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P.n : (Σi 1 ≤ i ≤ n : 2 · i−1) = n2

P.1 : 1 = 12 true
P.2 : 1+3 = 22 true
P.3 : 1+3+5 = 32 true

How can you prove P.n is true for all n ≥ 1, not just 1 ≤ n ≤ 3?

Idea: Suppose you could prove P.n ⇒ P(n+1) in general.
Then you could use (3.77) Modus ponens p∧ (p ⇒ q)⇒ q as follows:

First prove P.1.
Then,
P.1∧ (P.1 ⇒ P.2)⇒ P.2
P.2∧ (P.2 ⇒ P.3)⇒ P.3
P.3∧ (P.3 ⇒ P.4)⇒ P.4
...
Conclusion: P.n is true for all n ≥ 1.

Proving P.1 is called the base case.
Proving P.n ⇒ P(n+1) by deduction is called the induction case.
The antecedent P.n, which you assume, is called the inductive hypothesis.
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Prove (Σi 1 ≤ i ≤ n : 2 · i−1) = n2

Proof
Base case

(Σi 1 ≤ i ≤ n : 2 · i−1) = n2

= ⟨Base case, n = 1⟩
(Σi 1 ≤ i ≤ 1 : 2 · i−1) = 12

= ⟨Math⟩
2 ·1−1 = 1

= ⟨Math⟩
1 = 1 //
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How can you prove P.n is true for all n ≥ 1, not just 1 ≤ n ≤ 3?

Idea: Suppose you could prove P.n ⇒ P(n+1) in general.
Then you could use (3.77) Modus ponens p∧ (p ⇒ q)⇒ q as follows:

First prove P.1.
Then,
P.1∧ (P.1 ⇒ P.2)⇒ P.2
P.2∧ (P.2 ⇒ P.3)⇒ P.3
P.3∧ (P.3 ⇒ P.4)⇒ P.4
...
Conclusion: P.n is true for all n ≥ 1.

Proving P.1 is called the base case.
Proving P.n ⇒ P(n+1) by deduction is called the induction case.
The antecedent P.n, which you assume, is called the inductive hypothesis.
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Induction case
Prove (Σi 1 ≤ i ≤ n+1 : 2 · i−1) = (n+1)2

assuming (Σi 1 ≤ i ≤ n : 2 · i−1) = n2

as the inductive hypothesis.
(Σi 1 ≤ i ≤ n+1 : 2 · i−1)

= ⟨Split off last term⟩
(Σi 1 ≤ i ≤ n : 2 · i−1)+2(n+1)−1

= ⟨Inductive hypothesis⟩
n2 +2(n+1)−1

= ⟨Math⟩
n2 +2n+1

= ⟨Math⟩
(n+1)2 //
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Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //
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Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

31

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 2i) = 2n −1
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 2i) = 20 −1
= ⟨Math⟩

(Σi f alse : 2i) = 20 −1
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 2i) = 2n −1 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 2i) = 2n+1 −1
assuming (Σi 0 ≤ i < n : 2i) = 2n −1
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 2i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 2i)+2n

= ⟨Inductive hypothesis⟩
2n −1+2n

= ⟨Math⟩
2 ·2n −1

= ⟨Math⟩
2n+1 −1 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

32

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Proof
Base case

(Σi 0 ≤ i < n : 3i) = (3n −1)/2
= ⟨Base case, n = 0⟩

(Σi 0 ≤ i < 0 : 3i) = (30 −1)/2
= ⟨Math⟩

(Σi f alse : 3i) = (30 −1)/2
= ⟨(8.13) Empty range rule, and math⟩

0 = 0 //

Prove (Σi 0 ≤ i < n : 3i) = (3n −1)/2 for n ≥ 0
Induction case
Prove (Σi 0 ≤ i < n+1 : 3i) = (3n+1 −1)/2
assuming (Σi 0 ≤ i < n : 3i) = (3n −1)/2
as the inductive hypothesis.

(Σi 0 ≤ i < n+1 : 3i)

= ⟨Split off last term⟩
(Σi 0 ≤ i < n : 3i)+3n

= ⟨Inductive hypothesis⟩
(3n −1)/2+3n

= ⟨Math, common denominator⟩
(3n −1+2 ·3n)/2

= ⟨Math⟩
(3 ·3n −1)/2

= ⟨Math⟩
(3n+1 −1)/2 //



A Logical Approach to Discrete Math

33

Prove 2n+1 < 2n for n ≥ 3
Proof
Base case
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2 ·3+1 < 23
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7 < 8 //

Induction case
Prove 2(n+1)+1 < 2n+1

assuming 2n+1 < 2n

as the inductive hypothesis.
2n+1

= ⟨Math⟩
2 ·2n

> ⟨Inductive hypothesis⟩
2 · (2n+1)

= ⟨Math⟩
2(n+1)+1+2n−1

> ⟨2n−1 is positive for n ≥ 3⟩
2(n+1)+1 //
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Must prove that you can make 4 cents using only 2-cent 
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Use two 2-cent coins. //
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they must all be 2-cent coins. Because the amount must 
be more than three cents, you must have at least two 2-
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10 J. STANLEY WARFORD

Theorems concerning power set P .
(11.71) P⌦ = {⌦}
(11.72) S ⌥ PS

(11.73) #(PS) = 2#S (for finite set S)

(11.76) Axiom, Partition: Set S partitions T if
(i) the sets in S are pairwise disjoint and
(ii) the union of the sets in S is T , that is, if
( u, v u ⌥ S � v ⌥ S � u �= v : u � v = ⌦) � (�u u ⌥ S : u) = T

MATHEMATICAL INDUCTION

(12.3) Axiom, Mathematical Induction over N:
( n: N : ( i 0 ⌅ i < n : P.i) ⌃ P.n) ⌃ ( n: N : P.n)

(12.4) Mathematical Induction over N:
( n: N : ( i 0 ⌅ i < n : P.i) ⌃ P.n) ⇤ ( n: N : P.n)

(12.5) Mathematical Induction over N:
P.0 � ( n: N : ( i 0 ⌅ i ⌅ n : P.i) ⌃ P (n + 1)) ⇤ ( n: N : P.n)

(12.11) Definition, b to the power n:
b0 = 1
bn+1 = b · bn for n ⇧ 0

(12.12) b to the power n:
b0 = 1
bn = b · bn�1 for n ⇧ 1

(12.13) Definition, factorial:
0! = 1
n! = n · (n � 1)! for n > 0

(12.14) Definition, Fibonacci:
F0 = 0, F1 = 1
Fn = Fn�1 + Fn�2 for n > 1

(12.14.1) Definition, Golden Ratio: � = (1 +
⌘

5)/2 �̂ = (1 �
⌘

5)/2
(12.15) �2 = � + 1 and �̂2 = �̂ + 1
(12.16) Fn ⌅ �n�1 for n ⇧ 1
(12.16.1) �n�2 ⌅ Fn for n ⇧ 1
(12.17) Fn+m = Fm · Fn+1 + Fm�1 · Fn for n ⇧ 0 and m ⇧ 1

NATURAL SCIENCE DIVISION, PEPPERDINE UNIVERSITY, MALIBU, CA 90265
E-mail address: Stan.Warford@pepperdine.edu
URL: http://mccarthy.cslab.pepperdine.edu/˜warford/
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Prove n! = (Πi 1 ≤ i ≤ n : i) for n ≥ 0
Proof
Base case

n! = (Πi 1 ≤ i ≤ n : i)
= ⟨Base case, n = 0⟩

0! = (Πi 1 ≤ i ≤ 0 : i)
= ⟨(12.13) and math⟩

1 = (Πi f alse : i)
= ⟨(8.13) Empty range rule⟩

1 = 1 //

Prove n! = (Πi 1 ≤ i ≤ n : i) for n ≥ 0
Induction case
Prove (n+1)! = (Πi 1 ≤ i ≤ n+1 : i)
assuming n! = (Πi 1 ≤ i ≤ n : i)
as the inductive hypothesis.

(Πi 1 ≤ i ≤ n+1 : i)
= ⟨Split off last term⟩

(Πi 1 ≤ i ≤ n : i) · (n+1)
= ⟨Inductive hypothesis⟩

n! · (n+1)
= ⟨(12.13 with n := n+1, which is (n+1)! = (n+1) ·n!⟩

(n+1)! //
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The Fibonacci sequence

0     1     1     2     3     5     8

F2F1 F5F4F3F0 F6



A Logical Approach to Discrete Math
THEOREMS FROM LADM 11

(12.13) Definition, factorial:
0! = 1
n! = n · (n� 1)! for n > 0

(12.14) Definition, Fibonacci:
F0 = 0, F1 = 1
Fn = Fn�1 + Fn�2 for n > 1

(12.14.1) Definition, Golden Ratio: � = (1 +
p

5)/2 ⇡ 1.618 �̂ = (1�
p

5)/2 ⇡ �0.618
(12.15) �2 = � + 1 and �̂2 = �̂ + 1
(12.16) Fn  �n�1 for n � 1
(12.16.1) �n�2  Fn for n � 1
(12.17) Fn+m = Fm · Fn+1 + Fm�1 · Fn for n � 0 and m � 1

Inductively defined binary trees.
(12.30) Definition, Binary Tree:

; is a binary tree, called the empty tree.
(d, l, r) is a binary tree, for d: Z and l, r binary trees.

(12.31) Definition, Number of Nodes:
#; = 0
#(d, l, r) = 1 + #l + #r

(12.32) Definition, Height:
height.; = 0
height.(d, l, r) = 1 + max(height.l, height.r)

(12.32.1) Definition, Leaf: A leaf is a node with no children (i.e. two empty subtrees).
(12.32.2) Definition, Internal node: An internal node is a node that is not a leaf.
(12.32.3) Definition, Complete: A binary tree is complete if every node has either

0 or 2 children.
(12.33) The maximum number of nodes in a tree with height n is 2n � 1 for n � 0.
(12.34) The minimum number of nodes in a tree with height n is n for n � 0.
(12.35) (a) The maximum number of leaves in a tree with height n is 2n�1 for n > 0.

(b) The maximum number of internal nodes in a tree with height n is 2n�1 � 1 for n > 0.
(12.36) (a) The minimum number of leaves in a tree with height n is 1 for n > 0.

(b) The minimum number of internal nodes in a tree with height n is n� 1 for n > 0.
(12.37) Every nonempy complete tree has an odd number of nodes.

A THEORY OF PROGRAMS

(p.1) Axiom, Excluded miracle: wp.S. false ⌘ false

(p.2) Axiom, Conjunctivity: wp.S.(X ^ Y ) ⌘ wp.S.X ^ wp.S.Y

(p.3) Monotonicity: (X ) Y ) ) (wp.S.X ) wp.S.Y )
(p.4) Definition, Hoare triple: {Q} S {R} ⌘ Q ) wp.S.R

(p.4.1) {wp.S.R} S {R}



A Logical Approach to Discrete Math

To prove Fibonacci theorems
there are two base cases

and two inductive hypotheses.
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36

Prove (12.16) Fn ≤ φ n−1 for n ≥ 1
Proof
First base case

Fn ≤ φ n−1

= ⟨Base case, n = 1⟩
F1 ≤ φ 1−1

= ⟨(12.14)⟩
1 ≤ φ 1−1

= ⟨Math⟩
1 ≤ 1 //

Second base case
Fn ≤ φ n−1

= ⟨Base case, n = 2⟩
F2 ≤ φ 2−1

= ⟨(12.14) and math⟩
1+0 ≤ φ

= ⟨(12.14.1) and math⟩
1 ≤ 1.618 //
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Prove (12.16) Fn ≤ φ n−1 for n ≥ 1
Induction case
Prove Fn+1 ≤ φ (n+1)−1

assuming Fn ≤ φ n−1 and Fn−1 ≤ φ (n−1)−1

as the inductive hypotheses.
Fn+1

= ⟨(12.14) with n := n+1⟩
Fn +Fn−1

≤ ⟨Inductive hypotheses⟩
φ n−1 +φ n−2

= ⟨Math, factor out φ n−2⟩
φ n−2(φ +1)

= ⟨(12.15)⟩
φ n−2 ·φ 2

= ⟨Math⟩
φ (n+1)−1 //
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A Logical Approach to Discrete Math

THEOREMS FROM LADM 11

(12.12) b to the power n:
b0 = 1
bn = b ·bn−1 for n ≥ 1

(12.13) Definition, factorial:
0! = 1
n! = n · (n−1)! for n > 0

(12.14) Definition, Fibonacci:
F0 = 0, F1 = 1
Fn = Fn−1 +Fn−2 for n > 1

(12.14.1) Definition, Golden Ratio: φ = (1+
√

5)/2 ≈ 1.618 φ̂ = (1−
√

5)/2 ≈−0.618
(12.15) φ 2 = φ +1 and φ̂ 2 = φ̂ +1
(12.16) Fn ≤ φ n−1 for n ≥ 1
(12.16.1) φ n−2 ≤ Fn for n ≥ 1
(12.17) Fn+m = Fm ·Fn+1 +Fm−1 ·Fn for n ≥ 0 and m ≥ 1

Inductively defined binary trees.
(12.30) Definition, Binary Tree:

/0 is a binary tree, called the empty tree.
(d, l,r) is a binary tree, for d: Z and l, r binary trees.

(12.31) Definition, Number of Nodes:
#/0 = 0
#(d, l,r) = 1+#l +#r

(12.32) Definition, Height:
height. /0 = 0
height.(d, l,r) = 1+max(height.l,height.r)

(12.32.1) Definition, Leaf: A leaf is a node with no children (i.e. two empty subtrees).
(12.32.2) Definition, Internal node: An internal node is a node that is not a leaf.
(12.32.3) Definition, Complete: A binary tree is complete if every node has either

0 or 2 children.
(12.33) The maximum number of nodes in a tree with height n is 2n −1 for n ≥ 0.
(12.34) The minimum number of nodes in a tree with height n is n for n ≥ 0.
(12.35) (a) The maximum number of leaves in a tree with height n is 2n−1 for n > 0.

(b) The maximum number of internal nodes in a tree with height n is 2n−1 −1 for n > 0.
(12.36) (a) The minimum number of leaves in a tree with height n is 1 for n > 0.

(b) The minimum number of internal nodes in a tree with height n is n−1 for n > 0.
(12.37) Every nonempy complete tree has an odd number of nodes.

A Theory of Programs

(p.1) Axiom, Excluded miracle: wp.S. false ≡ false
(p.2) Axiom, Conjunctivity: wp.S.(X ∧Y ) ≡ wp.S.X ∧wp.S.Y

Ø
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A THEORY OF PROGRAMS

(p.1) Axiom, Excluded miracle: wp.S. false ⇤ false
(p.2) Axiom, Conjunctivity: wp.S.(X  Y ) ⇤ wp.S.X  wp.S.Y

(p.3) Monotonicity: (X ⌃ Y ) ⌃ (wp.S.X ⌃ wp.S.Y )
(p.4) Definition, Hoare triple: {Q} S {R} ⇤ Q ⌃ wp.S.R

(p.4) Definition, Hoare triple: {Q} S {R} ⇤ Q ⌃ wp.S.R

(p.4.1) {wp.S.R} S {R}
(p.6) Definition, Program equivalence: S = T ⇤ (For all R,wp.S.R ⇤ wp.T.R)
(p.7) (Q ⌃ A)  {A} S {R} ⌃ {Q} S {R}
(p.8) {Q0} S {R0}  {Q1} S {R1} ⌃ {Q0  Q1} S {R0  R1}
(p.9) {Q0} S {R0}  {Q1} S {R1} ⌃ {Q0 ⌦Q1} S {R0 ⌦R1}

(p.10) Definition, skip: wp.skip.R ⇤ R

(p.11) {Q} skip {R} ⇤ Q ⌃ R

(p.12) Definition, abort: wp.abort.R ⇤ false
(p.13) {Q} abort {R} ⇤ Q ⇤ false
(p.14) Definition, Composition: wp.(S;T ).R ⇤ wp.S.(wp.T.R)
(p.15) {Q} S {H}  {H} T {R} ⌃ {Q} S;T {R}
(p.16) Identity of composition:

S ; skip = S skip ;S = S

(p.17) Zero of composition:
S ; abort = abort abort ;S = abort

(p.18) Definition, Assignment: wp.(x := E).R ⇤ R[x := E]
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