow P \cdot 2) \Rightarrow P \cdot 2$ $P \cdot 2 \wedge (P \cdot 2 \Rightarrow P \cdot 3) \Rightarrow P \cdot 3$ $P \cdot 3 \wedge (P \cdot 3 \Rightarrow P \cdot 4) \Rightarrow P \cdot 4$

... Conclusion: *P.n* is true for all $n > 1$.

Proving *P.*1 is called the base case. Proving $P \cdot n \Rightarrow P(n+1)$ by deduction is called the <u>induction case</u>.

Idea: Suppose you could prove $P.n \Rightarrow P(n+1)$ in general. Then you could use (3.77) Modus ponens $p \land (p \Rightarrow q) \Rightarrow q$ as follows:

First prove *P.*1. Then, $P \cdot 1 \wedge (P \cdot 1 \Rightarrow P \cdot 2) \Rightarrow P \cdot 2$ $P \cdot 2 \wedge (P \cdot 2 \Rightarrow P \cdot 3) \Rightarrow P \cdot 3$ $P \cdot 3 \wedge (P \cdot 3 \Rightarrow P \cdot 4) \Rightarrow P \cdot 4$

...

Conclusion: *P.n* is true for all $n > 1$.

Proving *P.*1 is called the base case.

Proving $P \cdot n \Rightarrow P(n+1)$ by deduction is called the <u>induction case</u>. The antecedent *P.n*, which you assume, is called the inductive hypothesis.

Prove
$$
(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2
$$

Prove
$$
(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2
$$

Proof

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* Base case

(Σ*ⁱ* ¹ [≤] *ⁱ* [≤] *ⁿ* : 2 *·i*−1) = *ⁿ*²

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* Base case $(\sum i | 1 \le i \le n : 2 \cdot i - 1) = n^2$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* Base case $(\sum i | 1 \le i \le n : 2 \cdot i - 1) = n^2$ $=$ \langle Base case, *n* = 1 \rangle

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* Base case $(\sum i | 1 \le i \le n : 2 \cdot i - 1) = n^2$ $=$ \langle Base case, *n* = 1 \rangle $(\sum i \mid 1 \leq i \leq 1:2 \cdot i - 1) = 1^2$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* Base case $(\sum i | 1 \le i \le n : 2 \cdot i - 1) = n^2$ $=$ \langle Base case, *n* = 1 \rangle $(\sum i \mid 1 \leq i \leq 1:2 \cdot i - 1) = 1^2$ $=$ $\langle \text{Math} \rangle$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* Base case $(\sum i | 1 \le i \le n : 2 \cdot i - 1) = n^2$ $=$ \langle Base case, *n* = 1 \rangle $(\sum i \mid 1 \leq i \leq 1:2 \cdot i - 1) = 1^2$ $=$ $\langle \text{Math} \rangle$ $2 \cdot 1 - 1 = 1$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* Base case $(\sum i | 1 \le i \le n : 2 \cdot i - 1) = n^2$ $=$ \langle Base case, *n* = 1 \rangle $(\sum i \mid 1 \leq i \leq 1:2 \cdot i - 1) = 1^2$ $=$ $\langle \text{Math} \rangle$ $2 \cdot 1 - 1 = 1$ $=$ $\langle \text{Math} \rangle$

Prove $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ *Proof* Base case $(\sum i | 1 \le i \le n : 2 \cdot i - 1) = n^2$ $=$ \langle Base case, *n* = 1 \rangle $(\sum i \mid 1 \leq i \leq 1:2 \cdot i - 1) = 1^2$ $=$ $\langle \text{Math} \rangle$ $2 \cdot 1 - 1 = 1$ $=$ $\langle \text{Math} \rangle$ $1 = 1$ //

Induction case

Induction case Prove $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ as the inductive hypothesis.

Induction case Prove $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ as the inductive hypothesis. $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$
Induction case

Prove $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$

 $=$ \langle Split off last term \rangle

Induction case

Prove $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$

=
$$
\langle
$$
Split off last term \rangle
 $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) + 2(n + 1) - 1$

Induction case

Prove $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$

$$
= \langle \text{Split off last term} \rangle
$$

- $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i 1) + 2(n+1) 1$
- = ⟨Inductive hypothesis⟩

Induction case

Prove $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$

$$
= \langle \text{Split off last term} \rangle
$$

 $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) + 2(n+1) - 1$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

 $n^2+2(n+1)-1$

= ⟨Math⟩

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$

as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$

$$
= \langle Split\ off\ last\ term \rangle
$$

- $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i 1) + 2(n+1) 1$
- = ⟨Inductive hypothesis⟩

 $n^2+2(n+1)-1$

 $=$ $\langle \text{Math} \rangle$

Induction case

Prove $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$

$$
= \langle \text{Split off last term} \rangle
$$

 $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) + 2(n+1) - 1$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

 $n^2+2(n+1)-1$

$$
= \langle \text{Math} \rangle
$$

$$
n^2 + 2n + 1
$$

Induction case

Prove $(\Sigma i \mid 1 \le i \le n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$

$$
= \langle Split\ off\ last\ term \rangle
$$

- $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i 1) + 2(n+1) 1$
- = ⟨Inductive hypothesis⟩
	- $n^2+2(n+1)-1$
- $=$ $\langle \text{Math} \rangle$
	- $n^2 + 2n + 1$
- $=$ $\langle \text{Math} \rangle$

Induction case

Prove $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1) = (n+1)^2$ assuming $(\Sigma i \mid 1 \le i \le n : 2 \cdot i - 1) = n^2$ as the inductive hypothesis.

 $(\Sigma i \mid 1 \leq i \leq n+1:2 \cdot i-1)$

$$
= \langle Split\ off\ last\ term \rangle
$$

 $(\Sigma i \mid 1 \leq i \leq n : 2 \cdot i - 1) + 2(n+1) - 1$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

 $n^2+2(n+1)-1$

$$
= \frac{\langle \text{Math} \rangle}{n^2 + 2n + 1}
$$

$$
= \langle \text{Math} \rangle
$$

$$
(n+1)^2 / l
$$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof*

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof* Base case

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof* Base case

$$
(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1
$$

Prove
$$
(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1
$$
 for $n \ge 0$
Proof

Base case

$$
(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1
$$

= \langle Base case, $n = 0 \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof*

Base case

$$
(\Sigma i \mid 0 \le i < n : 2^{i}) = 2^{n} - 1
$$

= \langle Base case, $n = 0 \rangle$
 $(\Sigma i \mid 0 \le i < 0 : 2^{i}) = 2^{0} - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof*

Base case

$$
(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1
$$
\n
$$
= \langle \text{Base case}, n = 0 \rangle
$$
\n
$$
(\Sigma i \mid 0 \le i < 0 : 2^i) = 2^0 - 1
$$
\n
$$
= \langle \text{Math} \rangle
$$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof*

Base case

 $(\Sigma i \mid 0 \leq i < n : 2^i) = 2^n - 1$ $=$ \langle Base case, *n* = 0 \rangle $(\Sigma i \mid 0 \leq i < 0: 2^i) = 2^0 - 1$ $=$ $\langle \text{Math} \rangle$ $(\Sigma i | false : 2^i) = 2^0 - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof*

Base case

 $(\Sigma i \mid 0 \leq i < n : 2^i) = 2^n - 1$ $=$ \langle Base case, $n = 0 \rangle$ $(\Sigma i \mid 0 \leq i < 0: 2^i) = 2^0 - 1$ $=$ $\langle \text{Math} \rangle$ $(\Sigma i | false : 2^i) = 2^0 - 1$ $=$ \langle (8.13) Empty range rule, and math \rangle

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ *Proof*

Base case

 $(\Sigma i \mid 0 \leq i < n : 2^i) = 2^n - 1$ $=$ \langle Base case, $n = 0 \rangle$ $(\Sigma i \mid 0 \leq i < 0: 2^i) = 2^0 - 1$ $=$ $\langle \text{Math} \rangle$ $(\Sigma i | false : 2^i) = 2^0 - 1$ $=$ \langle (8.13) Empty range rule, and math \rangle $0 = 0$ //

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis.

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$

= ⟨Split off last term⟩

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$ $=$ \langle Split off last term \rangle

 $(\Sigma i \mid 0 \leq i < n: 2^i) + 2^n$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$

 $=$ \langle Split off last term \rangle $(\Sigma i \mid 0 \leq i < n: 2^i) + 2^n$

= ⟨Inductive hypothesis⟩

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$ $=$ \langle Split off last term \rangle $(\Sigma i \mid 0 \leq i < n: 2^i) + 2^n$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
2^n - 1 + 2^n
$$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$ $=$ \langle Split off last term \rangle $(\Sigma i \mid 0 \leq i < n: 2^i) + 2^n$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
2^n - 1 + 2^n
$$

 $=$ $\langle \text{Math} \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$ $=$ \langle Split off last term \rangle $(\Sigma i \mid 0 \leq i < n: 2^i) + 2^n$ = ⟨Inductive hypothesis⟩ $2^n - 1 + 2^n$

$$
= \langle \mathsf{Math} \rangle
$$

$$
2 \cdot 2^n - 1
$$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$ $=$ \langle Split off last term \rangle $(\Sigma i \mid 0 \leq i < n: 2^i) + 2^n$ = ⟨Inductive hypothesis⟩ $2^n - 1 + 2^n$ $=$ $\langle \text{Math} \rangle$ $2 \cdot 2^n - 1$

 $=$ $\langle \text{Math} \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1: 2^i) = 2^{n+1} - 1$ assuming $(\Sigma i \mid 0 \le i < n : 2^i) = 2^n - 1$ as the inductive hypothesis. $(\Sigma i \mid 0 \leq i < n+1: 2^i)$ $=$ \langle Split off last term \rangle $(\Sigma i \mid 0 \leq i < n: 2^i) + 2^n$ = ⟨Inductive hypothesis⟩ $2^n - 1 + 2^n$ $=$ $\langle \text{Math} \rangle$ $2 \cdot 2^n - 1$ $=$ $\langle \text{Math} \rangle$ $2^{n+1} - 1$ //

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ *Proof*

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ *Proof* Base case

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ *Proof* Base case $(\Sigma i \mid 0 \leq i < n : 3^i) = (3^n - 1)/2$
Prove
$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$
 for $n \ge 0$
Proof

$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$

$$
= \langle \text{Base case}, n = 0 \rangle
$$

Prove
$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$
 for $n \ge 0$
Proof

$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$

=
$$
\langle
$$
Base case, $n = 0$
 $(\Sigma i \mid 0 \le i < 0 : 3^i) = (3^0 - 1)/2$

Prove
$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$
 for $n \ge 0$
Proof

$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$

= $\langle \text{Base case}, n = 0 \rangle$
 $(\Sigma i \mid 0 \le i < 0 : 3^i) = (3^0 - 1)/2$

$$
= \langle \mathrm{Math} \rangle
$$

Prove
$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$
 for $n \ge 0$
Proof

$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$

= $\langle \text{Base case}, n = 0 \rangle$
 $(\Sigma i \mid 0 \le i < 0 : 3^i) = (3^0 - 1)/2$
= $\langle \text{Math} \rangle$
 $(\Sigma i \mid false : 3^i) = (3^0 - 1)/2$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ *Proof*

- $(\Sigma i \mid 0 \leq i < n : 3^i) = (3^n 1)/2$
- $=$ \langle Base case, $n = 0 \rangle$ $(\Sigma i \mid 0 \leq i < 0: 3^i) = (3^0 - 1)/2$
- $=$ $\langle \text{Math} \rangle$ $(\Sigma i | false : 3^i) = (3^0 - 1)/2$
- $=$ \langle (8.13) Empty range rule, and math \rangle

Prove
$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$
 for $n \ge 0$
Proof

$$
(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2
$$

- $=$ \langle Base case, $n = 0 \rangle$ $(\Sigma i \mid 0 \leq i < 0: 3^i) = (3^0 - 1)/2$
- $=$ $\langle \text{Math} \rangle$ $(\Sigma i | false : 3^i) = (3^0 - 1)/2$
- $=$ \langle (8.13) Empty range rule, and math \rangle $0 = 0$ //

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

 $(\sum i \mid 0 \leq i < n+1:3^i)$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis. $(\sum i \mid 0 \leq i < n+1:3^i)$

 $=$ \langle Split off last term \rangle

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis. $(\sum i \mid 0 \leq i < n+1:3^i)$ $=$ \langle Split off last term \rangle

 $(\Sigma i \mid 0 \leq i < n : 3^i) + 3^n$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

 $(\sum i \mid 0 \leq i < n+1:3^i)$

$$
= \langle \text{Split off last term} \rangle
$$

$$
(\Sigma i \mid 0 \le i < n : 3^i) + 3^n
$$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

 $(\sum i \mid 0 \leq i < n+1:3^i)$

$$
= \langle \text{Split off last term} \rangle
$$

$$
(\Sigma i \mid 0 \le i < n : 3^i) + 3^n
$$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
(3^n - 1)/2 + 3^n
$$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

 $(\sum i \mid 0 \leq i < n+1:3^i)$

$$
= \langle \text{Split off last term} \rangle
$$

$$
(\Sigma i \mid 0 \le i < n : 3^i) + 3^n
$$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
(3n - 1)/2 + 3n
$$

= ⟨Math, common denominator⟩

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

 $(\sum i \mid 0 \leq i < n+1:3^i)$

$$
= \langle \text{Split off last term} \rangle
$$

$$
(\Sigma i \mid 0 \le i < n : 3^i) + 3^n
$$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
(3n - 1)/2 + 3n
$$

= ⟨Math, common denominator⟩ $(3^n - 1 + 2 \cdot 3^n)/2$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$

Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

 $(\sum i \mid 0 \leq i < n+1:3^i)$

$$
= \langle \text{Split off last term} \rangle
$$

$$
(\Sigma i \mid 0 \le i < n : 3^i) + 3^n
$$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
(3n - 1)/2 + 3n
$$

- $\langle \text{Math, common denominator} \rangle$ $(3^n - 1 + 2 \cdot 3^n)/2$
- $=$ $\langle \text{Math} \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

$$
(\Sigma i \mid 0 \leq i < n+1:3^i)
$$

=
$$
\langle \text{Split off last term} \rangle
$$

 $(\Sigma i \mid 0 \le i < n : 3^i) + 3^n$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
(3n - 1)/2 + 3n
$$

= ⟨Math, common denominator⟩ $(3^n - 1 + 2 \cdot 3^n)/2$

$$
= \langle \text{Math} \rangle
$$

$$
(3 \cdot 3^n - 1)/2
$$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$

as the inductive hypothesis.

 $(\sum i \mid 0 \leq i < n+1:3^i)$

$$
= \langle \text{Split off last term} \rangle
$$

$$
(\Sigma i \mid 0 \le i < n : 3^i) + 3^n
$$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
(3n - 1)/2 + 3n
$$

- $=$ $\langle \text{Math, common denominator} \rangle$ $(3^n - 1 + 2 \cdot 3^n)/2$
- $=$ $\langle \text{Math} \rangle$ $(3 \cdot 3^n - 1)/2$ $=$ $\langle \text{Math} \rangle$

Prove $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ for $n \ge 0$ Induction case

Prove $(\Sigma i \mid 0 \le i < n+1:3^i) = (3^{n+1} - 1)/2$ assuming $(\Sigma i \mid 0 \le i < n : 3^i) = (3^n - 1)/2$ as the inductive hypothesis.

$$
(\Sigma i \mid 0 \leq i < n+1:3^i)
$$

$$
= \langle \text{Split off last term} \rangle
$$

$$
(\Sigma i \mid 0 \le i < n : 3^i) + 3^n
$$

$$
= \langle \text{Inductive hypothesis} \rangle
$$

$$
(3n - 1)/2 + 3n
$$

= ⟨Math, common denominator⟩ $(3^n - 1 + 2 \cdot 3^n)/2$

$$
= \langle \text{Math} \rangle
$$

\n
$$
(3 \cdot 3^{n} - 1)/2
$$

\n
$$
= \langle \text{Math} \rangle
$$

\n
$$
(3^{n+1} - 1)/2 \quad \text{if}
$$

Prove $2n+1 < 2^n$ for $n \ge 3$

Prove $2n+1 < 2^n$ for $n \geq 3$ *Proof*

Prove $2n+1 < 2^n$ for $n \geq 3$ *Proof* Base case

Prove $2n+1 < 2^n$ for $n \ge 3$ *Proof* Base case $2n+1 < 2^n$

Prove $2n + 1 < 2^n$ for $n > 3$ *Proof* Base case $2n+1 < 2^n$ $= \langle \text{Base case}, n = 3 \rangle$

Prove $2n + 1 < 2^n$ for $n > 3$ *Proof* Base case $2n+1 < 2^n$ $= \langle \text{Base case}, n = 3 \rangle$ $2 \cdot 3 + 1 < 2^3$

Prove $2n+1 < 2^n$ for $n \geq 3$ *Proof* Base case $2n+1 < 2^n$ $=$ \langle Base case, *n* = 3 \rangle $2 \cdot 3 + 1 < 2^3$ $=$ $\langle \text{Math} \rangle$

Prove $2n+1 < 2^n$ for $n \geq 3$ *Proof* Base case $2n+1 < 2^n$ $=$ \langle Base case, *n* = 3 \rangle $2 \cdot 3 + 1 < 2^3$ $=$ $\langle \text{Math} \rangle$ $7 < 8$ //

Induction case

Induction case Prove $2(n+1) + 1 < 2^{n+1}$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis.

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1}

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1} $=$ $\langle \text{Math} \rangle$
Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1} $=$ $\langle \text{Math} \rangle$

> ⟨Inductive hypothesis⟩

 $2 \cdot 2^n$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1}

$$
= \langle \text{Math} \rangle
$$

2 \cdot 2ⁿ

> ⟨Inductive hypothesis⟩

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1}

$$
= \langle \text{Math} \rangle
$$

2 \cdot 2ⁿ

> ⟨Inductive hypothesis⟩ $2 \cdot (2n+1)$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1}

$$
= \langle \text{Math} \rangle
$$

2 \cdot 2ⁿ

> ⟨Inductive hypothesis⟩

$$
2\cdot(2n+1)
$$

 $=$ $\langle \text{Math} \rangle$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1}

 $=$ $\langle \text{Math} \rangle$ $2 \cdot 2^n$

> ⟨Inductive hypothesis⟩ $2 \cdot (2n+1)$ $=$ $\langle \text{Math} \rangle$ $2(n+1) + 1 + 2n - 1$

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1}

 $=$ $\langle \text{Math} \rangle$ $2 \cdot 2^n$

- *>* ⟨Inductive hypothesis⟩ $2 \cdot (2n+1)$ $=$ $\langle \text{Math} \rangle$
	- $2(n+1) + 1 + 2n 1$
- *>* ⟨2*n*−1 is positive for *n* ≥ 3⟩

Induction case Prove $2(n+1) + 1 < 2^{n+1}$ assuming $2n+1 < 2^n$ as the inductive hypothesis. 2^{n+1}

 $=$ $\langle \text{Math} \rangle$ $2 \cdot 2^n$

- *>* ⟨Inductive hypothesis⟩ $2 \cdot (2n+1)$
- $=$ $\langle \text{Math} \rangle$
	- $2(n+1) + 1 + 2n 1$
- *>* ⟨2*n*−1 is positive for *n* ≥ 3⟩ $2(n+1) + 1$ //

Example of a proof by induction. Consider a currency consisting of 2-cent and 5-cent coins. Show that any amount above 3 cents can be represented using these coins.

We write $P.n$ in English as

 $P.n$: Some bag of 2-cent and 5-cent coins has the sum n.

Our task is to prove $(\forall n \mid 4 \leq n : P.n)$.

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

Base case

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

Base case The base case is n=4.

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

Base case The base case is n=4.

Must prove that you can make 4 cents using only 2-cent and 5-cent coins.

Prove any amount more than 3 cents is possible using only 2-cent and 5-cent coins.

Base case The base case is n=4.

Must prove that you can make 4 cents using only 2-cent and 5-cent coins.

Use two 2-cent coins. //

Induction case

Induction case Must prove

- Induction case
- Must prove
- "n+1 cents is possible with 2-cent and 5-cent coins"

- Induction case
- Must prove
- "n+1 cents is possible with 2-cent and 5-cent coins" assuming

- Induction case
- Must prove
- "n+1 cents is possible with 2-cent and 5-cent coins" assuming
- "n cents is possible with 2-cent and 5-cent coins"

- Induction case
- Must prove
- "n+1 cents is possible with 2-cent and 5-cent coins" assuming
- "n cents is possible with 2-cent and 5-cent coins" as the inductive hypothesis.

You have n cents with at least one 5-cent coin. Remove

Case 1

You have n cents with at least one 5-cent coin. Remove

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins.

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins,

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must be more than three cents, you must have at least two 2-

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must be more than three cents, you must have at least two 2 cent coins. Remove two 2-cent coins and replace them

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must be more than three cents, you must have at least two 2 cent coins. Remove two 2-cent coins and replace them with one 5-cent coin. Now you have n+1 cents with only

Case 1

You have n cents with at least one 5-cent coin. Remove one 5-cent coin and replace it with three 2-cent coins. Now you have n+1 cents with only 2-cent and 5-cent coins.

Case 2

You have no five cent coins. If you have no 5-cents coins, they must all be 2-cent coins. Because the amount must be more than three cents, you must have at least two 2 cent coins. Remove two 2-cent coins and replace them with one 5-cent coin. Now you have n+1 cents with only 2-cent and 5-cent coins. //

A Logical Approach to Discrete Math (*n*: N : (*i* 0 ⌅ *i < n* : *P.i*) ⌃ *P.n*) ⌃ (*n*: N : *P.n*)

- (12.11) Definition, *b* to the power *n*: $b^{0} = 1$ $b^{n+1} = b \cdot b^n$ for $n \geq 0$ (12.12) *b* to the power *n*: $b^0 = 1$ $b^n = b \cdot b^{n-1}$ for $n \ge 1$ (12.13) Definition, factorial: $0! = 1$
	- $n! = n \cdot (n-1)!$ for $n > 0$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof*

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case $n! = (\Pi i \mid 1 \le i \le n : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case $n! = (\Pi i \mid 1 \le i \le n : i)$ $=$ \langle Base case, $n = 0 \rangle$
Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case $n! = (\Pi i \mid 1 \le i \le n : i)$ $=$ \langle Base case, $n = 0 \rangle$ $0! = (\Pi i \mid 1 \leq i \leq 0 : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case $n! = (\Pi i \mid 1 \le i \le n : i)$ $=$ \langle Base case, $n = 0 \rangle$ $0! = (\Pi i \mid 1 \leq i \leq 0 : i)$ $=$ \langle (12.13) and math \rangle

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case $n! = (\Pi i \mid 1 \le i \le n : i)$ $=$ \langle Base case, $n = 0 \rangle$ $0! = (\Pi i \mid 1 \leq i \leq 0 : i)$ $=$ \langle (12.13) and math \rangle $1 = (\Pi i \mid false : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case $n! = (\Pi i \mid 1 \le i \le n : i)$ $=$ \langle Base case, $n = 0 \rangle$ $0! = (\Pi i \mid 1 \leq i \leq 0 : i)$ $=$ \langle (12.13) and math \rangle $1 = (\Pi i \mid false : i)$ $=$ \langle (8.13) Empty range rule \rangle

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ *Proof* Base case $n! = (\Pi i \mid 1 \le i \le n : i)$ $=$ \langle Base case, $n = 0 \rangle$ $0! = (\Pi i \mid 1 \leq i \leq 0 : i)$ $=$ \langle (12.13) and math \rangle $1 = (\Pi i \mid false : i)$ $=$ \langle (8.13) Empty range rule \rangle $1 = 1$ //

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Induction case

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Induction case Prove $(n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Induction case Prove $(n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)$ assuming $n! = (\Pi i \mid 1 \le i \le n : i)$

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Induction case Prove $(n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)$ assuming $n! = (\Pi i \mid 1 \le i \le n : i)$ as the inductive hypothesis.

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0Induction case
Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)assuming n! = (\Pi i \mid 1 \le i \le n : i)as the inductive hypothesis.
    (\Pi i \mid 1 \leq i \leq n+1 : i)
```

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0Induction case
Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)assuming n! = (\Pi i \mid 1 \le i \le n : i)as the inductive hypothesis.
    (\Pi i \mid 1 \leq i \leq n+1 : i)
```

```
= \langleSplit off last term\rangle
```

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0Induction case
Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)assuming n! = (\Pi i \mid 1 \le i \le n : i)as the inductive hypothesis.
    (\Pi i \mid 1 \leq i \leq n+1 : i)
```

$$
= \langle \text{Split off last term} \rangle
$$

$$
(\Pi i \mid 1 \le i \le n : i) \cdot (n+1)
$$

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0Induction case
Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)assuming n! = (\Pi i \mid 1 \le i \le n : i)as the inductive hypothesis.
    (\Pi i \mid 1 \leq i \leq n+1 : i)
```
- $=$ \langle Split off last term \rangle $(\Pi i \mid 1 \leq i \leq n : i) \cdot (n+1)$
- = ⟨Inductive hypothesis⟩

Prove $n! = (\Pi i \mid 1 \le i \le n : i)$ for $n \ge 0$ Induction case Prove $(n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)$ assuming $n! = (\Pi i \mid 1 \le i \le n : i)$ as the inductive hypothesis. $(\Pi i \mid 1 \leq i \leq n+1 : i)$

- $=$ \langle Split off last term \rangle $(\Pi i \mid 1 \leq i \leq n : i) \cdot (n+1)$
- = ⟨Inductive hypothesis⟩ $n! \cdot (n+1)$

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0Induction case
Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)assuming n! = (\Pi i \mid 1 \le i \le n : i)as the inductive hypothesis.
    (\Pi i \mid 1 \leq i \leq n+1 : i)
```
- $=$ \langle Split off last term \rangle $(\Pi i \mid 1 \leq i \leq n : i) \cdot (n+1)$
- $=$ \langle Inductive hypothesis \rangle $n! \cdot (n+1)$
- $=$ $\langle (12.13 \text{ with } n := n+1, \text{ which is } (n+1)! = (n+1) \cdot n! \rangle$

```
Prove n! = (\Pi i \mid 1 \le i \le n : i) for n \ge 0Induction case
Prove (n+1)! = (\Pi i \mid 1 \le i \le n+1 : i)assuming n! = (\Pi i \mid 1 \le i \le n : i)as the inductive hypothesis.
    (\Pi i \mid 1 \leq i \leq n+1 : i)
```
- $=$ \langle Split off last term \rangle $(\Pi i \mid 1 \leq i \leq n : i) \cdot (n+1)$
- $=$ \langle Inductive hypothesis \rangle $n! \cdot (n+1)$
- $=$ $\langle (12.13 \text{ with } n := n+1, \text{ which is } (n+1)! = (n+1) \cdot n! \rangle$ $(n+1)!$ //

The Golden Ratio

The Golden Ratio

$$
\frac{A}{B} = \frac{A+B}{A}
$$

The Golden Ratio

$$
\frac{A}{B} = \frac{A+B}{A}
$$

$$
A \qquad A \qquad B
$$

$$
\frac{1}{B} = 1 + \frac{2}{A}
$$

The Golden Ratio

$$
\frac{A}{B} = \frac{A+B}{A}
$$

$$
\frac{A}{B} = 1 + \frac{B}{A}
$$

$$
\frac{A}{B} = 1 + \frac{1}{A/B}
$$

The Golden Ratio

$$
\frac{A}{B} = \frac{A+B}{A}
$$

$$
\frac{A}{B} = 1 + \frac{B}{A}
$$

$$
\frac{A}{B} = 1 + \frac{1}{A/B}
$$

$$
\phi=1+\frac{1}{\phi}
$$

$$
\phi=1+\frac{1}{\phi}
$$

$$
\phi = 1 + \frac{1}{\phi}
$$

$$
\phi^2 = \phi + 1
$$

$$
\phi = 1 + \frac{1}{\phi}
$$

$$
\phi^2 = \phi + 1
$$

$$
\phi^2 - \phi - 1 = 0
$$

$$
\phi = 1 + \frac{1}{\phi}
$$

\n
$$
\phi^2 = \phi + 1
$$

\n
$$
\phi^2 - \phi - 1 = 0
$$

\n
$$
\phi = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)}
$$

$$
\phi = 1 + \frac{1}{\phi}
$$
\n
$$
\phi^2 = \phi + 1
$$
\n
$$
\phi^2 - \phi - 1 = 0
$$
\n
$$
\phi = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)}
$$
\n
$$
\phi = \frac{1 \pm \sqrt{5}}{2}
$$

The Fibonacci sequence

0 1 1 2 3 5 8 F_0 F_1 F_2 F_3 F_4 F_5 F_6

(12.14) Definition, Fibonacci:

$$
F_0 = 0
$$
, $F_1 = 1$
\n $F_n = F_{n-1} + F_{n-2}$ for $n > 1$

(12.14.1) **Definition, Golden Ratio:** $\phi = (1 + \sqrt{5})/2 \approx 1.618$ $\hat{\phi} = (1 - \sqrt{5})/2 \approx -0.618$ (12.15) $\phi^2 = \phi + 1$ and $\hat{\phi}^2 = \hat{\phi} + 1$ (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ $(12.16.1)$ $\phi^{n-2} \leq F_n$ for $n \geq 1$ $F_{n+m} = F_m \cdot F_{n+1} + F_{m-1} \cdot F_n$ for $n \ge 0$ and $m \ge 1$

To prove Fibonacci theorems there are two base cases and two inductive hypotheses.
Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof*

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* First base case

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* First base case $F_n \leq \phi^{n-1}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $= \langle \text{Base case}, n = 1 \rangle$

F1 < φ1−1
F1 < φ1−1
F1 < φ1−1

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 \leq \phi^{1-1}$

 $=$ $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 \leq \phi^{1-1}$ $=$ $\langle (12.14) \rangle$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $= \langle \text{Base case}, n = 1 \rangle$ $F_1 \leq \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $= \langle \text{Base case}, n = 1 \rangle$ $F_1 < \phi^{1-1}$ $=$ $\langle (12.14) \rangle$ $1 < \phi^{1-1}$

 $= \langle \text{Math} \rangle$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 \leq \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $=$ $\langle \text{Math} \rangle$ $1 \leq 1$ //

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $= \langle \text{Base case}, n = 1 \rangle$ $F_1 \leq \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $=$ $\langle \text{Math} \rangle$ $1 \leq 1$ //

Second base case

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $= \langle \text{Base case}, n = 1 \rangle$ $F_1 \leq \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $=$ $\langle \text{Math} \rangle$ $1 \leq 1$ //

Second base case $F_n \leq \phi^{n-1}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 < \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $= \langle \text{Math} \rangle$ $1 < 1$ //

Second base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 2 \rangle

Prove (12.16) $F_n < \phi^{n-1}$ for $n > 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 < \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $= \langle \text{Math} \rangle$ $1 < 1$ //

Second base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 2 \rangle $F_2 < \phi^{2-1}$

Prove (12.16) $F_n < \phi^{n-1}$ for $n > 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 < \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $= \langle \text{Math} \rangle$ $1 < 1$ //

Second base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 2 \rangle $F_2 < \phi^{2-1}$ $=$ \langle (12.14) and math \rangle

Prove (12.16) $F_n < \phi^{n-1}$ for $n > 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 < \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $= \langle \text{Math} \rangle$ $1 < 1$ //

Second base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 2 \rangle $F_2 < \phi^{2-1}$ $=$ \langle (12.14) and math \rangle $1+0 \leq \phi$

Prove (12.16) $F_n < \phi^{n-1}$ for $n > 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 < \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $= \langle \text{Math} \rangle$ $1 < 1$ //

Second base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 2 \rangle $F_2 < \phi^{2-1}$ $=$ \langle (12.14) and math \rangle $1+0 \leq \phi$ $=$ \langle (12.14.1) and math \rangle

Prove (12.16) $F_n < \phi^{n-1}$ for $n > 1$ *Proof* First base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 1 \rangle $F_1 < \phi^{1-1}$ $=$ \langle (12.14) \rangle $1 < \phi^{1-1}$ $= \langle \text{Math} \rangle$ $1 < 1$ //

Second base case $F_n \leq \phi^{n-1}$ $=$ \langle Base case, *n* = 2 \rangle $F_2 < \phi^{2-1}$ $=$ \langle (12.14) and math \rangle $1+0 \leq \phi$ $=$ \langle (12.14.1) and math \rangle $1 < 1.618$ //

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ Induction case

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses.

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $n+1$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n \geq 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ \langle (12.14) with $n := n + 1 \rangle$

Prove (12.16) $F_n < \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ \langle (12.14) with $n := n + 1 \rangle$ $F_n + F_{n-1}$

Prove (12.16) $F_n < \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ $\langle (12.14) \text{ with } n := n + 1 \rangle$ $F_n + F_{n-1}$ \leq \langle Inductive hypotheses \rangle

Prove (12.16) $F_n < \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ $\langle (12.14) \text{ with } n := n + 1 \rangle$ $F_n + F_{n-1}$ \leq \langle Inductive hypotheses \rangle $\phi^{n-1} + \phi^{n-2}$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ \langle (12.14) with $n := n + 1 \rangle$ $F_n + F_{n-1}$ \leq \langle Inductive hypotheses \rangle $\phi^{n-1} + \phi^{n-2}$ ⁼ ⟨Math, factor out ^φ*n*−2⟩

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ \langle (12.14) with *n* := *n* + 1) $F_n + F_{n-1}$ \leq \langle Inductive hypotheses \rangle $\phi^{n-1} + \phi^{n-2}$ ⁼ ⟨Math, factor out ^φ*n*−2⟩ $\phi^{n-2}(\phi+1)$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ \langle (12.14) with $n := n + 1 \rangle$ $F_n + F_{n-1}$ \leq \langle Inductive hypotheses \rangle $\phi^{n-1} + \phi^{n-2}$ ⁼ ⟨Math, factor out ^φ*n*−2⟩ $\phi^{n-2}(\phi + 1)$ $=$ \langle (12.15) \rangle

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ \langle (12.14) with $n := n + 1 \rangle$ $F_n + F_{n-1}$ \leq \langle Inductive hypotheses \rangle $\phi^{n-1} + \phi^{n-2}$ ⁼ ⟨Math, factor out ^φ*n*−2⟩ $\phi^{n-2}(\phi + 1)$ $=$ \langle (12.15) \rangle $\phi^{n-2} \cdot \phi^2$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ \langle (12.14) with $n := n + 1 \rangle$ $F_n + F_{n-1}$ \leq \langle Inductive hypotheses \rangle $\phi^{n-1} + \phi^{n-2}$ ⁼ ⟨Math, factor out ^φ*n*−2⟩ $\phi^{n-2}(\phi + 1)$ $=$ \langle (12.15) \rangle $\phi^{n-2} \cdot \phi^2$ $=$ $\langle \text{Math} \rangle$

Prove (12.16) $F_n \leq \phi^{n-1}$ for $n > 1$ Induction case Prove $F_{n+1} \leq \phi^{(n+1)-1}$ assuming $F_n \leq \phi^{n-1}$ and $F_{n-1} \leq \phi^{(n-1)-1}$ as the inductive hypotheses. F_{n+1} $=$ $\langle (12.14) \text{ with } n := n + 1 \rangle$ $F_n + F_{n-1}$ \leq \langle Inductive hypotheses \rangle $\phi^{n-1} + \phi^{n-2}$ ⁼ ⟨Math, factor out ^φ*n*−2⟩ $\phi^{n-2}(\phi + 1)$ $=$ \langle (12.15) \rangle $\phi^{n-2} \cdot \phi^2$ $=$ $\langle \text{Math} \rangle$ $\phi^{(n+1)-1}$ //

A Logical Approach to Discrete Math (12.16.1) ^φ*n*−² [≤] *Fn* for *ⁿ* [≥] ¹ **↑ Logical Approach to Discrete Math**

Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

/0 is a binary tree, called the empty tree. (d, l, r) is a binary tree, for $d: \mathbb{Z}$ and l, r binary trees.

#(*d,l,r*) = 1+#*l* +#*r* Ø

A Logical Approach to Discrete Math (12.16.1) ^φ*n*−² [≤] *Fn* for *ⁿ* [≥] ¹

Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

/0 is a binary tree, called the empty tree. (d, l, r) is a binary tree, for $d: \mathbb{Z}$ and l, r binary trees.

$$
(5, \emptyset, \emptyset)
$$

A Logical Approach to Discrete Math (12.16.1) ^φ*n*−² [≤] *Fn* for *ⁿ* [≥] ¹ **↑ Logical Approach to Discrete Math**

Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

/0 is a binary tree, called the empty tree. (d, l, r) is a binary tree, for $d: \mathbb{Z}$ and l, r binary trees.

#(*d,l,r*) = 1+#*l* +#*r* 5 (5, Ø, (3, Ø, Ø))
A Logical Approach to Discrete Math (12.16.1) ^φ*n*−² [≤] *Fn* for *ⁿ* [≥] ¹ **↑ Logical Approach to Discrete Math**

Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

/0 is a binary tree, called the empty tree. (d, l, r) is a binary tree, for $d: \mathbb{Z}$ and l, r binary trees.

$(5, (12, \emptyset, \emptyset), (3, (4, \emptyset, \emptyset), \emptyset))$

A Logical Approach to Discrete Math (*d,l,r*) is a binary tree, for *d*: Z and *l*, *r* binary trees.

(12.31) **Definition, Number of Nodes:**

 $\#$ ₀ = 0

 $#(d,l,r) = 1 + Hl + Fr$

(12.32) **Definition, Height:**

 $height \space 0 = 0$ $height.(d, l, r) = 1 + max(height.1, height.r)$

(12.32.1) **Definition, Leaf:** A leaf is a node with no children (i.e. two empty subtrees).

(12.33) The maximum number of nodes in a tree with height *ⁿ* is ²*ⁿ* [−]¹ for *ⁿ* [≥] ⁰.

(12.32.2) **Definition, Internal node:** An internal node is a node that is not a leaf.

(12.32.3) **Definition, Complete:** A binary tree is complete if every node has either 0 or 2 children.

 (5) $(5, \emptyset, \emptyset)$ (12.35) (a) The maximum number of leaves in a tree with height *n* is 2*n*−¹ for *n >* 0.

A Logical Approach to Discrete Math (*d,l,r*) is a binary tree, for *d*: Z and *l*, *r* binary trees.

(12.31) **Definition, Number of Nodes:**

 $\#$ ₀ = 0

 $#(d,l,r) = 1 + Hl + Fr$

(12.32) **Definition, Height:**

 $height \space 0 = 0$ $height.(d, l, r) = 1 + max(height.1, height.r)$

(12.32.1) **Definition, Leaf:** A leaf is a node with no children (i.e. two empty subtrees).

(12.32.2) **Definition, Internal node:** An internal node is a node that is not a leaf.

(12.32.3) **Definition, Complete:** A binary tree is complete if every node has either

0 or 2 children.

(5) $(5, \emptyset, (3, \emptyset, \emptyset))$

A Logical Approach to Discrete Math (*d,l,r*) is a binary tree, for *d*: Z and *l*, *r* binary trees.

(12.31) **Definition, Number of Nodes:**

 $\#$ ₀ = 0

 $#(d,l,r) = 1 + Hl + Fr$

(12.32) **Definition, Height:**

 $height \space 0 = 0$ $height.(d, l, r) = 1 + max(height.1, height.r)$

(12.32.1) **Definition, Leaf:** A leaf is a node with no children (i.e. two empty subtrees).

(12.32.2) **Definition, Internal node:** An internal node is a node that is not a leaf.

(12.32.3) **Definition, Complete:** A binary tree is complete if every node has either

0 or 2 children.

A Logical Approach to Discrete Math $\sum_{i=1}^{n}$

- (12.33) The maximum number of nodes in a tree with height *n* is $2^n 1$ for $n \ge 0$. (12.34) The minimum number of nodes in a tree with height *n* is *n* for $n \ge 0$. (12.35) (a) The maximum number of leaves in a tree with height *n* is 2^{n-1} for $n > 0$. (b) The maximum number of internal nodes is $2^{n-1} - 1$ for $n > 0$. (12.36) (a) The minimum number of leaves in a tree with height *n* is 1 for $n > 0$. (b) The minimum number of internal nodes is $n - 1$ for $n > 0$.
- (12.37) Every nonempy complete tree has an odd number of nodes.

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -I.

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -I.

Base case

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -1.

Base case (a) The empty tree has zero nodes.

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -1.

Base case (a) The empty tree has zero nodes. (b) $2^0 - 1 = 0$ //

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -I.

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -I.

Induction case

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -1.

Induction case

Must prove "the maximum number of nodes in a tree of height $n+1$ is $2^{n+1}-1$ "

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -1.

Induction case

Must prove "the maximum number of nodes in a tree of height $n+1$ is $2^{n+1}-1$ " assuming

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -1.

Induction case

Must prove "the maximum number of nodes in a tree of height $n+1$ is $2^{n+1}-1$ "

assuming

"the maximum number of nodes in a tree of height n is $2ⁿ$ - l" as the inductive hypothesis.

Prove (12.33) the maximum number of nodes in a tree of height n is $2ⁿ$ -1.

Induction case

Must prove "the maximum number of nodes in a tree of height $n+1$ is $2^{n+1}-1$ "

assuming

"the maximum number of nodes in a tree of height n is $2ⁿ$ - l" as the inductive hypothesis.

Proof: A tree height n+1 with the maximum number of nodes must have two children of height n, each with the maximum number of nodes.

By the inductive hypothesis

By the inductive hypothesis l has 2n-1 nodes

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes.

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node,

- By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node,
- the total is

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node, the total is

1+ (# in 1) + (# in r)

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node, the total is

1+ (# in 1) + (# in r) \leq Ind. hyp. $>$

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node, the total is

1+ (# in 1) + (# in r) \leq Ind. hyp. $>$ $1+ 2ⁿ - 1 + 2ⁿ - 1$

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node, the total is

1+ (# in 1) + (# in r) \leq Ind. hyp. $>$ $1+ 2ⁿ - 1 + 2ⁿ - 1$ $<$ Math $>$

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node, the total is

1+ (# in 1) + (# in r) \leq Ind. hyp. $>$ $1+ 2ⁿ - 1 + 2ⁿ - 1$ $<$ Math $>$ $1 + 2 \times 2^n - 2$

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node, the total is

1+ (# in 1) + (# in r) \leq Ind. hyp. $>$ $1+ 2ⁿ - 1 + 2ⁿ - 1$ $<$ Math $>$ $1 + 2 \times 2^n - 2$

 $<$ Math $>$

By the inductive hypothesis l has 2n-1 nodes and r has 2n-1 nodes. So, including the root node, the total is

1+ (# in 1) + (# in r) \leq Ind. hyp. \geq $1+ 2ⁿ - 1 + 2ⁿ - 1$ $<$ Math $>$ $1 + 2 \times 2^n - 2$ = <Math> $2n+1$ | 11

